xref: /freebsd/sys/kern/kern_intr.c (revision a10cee30c94cf5944826d2a495e9cdf339dfbcc8)
1 /*-
2  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_ddb.h"
31 
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/cpuset.h>
36 #include <sys/rtprio.h>
37 #include <sys/systm.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/ktr.h>
42 #include <sys/limits.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/random.h>
49 #include <sys/resourcevar.h>
50 #include <sys/sched.h>
51 #include <sys/smp.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/unistd.h>
55 #include <sys/vmmeter.h>
56 #include <machine/atomic.h>
57 #include <machine/cpu.h>
58 #include <machine/md_var.h>
59 #include <machine/stdarg.h>
60 #ifdef DDB
61 #include <ddb/ddb.h>
62 #include <ddb/db_sym.h>
63 #endif
64 
65 /*
66  * Describe an interrupt thread.  There is one of these per interrupt event.
67  */
68 struct intr_thread {
69 	struct intr_event *it_event;
70 	struct thread *it_thread;	/* Kernel thread. */
71 	int	it_flags;		/* (j) IT_* flags. */
72 	int	it_need;		/* Needs service. */
73 };
74 
75 /* Interrupt thread flags kept in it_flags */
76 #define	IT_DEAD		0x000001	/* Thread is waiting to exit. */
77 #define	IT_WAIT		0x000002	/* Thread is waiting for completion. */
78 
79 struct	intr_entropy {
80 	struct	thread *td;
81 	uintptr_t event;
82 };
83 
84 struct	intr_event *clk_intr_event;
85 struct	intr_event *tty_intr_event;
86 void	*vm_ih;
87 struct proc *intrproc;
88 
89 static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads");
90 
91 static int intr_storm_threshold = 1000;
92 TUNABLE_INT("hw.intr_storm_threshold", &intr_storm_threshold);
93 SYSCTL_INT(_hw, OID_AUTO, intr_storm_threshold, CTLFLAG_RW,
94     &intr_storm_threshold, 0,
95     "Number of consecutive interrupts before storm protection is enabled");
96 static TAILQ_HEAD(, intr_event) event_list =
97     TAILQ_HEAD_INITIALIZER(event_list);
98 static struct mtx event_lock;
99 MTX_SYSINIT(intr_event_list, &event_lock, "intr event list", MTX_DEF);
100 
101 static void	intr_event_update(struct intr_event *ie);
102 #ifdef INTR_FILTER
103 static int	intr_event_schedule_thread(struct intr_event *ie,
104 		    struct intr_thread *ithd);
105 static int	intr_filter_loop(struct intr_event *ie,
106 		    struct trapframe *frame, struct intr_thread **ithd);
107 static struct intr_thread *ithread_create(const char *name,
108 			      struct intr_handler *ih);
109 #else
110 static int	intr_event_schedule_thread(struct intr_event *ie);
111 static struct intr_thread *ithread_create(const char *name);
112 #endif
113 static void	ithread_destroy(struct intr_thread *ithread);
114 static void	ithread_execute_handlers(struct proc *p,
115 		    struct intr_event *ie);
116 #ifdef INTR_FILTER
117 static void	priv_ithread_execute_handler(struct proc *p,
118 		    struct intr_handler *ih);
119 #endif
120 static void	ithread_loop(void *);
121 static void	ithread_update(struct intr_thread *ithd);
122 static void	start_softintr(void *);
123 
124 /* Map an interrupt type to an ithread priority. */
125 u_char
126 intr_priority(enum intr_type flags)
127 {
128 	u_char pri;
129 
130 	flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET |
131 	    INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV);
132 	switch (flags) {
133 	case INTR_TYPE_TTY:
134 		pri = PI_TTY;
135 		break;
136 	case INTR_TYPE_BIO:
137 		pri = PI_DISK;
138 		break;
139 	case INTR_TYPE_NET:
140 		pri = PI_NET;
141 		break;
142 	case INTR_TYPE_CAM:
143 		pri = PI_DISK;
144 		break;
145 	case INTR_TYPE_AV:
146 		pri = PI_AV;
147 		break;
148 	case INTR_TYPE_CLK:
149 		pri = PI_REALTIME;
150 		break;
151 	case INTR_TYPE_MISC:
152 		pri = PI_DULL;          /* don't care */
153 		break;
154 	default:
155 		/* We didn't specify an interrupt level. */
156 		panic("intr_priority: no interrupt type in flags");
157 	}
158 
159 	return pri;
160 }
161 
162 /*
163  * Update an ithread based on the associated intr_event.
164  */
165 static void
166 ithread_update(struct intr_thread *ithd)
167 {
168 	struct intr_event *ie;
169 	struct thread *td;
170 	u_char pri;
171 
172 	ie = ithd->it_event;
173 	td = ithd->it_thread;
174 
175 	/* Determine the overall priority of this event. */
176 	if (TAILQ_EMPTY(&ie->ie_handlers))
177 		pri = PRI_MAX_ITHD;
178 	else
179 		pri = TAILQ_FIRST(&ie->ie_handlers)->ih_pri;
180 
181 	/* Update name and priority. */
182 	strlcpy(td->td_name, ie->ie_fullname, sizeof(td->td_name));
183 #ifdef KTR
184 	sched_clear_tdname(td);
185 #endif
186 	thread_lock(td);
187 	sched_prio(td, pri);
188 	thread_unlock(td);
189 }
190 
191 /*
192  * Regenerate the full name of an interrupt event and update its priority.
193  */
194 static void
195 intr_event_update(struct intr_event *ie)
196 {
197 	struct intr_handler *ih;
198 	char *last;
199 	int missed, space;
200 
201 	/* Start off with no entropy and just the name of the event. */
202 	mtx_assert(&ie->ie_lock, MA_OWNED);
203 	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
204 	ie->ie_flags &= ~IE_ENTROPY;
205 	missed = 0;
206 	space = 1;
207 
208 	/* Run through all the handlers updating values. */
209 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
210 		if (strlen(ie->ie_fullname) + strlen(ih->ih_name) + 1 <
211 		    sizeof(ie->ie_fullname)) {
212 			strcat(ie->ie_fullname, " ");
213 			strcat(ie->ie_fullname, ih->ih_name);
214 			space = 0;
215 		} else
216 			missed++;
217 		if (ih->ih_flags & IH_ENTROPY)
218 			ie->ie_flags |= IE_ENTROPY;
219 	}
220 
221 	/*
222 	 * If the handler names were too long, add +'s to indicate missing
223 	 * names. If we run out of room and still have +'s to add, change
224 	 * the last character from a + to a *.
