1 /* 2 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 * 28 */ 29 30 31 #include <sys/param.h> 32 #include <sys/bus.h> 33 #include <sys/rtprio.h> 34 #include <sys/systm.h> 35 #include <sys/interrupt.h> 36 #include <sys/kernel.h> 37 #include <sys/kthread.h> 38 #include <sys/ktr.h> 39 #include <sys/lock.h> 40 #include <sys/malloc.h> 41 #include <sys/mutex.h> 42 #include <sys/proc.h> 43 #include <sys/random.h> 44 #include <sys/resourcevar.h> 45 #include <sys/sysctl.h> 46 #include <sys/unistd.h> 47 #include <sys/vmmeter.h> 48 #include <machine/atomic.h> 49 #include <machine/cpu.h> 50 #include <machine/md_var.h> 51 #include <machine/stdarg.h> 52 53 #include <net/netisr.h> /* prototype for legacy_setsoftnet */ 54 55 struct int_entropy { 56 struct proc *proc; 57 int vector; 58 }; 59 60 void *net_ih; 61 void *vm_ih; 62 void *softclock_ih; 63 struct ithd *clk_ithd; 64 struct ithd *tty_ithd; 65 66 static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads"); 67 68 static void ithread_update(struct ithd *); 69 static void ithread_loop(void *); 70 static void start_softintr(void *); 71 static void swi_net(void *); 72 73 u_char 74 ithread_priority(enum intr_type flags) 75 { 76 u_char pri; 77 78 flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET | 79 INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV); 80 switch (flags) { 81 case INTR_TYPE_TTY: 82 pri = PI_TTYLOW; 83 break; 84 case INTR_TYPE_BIO: 85 /* 86 * XXX We need to refine this. BSD/OS distinguishes 87 * between tape and disk priorities. 88 */ 89 pri = PI_DISK; 90 break; 91 case INTR_TYPE_NET: 92 pri = PI_NET; 93 break; 94 case INTR_TYPE_CAM: 95 pri = PI_DISK; /* XXX or PI_CAM? */ 96 break; 97 case INTR_TYPE_AV: /* Audio/video */ 98 pri = PI_AV; 99 break; 100 case INTR_TYPE_CLK: 101 pri = PI_REALTIME; 102 break; 103 case INTR_TYPE_MISC: 104 pri = PI_DULL; /* don't care */ 105 break; 106 default: 107 /* We didn't specify an interrupt level. */ 108 panic("ithread_priority: no interrupt type in flags"); 109 } 110 111 return pri; 112 } 113 114 /* 115 * Regenerate the name (p_comm) and priority for a threaded interrupt thread. 116 */ 117 static void 118 ithread_update(struct ithd *ithd) 119 { 120 struct intrhand *ih; 121 struct thread *td; 122 struct proc *p; 123 int entropy; 124 125 mtx_assert(&ithd->it_lock, MA_OWNED); 126 td = ithd->it_td; 127 if (td == NULL) 128 return; 129 p = td->td_proc; 130 131 strncpy(p->p_comm, ithd->it_name, sizeof(ithd->it_name)); 132 ih = TAILQ_FIRST(&ithd->it_handlers); 133 if (ih == NULL) { 134 mtx_lock_spin(&sched_lock); 135 td->td_priority = PRI_MAX_ITHD; 136 td->td_base_pri = PRI_MAX_ITHD; 137 mtx_unlock_spin(&sched_lock); 138 ithd->it_flags &= ~IT_ENTROPY; 139 return; 140 } 141 entropy = 0; 142 mtx_lock_spin(&sched_lock); 143 td->td_priority = ih->ih_pri; 144 td->td_base_pri = ih->ih_pri; 145 mtx_unlock_spin(&sched_lock); 146 TAILQ_FOREACH(ih, &ithd->it_handlers, ih_next) { 147 if (strlen(p->p_comm) + strlen(ih->ih_name) + 1 < 148 sizeof(p->p_comm)) { 149 