1 /* 2 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 * 28 */ 29 30 31 #include <sys/param.h> 32 #include <sys/bus.h> 33 #include <sys/rtprio.h> 34 #include <sys/systm.h> 35 #include <sys/interrupt.h> 36 #include <sys/kernel.h> 37 #include <sys/kthread.h> 38 #include <sys/ktr.h> 39 #include <sys/lock.h> 40 #include <sys/malloc.h> 41 #include <sys/mutex.h> 42 #include <sys/proc.h> 43 #include <sys/random.h> 44 #include <sys/resourcevar.h> 45 #include <sys/sysctl.h> 46 #include <sys/unistd.h> 47 #include <sys/vmmeter.h> 48 #include <machine/atomic.h> 49 #include <machine/cpu.h> 50 #include <machine/md_var.h> 51 #include <machine/stdarg.h> 52 53 #include <net/netisr.h> /* prototype for legacy_setsoftnet */ 54 55 struct int_entropy { 56 struct proc *proc; 57 int vector; 58 }; 59 60 void *net_ih; 61 void *vm_ih; 62 void *softclock_ih; 63 struct ithd *clk_ithd; 64 struct ithd *tty_ithd; 65 66 static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads"); 67 68 static void ithread_update(struct ithd *); 69 static void ithread_loop(void *); 70 static void start_softintr(void *); 71 static void swi_net(void *); 72 73 u_char 74 ithread_priority(enum intr_type flags) 75 { 76 u_char pri; 77 78 flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET | 79 INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV); 80 switch (flags) { 81 case INTR_TYPE_TTY: 82 pri = PI_TTYLOW; 83 break; 84 case INTR_TYPE_BIO: 85 /* 86 * XXX We need to refine this. BSD/OS distinguishes 87 * between tape and disk priorities. 88 */ 89 pri = PI_DISK; 90 break; 91 case INTR_TYPE_NET: 92 pri = PI_NET; 93 break; 94 case INTR_TYPE_CAM: 95 pri = PI_DISK; /* XXX or PI_CAM? */ 96 break; 97 case INTR_TYPE_AV: /* Audio/video */ 98 pri = PI_AV; 99 break; 100 case INTR_TYPE_CLK: 101 pri = PI_REALTIME; 102 break; 103 case INTR_TYPE_MISC: 104 pri = PI_DULL; /* don't care */ 105 break; 106 default: 107 /* We didn't specify an interrupt level. */ 108 panic("ithread_priority: no interrupt type in flags"); 109 } 110 111 return pri; 112 } 113 114 /* 115 * Regenerate the name (p_comm) and priority for a threaded interrupt thread. 116 */ 117 static void 118 ithread_update(struct ithd *ithd) 119 { 120 struct intrhand *ih; 121 struct thread *td; 122 struct proc *p; 123 int entropy; 124 125 mtx_assert(&ithd->it_lock, MA_OWNED); 126 td = ithd->it_td; 127 if (td == NULL) 128 return; 129 p = td->td_proc; 130 131 strncpy(p->p_comm, ithd->it_name, sizeof(ithd->it_name)); 132 ih = TAILQ_FIRST(&ithd->it_handlers); 133 if (ih == NULL) { 134 mtx_lock_spin(&sched_lock); 135 td->td_priority = PRI_MAX_ITHD; 136 td->td_base_pri = PRI_MAX_ITHD; 137 mtx_unlock_spin(&sched_lock); 138 ithd->it_flags &= ~IT_ENTROPY; 139 return; 140 } 141 entropy = 0; 142 mtx_lock_spin(&sched_lock); 143 td->td_priority = ih->ih_pri; 144 td->td_base_pri = ih->ih_pri; 145 mtx_unlock_spin(&sched_lock); 146 TAILQ_FOREACH(ih, &ithd->it_handlers, ih_next) { 147 if (strlen(p->p_comm) + strlen(ih->ih_name) + 1 < 148 sizeof(p->p_comm)) { 149 