225 	 */
226 	last = &ie->ie_fullname[sizeof(ie->ie_fullname) - 2];
227 	while (missed-- > 0) {
228 		if (strlen(ie->ie_fullname) + 1 == sizeof(ie->ie_fullname)) {
229 			if (*last == '+') {
230 				*last = '*';
231 				break;
232 			} else
233 				*last = '+';
234 		} else if (space) {
235 			strcat(ie->ie_fullname, " +");
236 			space = 0;
237 		} else
238 			strcat(ie->ie_fullname, "+");
239 	}
240 
241 	/*
242 	 * If this event has an ithread, update it's priority and
243 	 * name.
244 	 */
245 	if (ie->ie_thread != NULL)
246 		ithread_update(ie->ie_thread);
247 	CTR2(KTR_INTR, "%s: updated %s", __func__, ie->ie_fullname);
248 }
249 
250 int
251 intr_event_create(struct intr_event **event, void *source, int flags, int irq,
252     void (*pre_ithread)(void *), void (*post_ithread)(void *),
253     void (*post_filter)(void *), int (*assign_cpu)(void *, u_char),
254     const char *fmt, ...)
255 {
256 	struct intr_event *ie;
257 	va_list ap;
258 
259 	/* The only valid flag during creation is IE_SOFT. */
260 	if ((flags & ~IE_SOFT) != 0)
261 		return (EINVAL);
262 	ie = malloc(sizeof(struct intr_event), M_ITHREAD, M_WAITOK | M_ZERO);
263 	ie->ie_source = source;
264 	ie->ie_pre_ithread = pre_ithread;
265 	ie->ie_post_ithread = post_ithread;
266 	ie->ie_post_filter = post_filter;
267 	ie->ie_assign_cpu = assign_cpu;
268 	ie->ie_flags = flags;
269 	ie->ie_irq = irq;
270 	ie->ie_cpu = NOCPU;
271 	TAILQ_INIT(&ie->ie_handlers);
272 	mtx_init(&ie->ie_lock, "intr event", NULL, MTX_DEF);
273 
274 	va_start(ap, fmt);
275 	vsnprintf(ie->ie_name, sizeof(ie->ie_name), fmt, ap);
276 	va_end(ap);
277 	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
278 	mtx_lock(&event_lock);
279 	TAILQ_INSERT_TAIL(&event_list, ie, ie_list);
280 	mtx_unlock(&event_lock);
281 	if (event != NULL)
282 		*event = ie;
283 	CTR2(KTR_INTR, "%s: created %s", __func__, ie->ie_name);
284 	return (0);
285 }
286 
287 /*
288  * Bind an interrupt event to the specified CPU.  Note that not all
289  * platforms support binding an interrupt to a CPU.  For those
290  * platforms this request will fail.  For supported platforms, any
291  * associated ithreads as well as the primary interrupt context will
292  * be bound to the specificed CPU.  Using a cpu id of NOCPU unbinds
293  * the interrupt event.
294  */
295 int
296 intr_event_bind(struct intr_event *ie, u_char cpu)
297 {
298 	cpuset_t mask;
299 	lwpid_t id;
300 	int error;
301 
302 	/* Need a CPU to bind to. */
303 	if (cpu != NOCPU && CPU_ABSENT(cpu))
304 		return (EINVAL);
305 
306 	if (ie->ie_assign_cpu == NULL)
307 		return (EOPNOTSUPP);
308 
309 	error = priv_check(curthread, PRIV_SCHED_CPUSET_INTR);
310 	if (error)
311 		return (error);
312 
313 	/*
314 	 * If we have any ithreads try to set their mask first to verify
315 	 * permissions, etc.
316 	 */
317 	mtx_lock(&ie->ie_lock);
318 	if (ie->ie_thread != NULL) {
319 		CPU_ZERO(&mask);
320 		if (cpu == NOCPU)
321 			CPU_COPY(cpuset_root, &mask);
322 		else
323 			CPU_SET(cpu, &mask);
324 		id = ie->ie_thread->it_thread->td_tid;
325 		mtx_unlock(&ie->ie_lock);
326 		error = cpuset_setthread(id, &mask);
327 		if (error)
328 			return (error);
329 	} else
330 		mtx_unlock(&ie->ie_lock);
331 	error = ie->ie_assign_cpu(ie->ie_source, cpu);
332 	if (error) {
333 		mtx_lock(&ie->ie_lock);
334 		if (ie->ie_thread != NULL) {
335 			CPU_ZERO(&mask);
336 			if (ie->ie_cpu == NOCPU)
337 				CPU_COPY(cpuset_root, &mask);
338 			else
339 				CPU_SET(cpu, &mask);
340 			id = ie->ie_thread->it_thread->td_tid;
341 			mtx_unlock(&ie->ie_lock);
342 			(void)cpuset_setthread(id, &mask);
343 		} else
344 			mtx_unlock(&ie->ie_lock);
345 		return (error);
346 	}
347 
348 	mtx_lock(&ie->ie_lock);
349 	ie->ie_cpu = cpu;
350 	mtx_unlock(&ie->ie_lock);
351 
352 	return (error);
353 }
354 
355 static struct intr_event *
356 intr_lookup(int irq)
357 {
358 	struct intr_event *ie;
359 
360 	mtx_lock(&event_lock);
361 	TAILQ_FOREACH(ie, &event_list, ie_list)
362 		if (ie->ie_irq == irq &&
363 		    (ie->ie_flags & IE_SOFT) == 0 &&
364 		    TAILQ_FIRST(&ie->ie_handlers) != NULL)
365 			break;
366 	mtx_unlock(&event_lock);
367 	return (ie);
368 }
369 
370 int
371 intr_setaffinity(int irq, void *m)
372 {
373 	struct intr_event *ie;
374 	cpuset_t *mask;
375 	u_char cpu;
376 	int n;
377 
378 	mask = m;
379 	cpu = NOCPU;
380 	/*
381 	 * If we're setting all cpus we can unbind.  Otherwise make sure
382 	 * only one cpu is in the set.