strcat(p->p_comm, " "); 150 strcat(p->p_comm, ih->ih_name); 151 } else if (strlen(p->p_comm) + 1 == sizeof(p->p_comm)) { 152 if (p->p_comm[sizeof(p->p_comm) - 2] == '+') 153 p->p_comm[sizeof(p->p_comm) - 2] = '*'; 154 else 155 p->p_comm[sizeof(p->p_comm) - 2] = '+'; 156 } else 157 strcat(p->p_comm, "+"); 158 if (ih->ih_flags & IH_ENTROPY) 159 entropy++; 160 } 161 if (entropy) 162 ithd->it_flags |= IT_ENTROPY; 163 else 164 ithd->it_flags &= ~IT_ENTROPY; 165 CTR2(KTR_INTR, "%s: updated %s\n", __func__, p->p_comm); 166 } 167 168 int 169 ithread_create(struct ithd **ithread, int vector, int flags, 170 void (*disable)(int), void (*enable)(int), const char *fmt, ...) 171 { 172 struct ithd *ithd; 173 struct thread *td; 174 struct proc *p; 175 int error; 176 va_list ap; 177 178 /* The only valid flag during creation is IT_SOFT. */ 179 if ((flags & ~IT_SOFT) != 0) 180 return (EINVAL); 181 182 ithd = malloc(sizeof(struct ithd), M_ITHREAD, M_WAITOK | M_ZERO); 183 ithd->it_vector = vector; 184 ithd->it_disable = disable; 185 ithd->it_enable = enable; 186 ithd->it_flags = flags; 187 TAILQ_INIT(&ithd->it_handlers); 188 mtx_init(&ithd->it_lock, "ithread", NULL, MTX_DEF); 189 190 va_start(ap, fmt); 191 vsnprintf(ithd->it_name, sizeof(ithd->it_name), fmt, ap); 192 va_end(ap); 193 194 error = kthread_create(ithread_loop, ithd, &p, RFSTOPPED | RFHIGHPID, 195 "%s", ithd->it_name); 196 if (error) { 197 mtx_destroy(&ithd->it_lock); 198 free(ithd, M_ITHREAD); 199 return (error); 200 } 201 td = FIRST_THREAD_IN_PROC(p); /* XXXKSE */ 202 td->td_ksegrp->kg_pri_class = PRI_ITHD; 203 td->td_priority = PRI_MAX_ITHD; 204 td->td_state = TDS_IWAIT; 205 ithd->it_td = td; 206 td->td_ithd = ithd; 207 if (ithread != NULL) 208 *ithread = ithd; 209 210 CTR2(KTR_INTR, "%s: created %s", __func__, ithd->it_name); 211 return (0); 212 } 213 214 int 215 ithread_destroy(struct ithd *ithread) 216 { 217 218 struct thread *td; 219 struct proc *p; 220 if (ithread == NULL) 221 return (EINVAL); 222 223 td = ithread->it_td; 224 p = td->td_proc; 225 mtx_lock(&ithread->it_lock); 226 if (!TAILQ_EMPTY(&ithread->it_handlers)) { 227 mtx_unlock(&ithread->it_lock); 228 return (EINVAL); 229 } 230 ithread->it_flags |= IT_DEAD; 231 mtx_lock_spin(&sched_lock); 232 if (td->td_state == TDS_IWAIT) { 233 setrunqueue(td); 234 } 235 mtx_unlock_spin(&sched_lock); 236 mtx_unlock(&ithread->it_lock); 237 CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_name); 238 return (0); 239 } 240 241 int 242 ithread_add_handler(struct ithd* ithread, const char *name, 243 driver_intr_t handler, void *arg, u_char pri, enum intr_type flags, 244 void **cookiep) 245 { 246 struct intrhand *ih, *temp_ih; 247 248 if (ithread == NULL || name == NULL || handler == NULL) 249 return (EINVAL); 250 if ((flags & INTR_FAST) !