strcat(p->p_comm, " "); 150 strcat(p->p_comm, ih->ih_name); 151 } else if (strlen(p->p_comm) + 1 == sizeof(p->p_comm)) { 152 if (p->p_comm[sizeof(p->p_comm) - 2] == '+') 153 p->p_comm[sizeof(p->p_comm) - 2] = '*'; 154 else 155 p->p_comm[sizeof(p->p_comm) - 2] = '+'; 156 } else 157 strcat(p->p_comm, "+"); 158 if (ih->ih_flags & IH_ENTROPY) 159 entropy++; 160 } 161 if (entropy) 162 ithd->it_flags |= IT_ENTROPY; 163 else 164 ithd->it_flags &= ~IT_ENTROPY; 165 CTR2(KTR_INTR, "%s: updated %s\n", __func__, p->p_comm); 166 } 167 168 int 169 ithread_create(struct ithd **ithread, int vector, int flags, 170 void (*disable)(int), void (*enable)(int), const char *fmt, ...) 171 { 172 struct ithd *ithd; 173 struct thread *td; 174 struct proc *p; 175 int error; 176 va_list ap; 177 178 /* The only valid flag during creation is IT_SOFT. */ 179 if ((flags & ~IT_SOFT) != 0) 180 return (EINVAL); 181 182 ithd = malloc(sizeof(struct ithd), M_ITHREAD, M_WAITOK | M_ZERO); 183 ithd->it_vector = vector; 184 ithd->it_disable = disable; 185 ithd->it_enable = enable; 186 ithd->it_flags = flags; 187 TAILQ_INIT(&ithd->it_handlers); 188 mtx_init(&ithd->it_lock, "ithread", NULL, MTX_DEF); 189 190 va_start(ap, fmt); 191 vsnprintf(ithd->it_name, sizeof(ithd->it_name), fmt, ap); 192 va_end(ap); 193 194 error = kthread_create(ithread_loop, ithd, &p, RFSTOPPED | RFHIGHPID, 195 "%s", ithd->it_name); 196 if (error) { 197 mtx_destroy(&ithd->it_lock); 198 free(ithd, M_ITHREAD); 199 return (error); 200 } 201 td = FIRST_THREAD_IN_PROC(p); /* XXXKSE */ 202 td->td_ksegrp->kg_pri_class = PRI_ITHD; 203 td->td_priority = PRI_MAX_ITHD; 204 td->td_state = TDS_IWAIT; 205 ithd->it_td = td; 206 td->td_ithd = ithd; 207 if (ithread != NULL) 208 *ithread = ithd; 209 210 CTR2(KTR_INTR, "%s: created %s", __func__, ithd->it_name); 211 return (0); 212 } 213 214 int 215 ithread_destroy(struct ithd *ithread) 216 { 217 218 struct thread *td; 219 struct proc *p; 220 if (ithread == NULL) 221 return (EINVAL); 222 223 td = ithread->it_td; 224 p = td->td_proc; 225 mtx_lock(&ithread->it_lock); 226 if (!TAILQ_EMPTY(&ithread->it_handlers)) { 227 mtx_unlock(&ithread->it_lock); 228 return (EINVAL); 229 } 230 ithread->it_flags |= IT_DEAD; 231 mtx_lock_spin(&sched_lock); 232 if (td->td_state == TDS_IWAIT) { 233 setrunqueue(td); 234 } 235 mtx_unlock_spin(&sched_lock); 236 mtx_unlock(&ithread->it_lock); 237 CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_name); 238 return (0); 239 } 240 241 int 242 ithread_add_handler(struct ithd* ithread, const char *name, 243 driver_intr_t handler, void *arg, u_char pri, enum intr_type flags, 244 void **cookiep) 245 { 246 struct intrhand *ih, *temp_ih; 247 248 if (ithread == NULL || name == NULL || handler == NULL) 249 return (EINVAL); 250 if ((flags & INTR_FAST) !