383 	 */
384 	if (CPU_CMP(cpuset_root, mask)) {
385 		for (n = 0; n < CPU_SETSIZE; n++) {
386 			if (!CPU_ISSET(n, mask))
387 				continue;
388 			if (cpu != NOCPU)
389 				return (EINVAL);
390 			cpu = (u_char)n;
391 		}
392 	}
393 	ie = intr_lookup(irq);
394 	if (ie == NULL)
395 		return (ESRCH);
396 	return (intr_event_bind(ie, cpu));
397 }
398 
399 int
400 intr_getaffinity(int irq, void *m)
401 {
402 	struct intr_event *ie;
403 	cpuset_t *mask;
404 
405 	mask = m;
406 	ie = intr_lookup(irq);
407 	if (ie == NULL)
408 		return (ESRCH);
409 	CPU_ZERO(mask);
410 	mtx_lock(&ie->ie_lock);
411 	if (ie->ie_cpu == NOCPU)
412 		CPU_COPY(cpuset_root, mask);
413 	else
414 		CPU_SET(ie->ie_cpu, mask);
415 	mtx_unlock(&ie->ie_lock);
416 	return (0);
417 }
418 
419 int
420 intr_event_destroy(struct intr_event *ie)
421 {
422 
423 	mtx_lock(&event_lock);
424 	mtx_lock(&ie->ie_lock);
425 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
426 		mtx_unlock(&ie->ie_lock);
427 		mtx_unlock(&event_lock);
428 		return (EBUSY);
429 	}
430 	TAILQ_REMOVE(&event_list, ie, ie_list);
431 #ifndef notyet
432 	if (ie->ie_thread != NULL) {
433 		ithread_destroy(ie->ie_thread);
434 		ie->ie_thread = NULL;
435 	}
436 #endif
437 	mtx_unlock(&ie->ie_lock);
438 	mtx_unlock(&event_lock);
439 	mtx_destroy(&ie->ie_lock);
440 	free(ie, M_ITHREAD);
441 	return (0);
442 }
443 
444 #ifndef INTR_FILTER
445 static struct intr_thread *
446 ithread_create(const char *name)
447 {
448 	struct intr_thread *ithd;
449 	struct thread *td;
450 	int error;
451 
452 	ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
453 
454 	error = kproc_kthread_add(ithread_loop, ithd, &intrproc,
455 		    &td, RFSTOPPED | RFHIGHPID,
456 	    	    0, "intr", "%s", name);
457 	if (error)
458 		panic("kproc_create() failed with %d", error);
459 	thread_lock(td);
460 	sched_class(td, PRI_ITHD);
461 	TD_SET_IWAIT(td);
462 	thread_unlock(td);
463 	td->td_pflags |= TDP_ITHREAD;
464 	ithd->it_thread = td;
465 	CTR2(KTR_INTR, "%s: created %s", __func__, name);
466 	return (ithd);
467 }
468 #else
469 static struct intr_thread *
470 ithread_create(const char *name, struct intr_handler *ih)
471 {
472 	struct intr_thread *ithd;
473 	struct thread *td;
474 	int error;
475 
476 	ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
477 
478 	error = kproc_kthread_add(ithread_loop, ih, &intrproc,
479 		    &td, RFSTOPPED | RFHIGHPID,
480 	    	    0, "intr", "%s", name);
481 	if (error)
482 		panic("kproc_create() failed with %d", error);
483 	thread_lock(td);
484 	sched_class(td, PRI_ITHD);
485 	TD_SET_IWAIT(td);
486 	thread_unlock(td);
487 	td->td_pflags |= TDP_ITHREAD;
488 	ithd->it_thread = td;
489 	CTR2(KTR_INTR, "%s: created %s", __func__, name);
490 	return (ithd);
491 }
492 #endif
493 
494 static void
495 ithread_destroy(struct intr_thread *ithread)
496 {
497 	struct thread *td;
498 
499 	CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_event->ie_name);
500 	td = ithread->it_thread;
501 	thread_lock(td);
502 	ithread->it_flags |= IT_DEAD;
503 	if (TD_AWAITING_INTR(td)) {
504 		TD_CLR_IWAIT(td);
505 		sched_add(td, SRQ_INTR);
506 	}
507 	thread_unlock(td);
508 }
509 
510 #ifndef INTR_FILTER
511 int
512 intr_event_add_handler(struct intr_event *ie, const char *name,
513     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
514     enum intr_type flags, void **cookiep)
515 {
516 	struct intr_handler *ih, *temp_ih;
517 	struct intr_thread *it;
518 
519 	if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
520 		return (EINVAL);
521 
522 	/* Allocate and populate an interrupt handler structure. */
523 	ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
524 	ih->ih_filter = filter;
525 	ih->ih_handler = handler;
526 	ih->ih_argument = arg;
527 	strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
528 	ih->ih_event = ie;
529 	ih->ih_pri = pri;
530 	if (flags & INTR_EXCL)
531 		ih->ih_flags = IH_EXCLUSIVE;
532 	if (flags & INTR_MPSAFE)
533 		ih->ih_flags |= IH_MPSAFE;
534 	if (flags & INTR_ENTROPY)
535 		ih->ih_flags |= IH_ENTROPY;
536 
537 	/* We can only have one exclusive handler in a event. */
538 	mtx_lock(&ie->ie_lock);
539 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
540 		if ((flags & INTR_EXCL) ||
541 		    (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
542 			mtx_unlock(&ie->ie_lock);
543 			free(ih, M_ITHREAD);
544 			return (EINVAL);
545 		}
546 	}
547 
548 	/* Create a thread if we need one. */
549 	while (ie->ie_thread == NULL && handler != NULL) {
550 		if (ie->ie_flags & IE_ADDING_THREAD)
551 			msleep(ie, &ie->ie_lock, 0, "ithread", 0);
552 		else {
553 			ie->ie_flags |= IE_ADDING_THREAD;
554 			mtx_unlock(&ie->ie_lock);
555 			it = ithread_create("intr: newborn");
556 			mtx_lock(&ie->ie_lock);
557 			ie->ie_flags &= ~IE_ADDING_THREAD;
558 			ie->ie_thread = it;
559 			it->it_event = ie;
560 			ithread_update(it);
561 			wakeup(ie);
562 		}
563 	}
564 
565 	/* Add the new handler to the event in priority order. */
566 	TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
567 		if (temp_ih->ih_pri > ih->ih_pri)
568 			break;
569 	}
570 	if (temp_ih == NULL)
571 		TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
572 	else
573 		TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
574 	intr_event_update(ie);
575 
576 	CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
577 	    ie->ie_name);
578 	mtx_unlock(&ie->ie_lock);
579 
580 	if (cookiep != NULL)
581 		*cookiep = ih;
582 	return (0);
583 }
584 #else
585 int