=0) 251 flags |= INTR_EXCL; 252 253 ih = malloc(sizeof(struct intrhand), M_ITHREAD, M_WAITOK | M_ZERO); 254 ih->ih_handler = handler; 255 ih->ih_argument = arg; 256 ih->ih_name = name; 257 ih->ih_ithread = ithread; 258 ih->ih_pri = pri; 259 if (flags & INTR_FAST) 260 ih->ih_flags = IH_FAST | IH_EXCLUSIVE; 261 else if (flags & INTR_EXCL) 262 ih->ih_flags = IH_EXCLUSIVE; 263 if (flags & INTR_MPSAFE) 264 ih->ih_flags |= IH_MPSAFE; 265 if (flags & INTR_ENTROPY) 266 ih->ih_flags |= IH_ENTROPY; 267 268 mtx_lock(&ithread->it_lock); 269 if ((flags & INTR_EXCL) !=0 && !TAILQ_EMPTY(&ithread->it_handlers)) 270 goto fail; 271 if (!TAILQ_EMPTY(&ithread->it_handlers) && 272 (TAILQ_FIRST(&ithread->it_handlers)->ih_flags & IH_EXCLUSIVE) != 0) 273 goto fail; 274 275 TAILQ_FOREACH(temp_ih, &ithread->it_handlers, ih_next) 276 if (temp_ih->ih_pri > ih->ih_pri) 277 break; 278 if (temp_ih == NULL) 279 TAILQ_INSERT_TAIL(&ithread->it_handlers, ih, ih_next); 280 else 281 TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next); 282 ithread_update(ithread); 283 mtx_unlock(&ithread->it_lock); 284 285 if (cookiep != NULL) 286 *cookiep = ih; 287 CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name, 288 ithread->it_name); 289 return (0); 290 291 fail: 292 mtx_unlock(&ithread->it_lock); 293 free(ih, M_ITHREAD); 294 return (EINVAL); 295 } 296 297 int 298 ithread_remove_handler(void *cookie) 299 { 300 struct intrhand *handler = (struct intrhand *)cookie; 301 struct ithd *ithread; 302 #ifdef INVARIANTS 303 struct intrhand *ih; 304 #endif 305 306 if (handler == NULL) 307 return (EINVAL); 308 ithread = handler->ih_ithread; 309 KASSERT(ithread != NULL, 310 ("interrupt handler \"%s\" has a NULL interrupt thread", 311 handler->ih_name)); 312 CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name, 313 ithread->it_name); 314 mtx_lock(&ithread->it_lock); 315 #ifdef INVARIANTS 316 TAILQ_FOREACH(ih, &ithread->it_handlers, ih_next) 317 if (ih == handler) 318 goto ok; 319 mtx_unlock(&ithread->it_lock); 320 panic("interrupt handler \"%s\" not found in interrupt thread \"%s\"", 321 ih->ih_name, ithread->it_name); 322 ok: 323 #endif 324 /* 325 * If the interrupt thread is already running, then just mark this 326 * handler as being dead and let the ithread do the actual removal. 327 */ 328 mtx_lock_spin(&sched_lock); 329 if (ithread->it_td->td_state != TDS_IWAIT) { 330 handler->ih_flags |= IH_DEAD; 331 332 /* 333 * Ensure that the thread will process the handler list 334 * again and remove this handler if it has already passed 335 * it on the list. 336 */ 337 ithread->it_need = 1; 338 } else 339 TAILQ_REMOVE(&ithread->it_handlers, handler, ih_next); 340 mtx_unlock_spin(&sched_lock); 341 if ((handler->ih_flags & IH_DEAD) != 0) 342 msleep(handler, &ithread->it_lock, PUSER, "itrmh", 0); 343 ithread_update(ithread); 344 mtx_unlock(&ithread->it_lock); 345 free(handler, M_ITHREAD); 346 return (0); 347 } 348 349 int 350 ithread_schedule(struct ithd *ithread, int do_switch) 351 { 352 struct int_entropy entropy; 353 struct thread *td; 354 struct thread *ctd; 355 struct proc *p; 356 357 /* 358 * If no ithread or no handlers, then we have a stray interrupt. 