=0) 251 flags |= INTR_EXCL; 252 253 ih = malloc(sizeof(struct intrhand), M_ITHREAD, M_WAITOK | M_ZERO); 254 ih->ih_handler = handler; 255 ih->ih_argument = arg; 256 ih->ih_name = name; 257 ih->ih_ithread = ithread; 258 ih->ih_pri = pri; 259 if (flags & INTR_FAST) 260 ih->ih_flags = IH_FAST | IH_EXCLUSIVE; 261 else if (flags & INTR_EXCL) 262 ih->ih_flags = IH_EXCLUSIVE; 263 if (flags & INTR_MPSAFE) 264 ih->ih_flags |= IH_MPSAFE; 265 if (flags & INTR_ENTROPY) 266 ih->ih_flags |= IH_ENTROPY; 267 268 mtx_lock(&ithread->it_lock); 269 if ((flags & INTR_EXCL) !=0 && !TAILQ_EMPTY(&ithread->it_handlers)) 270 goto fail; 271 if (!TAILQ_EMPTY(&ithread->it_handlers) && 272 (TAILQ_FIRST(&ithread->it_handlers)->ih_flags & IH_EXCLUSIVE) != 0) 273 goto fail; 274 275 TAILQ_FOREACH(temp_ih, &ithread->it_handlers, ih_next) 276 if (temp_ih->ih_pri > ih->ih_pri) 277 break; 278 if (temp_ih == NULL) 279 TAILQ_INSERT_TAIL(&ithread->it_handlers, ih, ih_next); 280 else 281 TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next); 282 ithread_update(ithread); 283 mtx_unlock(&ithread->it_lock); 284 285 if (cookiep != NULL) 286 *cookiep = ih; 287 CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name, 288 ithread->it_name); 289 return (0); 290 291 fail: 292 mtx_unlock(&ithread->it_lock); 293 free(ih, M_ITHREAD); 294 return (EINVAL); 295 } 296 297 int 298 ithread_remove_handler(void *cookie) 299 { 300 struct intrhand *handler = (struct intrhand *)cookie; 301 struct ithd *ithread; 302 #ifdef INVARIANTS 303 struct intrhand *ih; 304 #endif 305 306 if (handler == NULL) 307 return (EINVAL); 308 ithread = handler->ih_ithread; 309 KASSERT(ithread != NULL, 310 ("interrupt handler \"%s\" has a NULL interrupt thread", 311 handler->ih_name)); 312 CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name, 313 ithread->it_name); 314 mtx_lock(&ithread->it_lock); 315 #ifdef INVARIANTS 316 TAILQ_FOREACH(ih, &ithread->it_handlers, ih_next) 317 if (ih == handler) 318 goto ok; 319 mtx_unlock(&ithread->it_lock); 320 panic("interrupt handler \"%s\" not found in interrupt thread \"%s\"", 321 ih->ih_name, ithread->it_name); 322 ok: 323 #endif 324 /* 325 * If the interrupt thread is already running, then just mark this 326 * handler as being dead and let the ithread do the actual removal. 327 */ 328 mtx_lock_spin(&sched_lock); 329 if (ithread->it_td->td_state != TDS_IWAIT) { 330 handler->ih_flags |= IH_DEAD; 331 332 /* 333 * Ensure that the thread will process the handler list 334 * again and remove this handler if it has already passed 335 * it on the list. 336 */ 337 ithread->it_need = 1; 338 } else 339 TAILQ_REMOVE(&ithread->it_handlers, handler, ih_next); 340 mtx_unlock_spin(&sched_lock); 341 if ((handler->ih_flags & IH_DEAD) != 0) 342 msleep(handler, &ithread->it_lock, PUSER, "itrmh", 0); 343 ithread_update(ithread); 344 mtx_unlock(&ithread->it_lock); 345 free(handler, M_ITHREAD); 346 return (0); 347 } 348 349 int 350 ithread_schedule(struct ithd *ithread, int do_switch) 351 { 352 struct int_entropy entropy; 353 struct thread *td; 354 struct proc *p; 355 356 /* 357 * If no ithread or no handlers, then we have a stray interrupt. 