586 intr_event_add_handler(struct intr_event *ie, const char *name,
587     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
588     enum intr_type flags, void **cookiep)
589 {
590 	struct intr_handler *ih, *temp_ih;
591 	struct intr_thread *it;
592 
593 	if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
594 		return (EINVAL);
595 
596 	/* Allocate and populate an interrupt handler structure. */
597 	ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
598 	ih->ih_filter = filter;
599 	ih->ih_handler = handler;
600 	ih->ih_argument = arg;
601 	strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
602 	ih->ih_event = ie;
603 	ih->ih_pri = pri;
604 	if (flags & INTR_EXCL)
605 		ih->ih_flags = IH_EXCLUSIVE;
606 	if (flags & INTR_MPSAFE)
607 		ih->ih_flags |= IH_MPSAFE;
608 	if (flags & INTR_ENTROPY)
609 		ih->ih_flags |= IH_ENTROPY;
610 
611 	/* We can only have one exclusive handler in a event. */
612 	mtx_lock(&ie->ie_lock);
613 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
614 		if ((flags & INTR_EXCL) ||
615 		    (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
616 			mtx_unlock(&ie->ie_lock);
617 			free(ih, M_ITHREAD);
618 			return (EINVAL);
619 		}
620 	}
621 
622 	/* For filtered handlers, create a private ithread to run on. */
623 	if (filter != NULL && handler != NULL) {
624 		mtx_unlock(&ie->ie_lock);
625 		it = ithread_create("intr: newborn", ih);
626 		mtx_lock(&ie->ie_lock);
627 		it->it_event = ie;
628 		ih->ih_thread = it;
629 		ithread_update(it); /* XXX - do we really need this?!?!? */
630 	} else { /* Create the global per-event thread if we need one. */
631 		while (ie->ie_thread == NULL && handler != NULL) {
632 			if (ie->ie_flags & IE_ADDING_THREAD)
633 				msleep(ie, &ie->ie_lock, 0, "ithread", 0);
634 			else {
635 				ie->ie_flags |= IE_ADDING_THREAD;
636 				mtx_unlock(&ie->ie_lock);
637 				it = ithread_create("intr: newborn", ih);
638 				mtx_lock(&ie->ie_lock);
639 				ie->ie_flags &= ~IE_ADDING_THREAD;
640 				ie->ie_thread = it;
641 				it->it_event = ie;
642 				ithread_update(it);
643 				wakeup(ie);
644 			}
645 		}
646 	}
647 
648 	/* Add the new handler to the event in priority order. */
649 	TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
650 		if (temp_ih->ih_pri > ih->ih_pri)
651 			break;
652 	}
653 	if (temp_ih == NULL)
654 		TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
655 	else
656 		TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
657 	intr_event_update(ie);
658 
659 	CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
660 	    ie->ie_name);
661 	mtx_unlock(&ie->ie_lock);
662 
663 	if (cookiep != NULL)
664 		*cookiep = ih;
665 	return (0);
666 }
667 #endif
668 
669 /*
670  * Append a description preceded by a ':' to the name of the specified
671  * interrupt handler.
672  */
673 int
674 intr_event_describe_handler(struct intr_event *ie, void *cookie,
675     const char *descr)
676 {
677 	struct intr_handler *ih;
678 	size_t space;
679 	char *start;
680 
681 	mtx_lock(&ie->ie_lock);
682 #ifdef INVARIANTS
683 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
684 		if (ih == cookie)
685 			break;
686 	}
687 	if (ih == NULL) {
688 		mtx_unlock(&ie->ie_lock);
689 		panic("handler %p not found in interrupt event %p", cookie, ie);
690 	}
691 #endif
692 	ih = cookie;
693 
694 	/*
695 	 * Look for an existing description by checking for an
696 	 * existing ":".  This assumes device names do not include
697 	 * colons.  If one is found, prepare to insert the new
698 	 * description at that point.  If one is not found, find the
699 	 * end of the name to use as the insertion point.
700 	 */
701 	start = strchr(ih->ih_name, ':');
702 	if (start == NULL)
703 		start = strchr(ih->ih_name, 0);
704 
705 	/*
706 	 * See if there is enough remaining room in the string for the
707 	 * description + ":".  The "- 1" leaves room for the trailing
708 	 * '\0'.  The "+ 1" accounts for the colon.
709 	 */
710 	space = sizeof(ih->ih_name) - (start - ih->ih_name) - 1;
711 	if (strlen(descr) + 1 > space) {
712 		mtx_unlock(&ie->ie_lock);
713 		return (ENOSPC);
714 	}
715 
716 	/* Append a colon followed by the description. */
717 	*start = ':';
718 	strcpy(start + 1, descr);
719 	intr_event_update(ie);
720 	mtx_unlock(&ie->ie_lock);
721 	return (0);
722 }
723 
724 /*
725  * Return the ie_source field from the intr_event an intr_handler is
726  * associated with.
727  */
728 void *
729 intr_handler_source(void *cookie)
730 {
731 	struct intr_handler *ih;
732 	struct intr_event *ie;
733 
734 	ih = (struct intr_handler *)cookie;
735 	if (ih == NULL)
736 		return (NULL);
737 	ie = ih->ih_event;
738 	KASSERT(ie != NULL,
739 	    ("interrupt handler \"%s\" has a NULL interrupt event",
740 	    ih->ih_name));
741 	return (ie->ie_source);
742 }
743 
744 /*
745  * Sleep until an ithread finishes executing an interrupt handler.
746  *
747  * XXX Doesn't currently handle interrupt filters or fast interrupt
748  * handlers.  This is intended for compatibility with linux drivers
749  * only.  Do not use in BSD code.
750  */
751 void
752 _intr_drain(int irq)
753 {
754 	struct intr_event *ie;
755 	struct intr_thread *ithd;
756 	struct thread *td;
757 
758 	ie = intr_lookup(irq);
759 	if (ie == NULL)
760 		return;
761 	if (ie->ie_thread == NULL)
762 		return;
763 	ithd = ie->ie_thread;
764 	td = ithd->it_thread;
765 	/*
766 	 * We set the flag and wait for it to be cleared to avoid
767 	 * long delays with potentially busy interrupt handlers
768 	 * were we to only sample TD_AWAITING_INTR() every tick.