359 */ 360 if ((ithread == NULL) || TAILQ_EMPTY(&ithread->it_handlers)) 361 return (EINVAL); 362 363 ctd = curthread; 364 /* 365 * If any of the handlers for this ithread claim to be good 366 * sources of entropy, then gather some. 367 */ 368 if (harvest.interrupt && ithread->it_flags & IT_ENTROPY) { 369 entropy.vector = ithread->it_vector; 370 entropy.proc = ctd->td_proc;; 371 random_harvest(&entropy, sizeof(entropy), 2, 0, 372 RANDOM_INTERRUPT); 373 } 374 375 td = ithread->it_td; 376 p = td->td_proc; 377 KASSERT(p != NULL, ("ithread %s has no process", ithread->it_name)); 378 CTR4(KTR_INTR, "%s: pid %d: (%s) need = %d", 379 __func__, p->p_pid, p->p_comm, ithread->it_need); 380 381 /* 382 * Set it_need to tell the thread to keep running if it is already 383 * running. Then, grab sched_lock and see if we actually need to 384 * put this thread on the runqueue. If so and the do_switch flag is 385 * true and it is safe to switch, then switch to the ithread 386 * immediately. Otherwise, set the needresched flag to guarantee 387 * that this ithread will run before any userland processes. 388 */ 389 ithread->it_need = 1; 390 mtx_lock_spin(&sched_lock); 391 if (td->td_state == TDS_IWAIT) { 392 CTR2(KTR_INTR, "%s: setrunqueue %d", __func__, p->p_pid); 393 setrunqueue(td); 394 if (do_switch && 395 (ctd->td_critnest == 1) ) { 396 KASSERT((ctd->td_state == TDS_RUNNING), 397 ("ithread_schedule: Bad state for curthread.")); 398 ctd->td_proc->p_stats->p_ru.ru_nivcsw++; 399 if (ctd->td_kse->ke_flags & KEF_IDLEKSE) 400 ctd->td_state = TDS_UNQUEUED; 401 mi_switch(); 402 } else { 403 curthread->td_kse->ke_flags |= KEF_NEEDRESCHED; 404 } 405 } else { 406 CTR4(KTR_INTR, "%s: pid %d: it_need %d, state %d", 407 __func__, p->p_pid, ithread->it_need, p->p_state); 408 } 409 mtx_unlock_spin(&sched_lock); 410 411 return (0); 412 } 413 414 int 415 swi_add(struct ithd **ithdp, const char *name, driver_intr_t handler, 416 void *arg, int pri, enum intr_type flags, void **cookiep) 417 { 418 struct ithd *ithd; 419 int error; 420 421 if (flags & (INTR_FAST | INTR_ENTROPY)) 422 return (EINVAL); 423 424 ithd = (ithdp != NULL) ? *ithdp : NULL; 425 426 if (ithd != NULL) { 427 if ((ithd->it_flags & IT_SOFT) == 0) 428 return(EINVAL); 429 } else { 430 error = ithread_create(&ithd, pri, IT_SOFT, NULL, NULL, 431 "swi%d:", pri); 432 if (error) 433 return (error); 434 435 if (ithdp != NULL) 436 *ithdp = ithd; 437 } 438 return (ithread_add_handler(ithd, name, handler, arg, 439 (pri * RQ_PPQ) + PI_SOFT, flags, cookiep)); 440 } 441 442 443 /* 444 * Schedule a heavyweight software interrupt process. 445 */ 446 void 447 swi_sched(void *cookie, int flags) 448 { 449 struct intrhand *ih = (struct intrhand *)cookie; 450 struct ithd *it = ih->ih_ithread; 451 int error; 452 453 atomic_add_int(&cnt.v_intr, 1); /* one more global interrupt */ 454 455 CTR3(KTR_INTR, "swi_sched pid %d(%s) need=%d", 456 it->it_td->td_proc->p_pid, it->it_td->td_proc->p_comm, it->it_need); 457 458 /* 459 * Set ih_need for this handler so that if the ithread is already 460 * running it will execute this handler on the next pass. Otherwise, 461 * it will execute it the next time it runs. 462 */ 463 atomic_store_rel_int(&ih->ih_need, 1); 464 if (!