358 */ 359 if ((ithread == NULL) || TAILQ_EMPTY(&ithread->it_handlers)) 360 return (EINVAL); 361 362 /* 363 * If any of the handlers for this ithread claim to be good 364 * sources of entropy, then gather some. 365 */ 366 if (harvest.interrupt && ithread->it_flags & IT_ENTROPY) { 367 entropy.vector = ithread->it_vector; 368 entropy.proc = curthread->td_proc;; 369 random_harvest(&entropy, sizeof(entropy), 2, 0, 370 RANDOM_INTERRUPT); 371 } 372 373 td = ithread->it_td; 374 p = td->td_proc; 375 KASSERT(p != NULL, ("ithread %s has no process", ithread->it_name)); 376 CTR4(KTR_INTR, "%s: pid %d: (%s) need = %d", 377 __func__, p->p_pid, p->p_comm, ithread->it_need); 378 379 /* 380 * Set it_need to tell the thread to keep running if it is already 381 * running. Then, grab sched_lock and see if we actually need to 382 * put this thread on the runqueue. If so and the do_switch flag is 383 * true and it is safe to switch, then switch to the ithread 384 * immediately. Otherwise, set the needresched flag to guarantee 385 * that this ithread will run before any userland processes. 386 */ 387 ithread->it_need = 1; 388 mtx_lock_spin(&sched_lock); 389 if (td->td_state == TDS_IWAIT) { 390 CTR2(KTR_INTR, "%s: setrunqueue %d", __func__, p->p_pid); 391 setrunqueue(td); 392 if (do_switch && 393 (curthread->td_critnest == 1)/* && 394 (curthread->td_state == TDS_RUNNING) XXXKSE*/) { 395 #if 0 /* not needed in KSE */ 396 if (curthread != PCPU_GET(idlethread)) 397 setrunqueue(curthread); 398 #endif 399 curthread->td_proc->p_stats->p_ru.ru_nivcsw++; 400 mi_switch(); 401 } else { 402 curthread->td_kse->ke_flags |= KEF_NEEDRESCHED; 403 } 404 } else { 405 CTR4(KTR_INTR, "%s: pid %d: it_need %d, state %d", 406 __func__, p->p_pid, ithread->it_need, p->p_state); 407 } 408 mtx_unlock_spin(&sched_lock); 409 410 return (0); 411 } 412 413 int 414 swi_add(struct ithd **ithdp, const char *name, driver_intr_t handler, 415 void *arg, int pri, enum intr_type flags, void **cookiep) 416 { 417 struct ithd *ithd; 418 int error; 419 420 if (flags & (INTR_FAST | INTR_ENTROPY)) 421 return (EINVAL); 422 423 ithd = (ithdp != NULL) ? *ithdp : NULL; 424 425 if (ithd != NULL) { 426 if ((ithd->it_flags & IT_SOFT) == 0) 427 return(EINVAL); 428 } else { 429 error = ithread_create(&ithd, pri, IT_SOFT, NULL, NULL, 430 "swi%d:", pri); 431 if (error) 432 return (error); 433 434 if (ithdp != NULL) 435 *ithdp = ithd; 436 } 437 return (ithread_add_handler(ithd, name, handler, arg, 438 (pri * RQ_PPQ) + PI_SOFT, flags, cookiep)); 439 } 440 441 442 /* 443 * Schedule a heavyweight software interrupt process. 444 */ 445 void 446 swi_sched(void *cookie, int flags) 447 { 448 struct intrhand *ih = (struct intrhand *)cookie; 449 struct ithd *it = ih->ih_ithread; 450 int error; 451 452 atomic_add_int(&cnt.v_intr, 1); /* one more global interrupt */ 453 454 CTR3(KTR_INTR, "swi_sched pid %d(%s) need=%d", 455 it->it_td->td_proc->p_pid, it->it_td->td_proc->p_comm, it->it_need); 456 457 /* 458 * Set ih_need for this handler so that if the ithread is already 459 * running it will execute this handler on the next pass. Otherwise, 460 * it will execute it the next time it runs. 461 */ 462 atomic_store_rel_int(&ih->ih_need, 1); 463 if (!