769 	 */
770 	thread_lock(td);
771 	if (!TD_AWAITING_INTR(td)) {
772 		ithd->it_flags |= IT_WAIT;
773 		while (ithd->it_flags & IT_WAIT) {
774 			thread_unlock(td);
775 			pause("idrain", 1);
776 			thread_lock(td);
777 		}
778 	}
779 	thread_unlock(td);
780 	return;
781 }
782 
783 
784 #ifndef INTR_FILTER
785 int
786 intr_event_remove_handler(void *cookie)
787 {
788 	struct intr_handler *handler = (struct intr_handler *)cookie;
789 	struct intr_event *ie;
790 #ifdef INVARIANTS
791 	struct intr_handler *ih;
792 #endif
793 #ifdef notyet
794 	int dead;
795 #endif
796 
797 	if (handler == NULL)
798 		return (EINVAL);
799 	ie = handler->ih_event;
800 	KASSERT(ie != NULL,
801 	    ("interrupt handler \"%s\" has a NULL interrupt event",
802 	    handler->ih_name));
803 	mtx_lock(&ie->ie_lock);
804 	CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
805 	    ie->ie_name);
806 #ifdef INVARIANTS
807 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
808 		if (ih == handler)
809 			goto ok;
810 	mtx_unlock(&ie->ie_lock);
811 	panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
812 	    ih->ih_name, ie->ie_name);
813 ok:
814 #endif
815 	/*
816 	 * If there is no ithread, then just remove the handler and return.
817 	 * XXX: Note that an INTR_FAST handler might be running on another
818 	 * CPU!
819 	 */
820 	if (ie->ie_thread == NULL) {
821 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
822 		mtx_unlock(&ie->ie_lock);
823 		free(handler, M_ITHREAD);
824 		return (0);
825 	}
826 
827 	/*
828 	 * If the interrupt thread is already running, then just mark this
829 	 * handler as being dead and let the ithread do the actual removal.
830 	 *
831 	 * During a cold boot while cold is set, msleep() does not sleep,
832 	 * so we have to remove the handler here rather than letting the
833 	 * thread do it.
834 	 */
835 	thread_lock(ie->ie_thread->it_thread);
836 	if (!TD_AWAITING_INTR(ie->ie_thread->it_thread) && !cold) {
837 		handler->ih_flags |= IH_DEAD;
838 
839 		/*
840 		 * Ensure that the thread will process the handler list
841 		 * again and remove this handler if it has already passed
842 		 * it on the list.
843 		 */
844 		ie->ie_thread->it_need = 1;
845 	} else
846 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
847 	thread_unlock(ie->ie_thread->it_thread);
848 	while (handler->ih_flags & IH_DEAD)
849 		msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
850 	intr_event_update(ie);
851 #ifdef notyet
852 	/*
853 	 * XXX: This could be bad in the case of ppbus(8).  Also, I think
854 	 * this could lead to races of stale data when servicing an
855 	 * interrupt.
856 	 */
857 	dead = 1;
858 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
859 		if (!(ih->ih_flags & IH_FAST)) {
860 			dead = 0;
861 			break;
862 		}
863 	}
864 	if (dead) {
865 		ithread_destroy(ie->ie_thread);
866 		ie->ie_thread = NULL;
867 	}
868 #endif
869 	mtx_unlock(&ie->ie_lock);
870 	free(handler, M_ITHREAD);
871 	return (0);
872 }
873 
874 static int
875 intr_event_schedule_thread(struct intr_event *ie)
876 {
877 	struct intr_entropy entropy;
878 	struct intr_thread *it;
879 	struct thread *td;
880 	struct thread *ctd;
881 	struct proc *p;
882 
883 	/*
884 	 * If no ithread or no handlers, then we have a stray interrupt.
885 	 */
886 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) ||
887 	    ie->ie_thread == NULL)
888 		return (EINVAL);
889 
890 	ctd = curthread;
891 	it = ie->ie_thread;
892 	td = it->it_thread;
893 	p = td->td_proc;
894 
895 	/*
896 	 * If any of the handlers for this ithread claim to be good
897 	 * sources of entropy, then gather some.
898 	 */
899 	if (harvest.interrupt && ie->ie_flags & IE_ENTROPY) {
900 		CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", __func__,
901 		    p->p_pid, td->td_name);
902 		entropy.event = (uintptr_t)ie;
903 		entropy.td = ctd;
904 		random_harvest(&entropy, sizeof(entropy), 2, 0,
905 		    RANDOM_INTERRUPT);
906 	}
907 
908 	KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
909 
910 	/*
911 	 * Set it_need to tell the thread to keep running if it is already
912 	 * running.  Then, lock the thread and see if we actually need to
913 	 * put it on the runqueue.
914 	 */
915 	it->it_need = 1;
916 	thread_lock(td);
917 	if (TD_AWAITING_INTR(td)) {
918 		CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
919 		    td->td_name);
920 		TD_CLR_IWAIT(td);
921 		sched_add(td, SRQ_INTR);
922 	} else {
923 		CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
924 		    __func__, p->p_pid, td->td_name, it->it_need, td->td_state);
925 	}
926 	thread_unlock(td);
927 
928 	return (0);
929 }
930 #else
931 int
932 intr_event_remove_handler(void *cookie)
933 {
934 	struct intr_handler *handler = (struct intr_handler *)cookie;
935 	struct intr_event *ie;
936 	struct intr_thread *it;
937 #ifdef INVARIANTS
938 	struct intr_handler *ih;
939 #endif
940 #ifdef notyet
941 	int dead;
942 #endif
943 
944 	if (handler == NULL)
945 		return (EINVAL);
946 	ie = handler->ih_event;
947 	KASSERT(ie != NULL,
948 	    ("interrupt handler \"%s\" has a NULL interrupt event",
949 	    handler->ih_name));
950 	mtx_lock(&ie->ie_lock);
951 	CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
952 	    ie->ie_name);
953 #ifdef INVARIANTS
954 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
955 		if (ih == handler)
956 			goto ok;
957 	mtx_unlock(&ie->ie_lock);
958 	panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
959 	    ih->ih_name, ie->ie_name);
960 ok:
961 #endif
962 	/*
963 	 * If there are no ithreads (per event and per handler), then
964 	 * just remove the handler and return.