(flags & SWI_DELAY)) { 465 error = ithread_schedule(it, !cold); 466 KASSERT(error == 0, ("stray software interrupt")); 467 } 468 } 469 470 /* 471 * This is the main code for interrupt threads. 472 */ 473 void 474 ithread_loop(void *arg) 475 { 476 struct ithd *ithd; /* our thread context */ 477 struct intrhand *ih; /* and our interrupt handler chain */ 478 struct thread *td; 479 struct proc *p; 480 481 td = curthread; 482 p = td->td_proc; 483 ithd = (struct ithd *)arg; /* point to myself */ 484 KASSERT(ithd->it_td == td && td->td_ithd == ithd, 485 ("%s: ithread and proc linkage out of sync", __func__)); 486 487 /* 488 * As long as we have interrupts outstanding, go through the 489 * list of handlers, giving each one a go at it. 490 */ 491 for (;;) { 492 /* 493 * If we are an orphaned thread, then just die. 494 */ 495 if (ithd->it_flags & IT_DEAD) { 496 CTR3(KTR_INTR, "%s: pid %d: (%s) exiting", __func__, 497 p->p_pid, p->p_comm); 498 td->td_ithd = NULL; 499 mtx_destroy(&ithd->it_lock); 500 mtx_lock(&Giant); 501 free(ithd, M_ITHREAD); 502 kthread_exit(0); 503 } 504 505 CTR4(KTR_INTR, "%s: pid %d: (%s) need=%d", __func__, 506 p->p_pid, p->p_comm, ithd->it_need); 507 while (ithd->it_need) { 508 /* 509 * Service interrupts. If another interrupt 510 * arrives while we are running, they will set 511 * it_need to denote that we should make 512 * another pass. 513 */ 514 atomic_store_rel_int(&ithd->it_need, 0); 515 restart: 516 TAILQ_FOREACH(ih, &ithd->it_handlers, ih_next) { 517 if (ithd->it_flags & IT_SOFT && !ih->ih_need) 518 continue; 519 atomic_store_rel_int(&ih->ih_need, 0); 520 CTR6(KTR_INTR, 521 "%s: pid %d ih=%p: %p(%p) flg=%x", __func__, 522 p->p_pid, (void *)ih, 523 (void *)ih->ih_handler, ih->ih_argument, 524 ih->ih_flags); 525 526 if ((ih->ih_flags & IH_DEAD) != 0) { 527 mtx_lock(&ithd->it_lock); 528 TAILQ_REMOVE(&ithd->it_handlers, ih, 529 ih_next); 530 wakeup(ih); 531 mtx_unlock(&ithd->it_lock); 532 goto restart; 533 } 534 if ((ih->ih_flags & IH_MPSAFE) == 0) 535 mtx_lock(&Giant); 536 ih->ih_handler(ih->ih_argument); 537 if ((ih->ih_flags & IH_MPSAFE) == 0) 538 mtx_unlock(&Giant); 539 } 540 } 541 542 /* 543 * Processed all our interrupts. Now get the sched 544 * lock. This may take a while and it_need may get 545 * set again, so we have to check it again. 546 */ 547 mtx_assert(&Giant, MA_NOTOWNED); 548 mtx_lock_spin(&sched_lock); 549 if (!ithd->it_need) { 550 /* 551 * Should we call this earlier in the loop above? 