(flags & SWI_DELAY)) { 464 error = ithread_schedule(it, !cold); 465 KASSERT(error == 0, ("stray software interrupt")); 466 } 467 } 468 469 /* 470 * This is the main code for interrupt threads. 471 */ 472 void 473 ithread_loop(void *arg) 474 { 475 struct ithd *ithd; /* our thread context */ 476 struct intrhand *ih; /* and our interrupt handler chain */ 477 struct thread *td; 478 struct proc *p; 479 480 td = curthread; 481 p = td->td_proc; 482 ithd = (struct ithd *)arg; /* point to myself */ 483 KASSERT(ithd->it_td == td && td->td_ithd == ithd, 484 ("%s: ithread and proc linkage out of sync", __func__)); 485 486 /* 487 * As long as we have interrupts outstanding, go through the 488 * list of handlers, giving each one a go at it. 489 */ 490 for (;;) { 491 /* 492 * If we are an orphaned thread, then just die. 493 */ 494 if (ithd->it_flags & IT_DEAD) { 495 CTR3(KTR_INTR, "%s: pid %d: (%s) exiting", __func__, 496 p->p_pid, p->p_comm); 497 td->td_ithd = NULL; 498 mtx_destroy(&ithd->it_lock); 499 mtx_lock(&Giant); 500 free(ithd, M_ITHREAD); 501 kthread_exit(0); 502 } 503 504 CTR4(KTR_INTR, "%s: pid %d: (%s) need=%d", __func__, 505 p->p_pid, p->p_comm, ithd->it_need); 506 while (ithd->it_need) { 507 /* 508 * Service interrupts. If another interrupt 509 * arrives while we are running, they will set 510 * it_need to denote that we should make 511 * another pass. 512 */ 513 atomic_store_rel_int(&ithd->it_need, 0); 514 restart: 515 TAILQ_FOREACH(ih, &ithd->it_handlers, ih_next) { 516 if (ithd->it_flags & IT_SOFT && !ih->ih_need) 517 continue; 518 atomic_store_rel_int(&ih->ih_need, 0); 519 CTR6(KTR_INTR, 520 "%s: pid %d ih=%p: %p(%p) flg=%x", __func__, 521 p->p_pid, (void *)ih, 522 (void *)ih->ih_handler, ih->ih_argument, 523 ih->ih_flags); 524 525 if ((ih->ih_flags & IH_DEAD) != 0) { 526 mtx_lock(&ithd->it_lock); 527 TAILQ_REMOVE(&ithd->it_handlers, ih, 528 ih_next); 529 wakeup(ih); 530 mtx_unlock(&ithd->it_lock); 531 goto restart; 532 } 533 if ((ih->ih_flags & IH_MPSAFE) == 0) 534 mtx_lock(&Giant); 535 ih->ih_handler(ih->ih_argument); 536 if ((ih->ih_flags & IH_MPSAFE) == 0) 537 mtx_unlock(&Giant); 538 } 539 } 540 541 /* 542 * Processed all our interrupts. Now get the sched 543 * lock. This may take a while and it_need may get 544 * set again, so we have to check it again. 545 */ 546 mtx_assert(&Giant, MA_NOTOWNED); 547 mtx_lock_spin(&sched_lock); 548 if (!ithd->it_need) { 549 /* 550 * Should we call this earlier in the loop above? 