965 	 * XXX: Note that an INTR_FAST handler might be running on another CPU!
966 	 */
967 	if (ie->ie_thread == NULL && handler->ih_thread == NULL) {
968 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
969 		mtx_unlock(&ie->ie_lock);
970 		free(handler, M_ITHREAD);
971 		return (0);
972 	}
973 
974 	/* Private or global ithread? */
975 	it = (handler->ih_thread) ? handler->ih_thread : ie->ie_thread;
976 	/*
977 	 * If the interrupt thread is already running, then just mark this
978 	 * handler as being dead and let the ithread do the actual removal.
979 	 *
980 	 * During a cold boot while cold is set, msleep() does not sleep,
981 	 * so we have to remove the handler here rather than letting the
982 	 * thread do it.
983 	 */
984 	thread_lock(it->it_thread);
985 	if (!TD_AWAITING_INTR(it->it_thread) && !cold) {
986 		handler->ih_flags |= IH_DEAD;
987 
988 		/*
989 		 * Ensure that the thread will process the handler list
990 		 * again and remove this handler if it has already passed
991 		 * it on the list.
992 		 */
993 		it->it_need = 1;
994 	} else
995 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
996 	thread_unlock(it->it_thread);
997 	while (handler->ih_flags & IH_DEAD)
998 		msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
999 	/*
1000 	 * At this point, the handler has been disconnected from the event,
1001 	 * so we can kill the private ithread if any.
1002 	 */
1003 	if (handler->ih_thread) {
1004 		ithread_destroy(handler->ih_thread);
1005 		handler->ih_thread = NULL;
1006 	}
1007 	intr_event_update(ie);
1008 #ifdef notyet
1009 	/*
1010 	 * XXX: This could be bad in the case of ppbus(8).  Also, I think
1011 	 * this could lead to races of stale data when servicing an
1012 	 * interrupt.
1013 	 */
1014 	dead = 1;
1015 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1016 		if (handler != NULL) {
1017 			dead = 0;
1018 			break;
1019 		}
1020 	}
1021 	if (dead) {
1022 		ithread_destroy(ie->ie_thread);
1023 		ie->ie_thread = NULL;
1024 	}
1025 #endif
1026 	mtx_unlock(&ie->ie_lock);
1027 	free(handler, M_ITHREAD);
1028 	return (0);
1029 }
1030 
1031 static int
1032 intr_event_schedule_thread(struct intr_event *ie, struct intr_thread *it)
1033 {
1034 	struct intr_entropy entropy;
1035 	struct thread *td;
1036 	struct thread *ctd;
1037 	struct proc *p;
1038 
1039 	/*
1040 	 * If no ithread or no handlers, then we have a stray interrupt.
1041 	 */
1042 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) || it == NULL)
1043 		return (EINVAL);
1044 
1045 	ctd = curthread;
1046 	td = it->it_thread;
1047 	p = td->td_proc;
1048 
1049 	/*
1050 	 * If any of the handlers for this ithread claim to be good
1051 	 * sources of entropy, then gather some.
1052 	 */
1053 	if (harvest.interrupt && ie->ie_flags & IE_ENTROPY) {
1054 		CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", __func__,
1055 		    p->p_pid, td->td_name);
1056 		entropy.event = (uintptr_t)ie;
1057 		entropy.td = ctd;
1058 		random_harvest(&entropy, sizeof(entropy), 2, 0,
1059 		    RANDOM_INTERRUPT);
1060 	}
1061 
1062 	KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
1063 
1064 	/*
1065 	 * Set it_need to tell the thread to keep running if it is already
1066 	 * running.  Then, lock the thread and see if we actually need to
1067 	 * put it on the runqueue.
1068 	 */
1069 	it->it_need = 1;
1070 	thread_lock(td);
1071 	if (TD_AWAITING_INTR(td)) {
1072 		CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
1073 		    td->td_name);
1074 		TD_CLR_IWAIT(td);
1075 		sched_add(td, SRQ_INTR);
1076 	} else {
1077 		CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
1078 		    __func__, p->p_pid, td->td_name, it->it_need, td->td_state);
1079 	}
1080 	thread_unlock(td);
1081 
1082 	return (0);
1083 }
1084 #endif
1085 
1086 /*
1087  * Allow interrupt event binding for software interrupt handlers -- a no-op,
1088  * since interrupts are generated in software rather than being directed by
1089  * a PIC.
1090  */
1091 static int
1092 swi_assign_cpu(void *arg, u_char cpu)
1093 {
1094 
1095 	return (0);
1096 }
1097 
1098 /*
1099  * Add a software interrupt handler to a specified event.  If a given event
1100  * is not specified, then a new event is created.
1101  */
1102 int
1103 swi_add(struct intr_event **eventp, const char *name, driver_intr_t handler,
1104 	    void *arg, int pri, enum intr_type flags, void **cookiep)
1105 {
1106 	struct thread *td;
1107 	struct intr_event *ie;
1108 	int error;
1109 
1110 	if (flags & INTR_ENTROPY)
1111 		return (EINVAL);
1112 
1113 	ie = (eventp != NULL) ? *eventp : NULL;
1114 
1115 	if (ie != NULL) {
1116 		if (!(ie->ie_flags & IE_SOFT))
1117 			return (EINVAL);
1118 	} else {
1119 		error = intr_event_create(&ie, NULL, IE_SOFT, 0,
1120 		    NULL, NULL, NULL, swi_assign_cpu, "swi%d:", pri);
1121 		if (error)
1122 			return (error);
1123 		if (eventp != NULL)
1124 			*eventp = ie;
1125 	}
1126 	error = intr_event_add_handler(ie, name, NULL, handler, arg,
1127 	    PI_SWI(pri), flags, cookiep);
1128 	if (error)
1129 		return (error);
1130 	if (pri == SWI_CLOCK) {
1131 		td = ie->ie_thread->it_thread;
1132 		thread_lock(td);
1133 		td->td_flags |= TDF_NOLOAD;
1134 		thread_unlock(td);
1135 	}
1136 	return (0);
1137 }
1138 
1139 /*
1140  * Schedule a software interrupt thread.