552 */ 553 if (ithd->it_enable != NULL) 554 ithd->it_enable(ithd->it_vector); 555 td->td_state = TDS_IWAIT; /* we're idle */ 556 p->p_stats->p_ru.ru_nvcsw++; 557 CTR2(KTR_INTR, "%s: pid %d: done", __func__, p->p_pid); 558 mi_switch(); 559 CTR2(KTR_INTR, "%s: pid %d: resumed", __func__, p->p_pid); 560 } 561 mtx_unlock_spin(&sched_lock); 562 } 563 } 564 565 /* 566 * Start standard software interrupt threads 567 */ 568 static void 569 start_softintr(void *dummy) 570 { 571 572 if (swi_add(NULL, "net", swi_net, NULL, SWI_NET, 0, &net_ih) || 573 swi_add(&clk_ithd, "clock", softclock, NULL, SWI_CLOCK, 574 INTR_MPSAFE, &softclock_ih) || 575 swi_add(NULL, "vm", swi_vm, NULL, SWI_VM, 0, &vm_ih)) 576 panic("died while creating standard software ithreads"); 577 578 PROC_LOCK(clk_ithd->it_td->td_proc); 579 clk_ithd->it_td->td_proc->p_flag |= P_NOLOAD; 580 PROC_UNLOCK(clk_ithd->it_td->td_proc); 581 } 582 SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr, NULL) 583 584 void 585 legacy_setsoftnet(void) 586 { 587 swi_sched(net_ih, 0); 588 } 589 590 /* 591 * XXX: This should really be in the network code somewhere and installed 592 * via a SI_SUB_SOFINTR, SI_ORDER_MIDDLE sysinit. 593 */ 594 void (*netisrs[32])(void); 595 volatile unsigned int netisr; /* scheduling bits for network */ 596 597 int 598 register_netisr(num, handler) 599 int num; 600 netisr_t *handler; 601 { 602 603 if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) { 604 printf("register_netisr: bad isr number: %d\n", num); 605 return (EINVAL); 606 } 607 netisrs[num] = handler; 608 return (0); 609 } 610 611 int 612 unregister_netisr(num) 613 int num; 614 { 615 616 if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) { 617 printf("unregister_netisr: bad isr number: %d\n", num); 618 return (EINVAL); 619 } 620 netisrs[num] = NULL; 621 return (0); 622 } 623 624 #ifdef DEVICE_POLLING 625 void netisr_pollmore(void); 626 #endif 627 628 static void 629 swi_net(void *dummy) 630 { 631 u_int bits; 632 int i; 633 634 #ifdef DEVICE_POLLING 635 for (;;) { 636 int pollmore; 637 #endif 638 bits = atomic_readandclear_int(&netisr); 639 #ifdef DEVICE_POLLING 640 if (bits == 0) 641 return; 642 pollmore = bits & (1 << NETISR_POLL); 643 #endif 644 while ((i = ffs(bits)) != 0) { 645 i--; 646 if (netisrs[i] != NULL) 647 netisrs[i](); 648 else 649 printf("swi_net: unregistered isr number: %d.\n", i); 650 bits &= ~(1 << i); 651 } 652 #ifdef DEVICE_POLLING 653 if (pollmore) 654 netisr_pollmore(); 655 } 656 #endif 657 } 658 659 /* 660 * Sysctls used by systat and others: hw.intrnames and hw.intrcnt. 661 * The data for this machine dependent, and the declarations are in machine 662 * dependent code. The layout of intrnames and intrcnt however is machine 663 * independent. 664 * 665 * We do not know the length of intrcnt and intrnames at compile time, so 666 * calculate things at run time. 667 */ 668 static int 669 sysctl_intrnames(SYSCTL_HANDLER_ARGS) 670 { 671 return (sysctl_handle_opaque(oidp, intrnames, eintrnames - intrnames, 672 req)); 673 } 674 675 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD, 676 NULL, 0, sysctl_intrnames, "", "Interrupt Names"); 677 678 static int 679 sysctl_intrcnt(SYSCTL_HANDLER_ARGS) 680 { 681 return (sysctl_handle_opaque(oidp, intrcnt, 682 (char *)eintrcnt - (char *)intrcnt, req)); 683 } 684 685 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD, 686 NULL, 0, sysctl_intrcnt, "", "Interrupt Counts"); 687