551 */ 552 if (ithd->it_enable != NULL) 553 ithd->it_enable(ithd->it_vector); 554 td->td_state = TDS_IWAIT; /* we're idle */ 555 p->p_stats->p_ru.ru_nvcsw++; 556 CTR2(KTR_INTR, "%s: pid %d: done", __func__, p->p_pid); 557 mi_switch(); 558 CTR2(KTR_INTR, "%s: pid %d: resumed", __func__, p->p_pid); 559 } 560 mtx_unlock_spin(&sched_lock); 561 } 562 } 563 564 /* 565 * Start standard software interrupt threads 566 */ 567 static void 568 start_softintr(void *dummy) 569 { 570 571 if (swi_add(NULL, "net", swi_net, NULL, SWI_NET, 0, &net_ih) || 572 swi_add(&clk_ithd, "clock", softclock, NULL, SWI_CLOCK, 573 INTR_MPSAFE, &softclock_ih) || 574 swi_add(NULL, "vm", swi_vm, NULL, SWI_VM, 0, &vm_ih)) 575 panic("died while creating standard software ithreads"); 576 577 PROC_LOCK(clk_ithd->it_td->td_proc); 578 clk_ithd->it_td->td_proc->p_flag |= P_NOLOAD; 579 PROC_UNLOCK(clk_ithd->it_td->td_proc); 580 } 581 SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr, NULL) 582 583 void 584 legacy_setsoftnet(void) 585 { 586 swi_sched(net_ih, 0); 587 } 588 589 /* 590 * XXX: This should really be in the network code somewhere and installed 591 * via a SI_SUB_SOFINTR, SI_ORDER_MIDDLE sysinit. 592 */ 593 void (*netisrs[32])(void); 594 volatile unsigned int netisr; /* scheduling bits for network */ 595 596 int 597 register_netisr(num, handler) 598 int num; 599 netisr_t *handler; 600 { 601 602 if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) { 603 printf("register_netisr: bad isr number: %d\n", num); 604 return (EINVAL); 605 } 606 netisrs[num] = handler; 607 return (0); 608 } 609 610 int 611 unregister_netisr(num) 612 int num; 613 { 614 615 if (num < 0 || num >= (sizeof(netisrs)/sizeof(*netisrs)) ) { 616 printf("unregister_netisr: bad isr number: %d\n", num); 617 return (EINVAL); 618 } 619 netisrs[num] = NULL; 620 return (0); 621 } 622 623 #ifdef DEVICE_POLLING 624 void netisr_pollmore(void); 625 #endif 626 627 static void 628 swi_net(void *dummy) 629 { 630 u_int bits; 631 int i; 632 633 #ifdef DEVICE_POLLING 634 for (;;) { 635 int pollmore; 636 #endif 637 bits = atomic_readandclear_int(&netisr); 638 #ifdef DEVICE_POLLING 639 if (bits == 0) 640 return; 641 pollmore = bits & (1 << NETISR_POLL); 642 #endif 643 while ((i = ffs(bits)) != 0) { 644 i--; 645 if (netisrs[i] != NULL) 646 netisrs[i](); 647 else 648 printf("swi_net: unregistered isr number: %d.\n", i); 649 bits &= ~(1 << i); 650 } 651 #ifdef DEVICE_POLLING 652 if (pollmore) 653 netisr_pollmore(); 654 } 655 #endif 656 } 657 658 /* 659 * Sysctls used by systat and others: hw.intrnames and hw.intrcnt. 660 * The data for this machine dependent, and the declarations are in machine 661 * dependent code. The layout of intrnames and intrcnt however is machine 662 * independent. 663 * 664 * We do not know the length of intrcnt and intrnames at compile time, so 665 * calculate things at run time. 666 */ 667 static int 668 sysctl_intrnames(SYSCTL_HANDLER_ARGS) 669 { 670 return (sysctl_handle_opaque(oidp, intrnames, eintrnames - intrnames, 671 req)); 672 } 673 674 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD, 675 NULL, 0, sysctl_intrnames, "", "Interrupt Names"); 676 677 static int 678 sysctl_intrcnt(SYSCTL_HANDLER_ARGS) 679 { 680 return (sysctl_handle_opaque(oidp, intrcnt, 681 (char *)eintrcnt - (char *)intrcnt, req)); 682 } 683 684 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD, 685 NULL, 0, sysctl_intrcnt, "", "Interrupt Counts"); 686