1141  */
1142 void
1143 swi_sched(void *cookie, int flags)
1144 {
1145 	struct intr_handler *ih = (struct intr_handler *)cookie;
1146 	struct intr_event *ie = ih->ih_event;
1147 	struct intr_entropy entropy;
1148 	int error;
1149 
1150 	CTR3(KTR_INTR, "swi_sched: %s %s need=%d", ie->ie_name, ih->ih_name,
1151 	    ih->ih_need);
1152 
1153 	if (harvest.swi) {
1154 		CTR2(KTR_INTR, "swi_sched: pid %d (%s) gathering entropy",
1155 		    curproc->p_pid, curthread->td_name);
1156 		entropy.event = (uintptr_t)ih;
1157 		entropy.td = curthread;
1158 		random_harvest(&entropy, sizeof(entropy), 1, 0,
1159 		    RANDOM_INTERRUPT);
1160 	}
1161 
1162 	/*
1163 	 * Set ih_need for this handler so that if the ithread is already
1164 	 * running it will execute this handler on the next pass.  Otherwise,
1165 	 * it will execute it the next time it runs.
1166 	 */
1167 	atomic_store_rel_int(&ih->ih_need, 1);
1168 
1169 	if (!(flags & SWI_DELAY)) {
1170 		PCPU_INC(cnt.v_soft);
1171 #ifdef INTR_FILTER
1172 		error = intr_event_schedule_thread(ie, ie->ie_thread);
1173 #else
1174 		error = intr_event_schedule_thread(ie);
1175 #endif
1176 		KASSERT(error == 0, ("stray software interrupt"));
1177 	}
1178 }
1179 
1180 /*
1181  * Remove a software interrupt handler.  Currently this code does not
1182  * remove the associated interrupt event if it becomes empty.  Calling code
1183  * may do so manually via intr_event_destroy(), but that's not really
1184  * an optimal interface.
1185  */
1186 int
1187 swi_remove(void *cookie)
1188 {
1189 
1190 	return (intr_event_remove_handler(cookie));
1191 }
1192 
1193 #ifdef INTR_FILTER
1194 static void
1195 priv_ithread_execute_handler(struct proc *p, struct intr_handler *ih)
1196 {
1197 	struct intr_event *ie;
1198 
1199 	ie = ih->ih_event;
1200 	/*
1201 	 * If this handler is marked for death, remove it from
1202 	 * the list of handlers and wake up the sleeper.
1203 	 */
1204 	if (ih->ih_flags & IH_DEAD) {
1205 		mtx_lock(&ie->ie_lock);
1206 		TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
1207 		ih->ih_flags &= ~IH_DEAD;
1208 		wakeup(ih);
1209 		mtx_unlock(&ie->ie_lock);
1210 		return;
1211 	}
1212 
1213 	/* Execute this handler. */
1214 	CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
1215 	     __func__, p->p_pid, (void *)ih->ih_handler, ih->ih_argument,
1216 	     ih->ih_name, ih->ih_flags);
1217 
1218 	if (!(ih->ih_flags & IH_MPSAFE))
1219 		mtx_lock(&Giant);
1220 	ih->ih_handler(ih->ih_argument);
1221 	if (!(ih->ih_flags & IH_MPSAFE))
1222 		mtx_unlock(&Giant);
1223 }
1224 #endif
1225 
1226 /*
1227  * This is a public function for use by drivers that mux interrupt
1228  * handlers for child devices from their interrupt handler.
1229  */
1230 void
1231 intr_event_execute_handlers(struct proc *p, struct intr_event *ie)
1232 {
1233 	struct intr_handler *ih, *ihn;
1234 
1235 	TAILQ_FOREACH_SAFE(ih, &ie->ie_handlers, ih_next, ihn) {
1236 		/*
1237 		 * If this handler is marked for death, remove it from
1238 		 * the list of handlers and wake up the sleeper.
1239 		 */
1240 		if (ih->ih_flags & IH_DEAD) {
1241 			mtx_lock(&ie->ie_lock);
1242 			TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
1243 			ih->ih_flags &= ~IH_DEAD;
1244 			wakeup(ih);
1245 			mtx_unlock(&ie->ie_lock);
1246 			continue;
1247 		}
1248 
1249 		/* Skip filter only handlers */
1250 		if (ih->ih_handler == NULL)
1251 			continue;
1252 
1253 		/*
1254 		 * For software interrupt threads, we only execute
1255 		 * handlers that have their need flag set.  Hardware
1256 		 * interrupt threads always invoke all of their handlers.
1257 		 */
1258 		if (ie->ie_flags & IE_SOFT) {
1259 			if (!ih->ih_need)
1260 				continue;
1261 			else
1262 				atomic_store_rel_int(&ih->ih_need, 0);
1263 		}
1264 
1265 		/* Execute this handler. */
1266 		CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
1267 		    __func__, p->p_pid, (void *)ih->ih_handler,
1268 		    ih->ih_argument, ih->ih_name, ih->ih_flags);
1269 
1270 		if (!(ih->ih_flags & IH_MPSAFE))
1271 			mtx_lock(&Giant);
1272 		ih->ih_handler(ih->ih_argument);
1273 		if (!(ih->ih_flags & IH_MPSAFE))
1274 			mtx_unlock(&Giant);
1275 	}
1276 }
1277 
1278 static void
1279 ithread_execute_handlers(struct proc *p, struct intr_event *ie)
1280 {
1281 
1282 	/* Interrupt handlers should not sleep. */
1283 	if (!(ie->ie_flags & IE_SOFT))
1284 		THREAD_NO_SLEEPING();
1285 	intr_event_execute_handlers(p, ie);
1286 	if (!(ie->ie_flags & IE_SOFT))
1287 		THREAD_SLEEPING_OK();
1288 
1289 	/*
1290 	 * Interrupt storm handling:
1291 	 *
1292 	 * If this interrupt source is currently storming, then throttle
1293 	 * it to only fire the handler once  per clock tick.
1294 	 *
1295 	 * If this interrupt source is not currently storming, but the
1296 	 * number of back to back interrupts exceeds the storm threshold,
1297 	 * then enter storming mode.
1298 	 */
1299 	if (intr_storm_threshold != 0 && ie->ie_count >= intr_storm_threshold &&
1300 	    !(ie->ie_flags & IE_SOFT)) {
1301 		/* Report the message only once every second. */
1302 		if (ppsratecheck(&ie->ie_warntm, &ie->ie_warncnt, 1)) {
1303 			printf(
1304 	"interrupt storm detected on \"%s\"; throttling interrupt source\n",
1305 			    ie->ie_name);
1306 		}
1307 		pause("istorm", 1);
1308 	} else
1309 		ie->ie_count++;
1310 
1311 	/*
1312 	 * Now that all the handlers have had a chance to run, reenable
1313 	 * the interrupt source.
1314 	 */
1315 	if (ie->ie_post_ithread != NULL)
1316 		ie->ie_post_ithread(ie->ie_source);
1317 }
1318 
1319 #ifndef INTR_FILTER
1320 /*
1321  * This is the main code for interrupt threads.
1322  */
1323 static void
1324 ithread_loop(void *arg)
1325 {
1326 	struct intr_thread *ithd;
1327 	struct intr_event *ie;
1328 	struct thread *td;
1329 	struct proc *p;
1330 	int wake;
1331 
1332 	td = curthread;
1333 	p = td->td_proc;
1334 	ithd = (struct intr_thread *)arg;
1335 	KASSERT(ithd->it_thread == td,
1336 	    ("%s: ithread and proc linkage out of sync", __func__));
1337 	ie = ithd->it_event;
1338 	ie->ie_count = 0;
1339 	wake = 0;
1340 
1341 	/*
1342 	 * As long as we have interrupts outstanding, go through the
1343 	 * list of handlers, giving each one a go at it.
1344 	 */
1345 	for (;;) {
1346 		/*
1347 		 * If we are an orphaned thread, then just die.
1348 		 */
1349 		if (ithd->it_flags & IT_DEAD) {
1350 			CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
1351 			    p->p_pid, td->td_name);
1352 			free(ithd, M_ITHREAD);
1353 			kthread_exit();
1354 		}
1355 
1356 		/*
1357 		 * Service interrupts.  If another interrupt arrives while
1358 		 * we are running, it will set it_need to note that we
1359 		 * should make another pass.
1360 		 */
1361 		while (ithd->it_need) {
1362 			/*
1363 			 * This might need a full read and write barrier
1364 			 * to make sure that this write posts before any
1365 			 * of the memory or device accesses in the
1366 			 * handlers.
1367 			 */
1368 			atomic_store_rel_int(&ithd->it_need, 0);
1369 			ithread_execute_handlers(p, ie);
1370 		}
1371 		WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
1372 		mtx_assert(&Giant, MA_NOTOWNED);
1373 
1374 		/*
1375 		 * Processed all our interrupts.  Now get the sched
1376 		 * lock.  This may take a while and it_need may get
1377 		 * set again, so we have to check it again.
1378 		 */
1379 		thread_lock(td);
1380 		if (!ithd->it_need && !(ithd->it_flags & (IT_DEAD | IT_WAIT))) {
1381 			TD_SET_IWAIT(td);
1382 			ie->ie_count = 0;
1383 			mi_switch(SW_VOL | SWT_IWAIT, NULL);
1384 		}
1385 		if (ithd->it_flags & IT_WAIT) {
1386 			wake = 1;
1387 			ithd->it_flags &= ~IT_WAIT;
1388 		}
1389 		thread_unlock(td);
1390 		if (wake) {
1391 			wakeup(ithd);
1392 			wake = 0;
1393 		}
1394 	}
1395 }
1396 
1397 /*
1398  * Main interrupt handling body.
1399  *
1400  * Input:
1401  * o ie:                        the event connected to this interrupt.
1402  * o frame:                     some archs (i.e. i386) pass a frame to some.
1403  *                              handlers as their main argument.
1404  * Return value:
1405  * o 0:                         everything ok.
1406  * o EINVAL:                    stray interrupt.
1407  */
1408 int
1409 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
1410 {
1411 	struct intr_handler *ih;
1412 	struct trapframe *oldframe;
1413 	struct thread *td;
1414 	int error, ret, thread;
1415 
1416 	td = curthread;
1417 
1418 	/* An interrupt with no event or handlers is a stray interrupt. */
1419 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
1420 		return (EINVAL);
1421 
1422 	/*
1423 	 * Execute fast interrupt handlers directly.
1424 	 * To support clock handlers, if a handler registers
1425 	 * with a NULL argument, then we pass it a pointer to
1426 	 * a trapframe as its argument.
1427 	 */
1428 	td->td_intr_nesting_level++;
1429 	thread = 0;
1430 	ret = 0;
1431 	critical_enter();
1432 	oldframe = td->td_intr_frame;
1433 	td->td_intr_frame = frame;
1434 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1435 		if (ih->ih_filter == NULL) {
1436 			thread = 1;
1437 			continue;
1438 		}
1439 		CTR4(KTR_INTR, "%s: exec %p(%p) for %s", __func__,
1440 		    ih->ih_filter, ih->ih_argument == NULL ? frame :
1441 		    ih->ih_argument, ih->ih_name);
1442 		if (ih->ih_argument == NULL)
1443 			ret = ih->ih_filter(frame);
1444 		else
1445 			ret = ih->ih_filter(ih->ih_argument);
1446 		KASSERT(ret == FILTER_STRAY ||
1447 		    ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 &&
1448 		    (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0),
1449 		    ("%s: incorrect return value %#x from %s", __func__, ret,
1450 		    ih->ih_name));
1451 
1452 		/*
1453 		 * Wrapper handler special handling:
1454 		 *
1455 		 * in some particular cases (like pccard and pccbb),
1456 		 * the _real_ device handler is wrapped in a couple of
1457 		 * functions - a filter wrapper and an ithread wrapper.
1458 		 * In this case (and just in this case), the filter wrapper
1459 		 * could ask the system to schedule the ithread and mask
1460 		 * the interrupt source if the wrapped handler is composed
1461 		 * of just an ithread handler.
1462 		 *
1463 		 * TODO: write a generic wrapper to avoid people rolling
1464 		 * their own
1465 		 */
1466 		if (!thread) {
1467 			if (ret == FILTER_SCHEDULE_THREAD)
1468 				thread = 1;
1469 		}
1470 	}
1471 	td->td_intr_frame = oldframe;
1472 
1473 	if (thread) {
1474 		if (ie->ie_pre_ithread != NULL)
1475 			ie->ie_pre_ithread(ie->ie_source);
1476 	} else {
1477 		if (ie->ie_post_filter != NULL)
1478 			ie->ie_post_filter(ie->ie_source);
1479 	}
1480 
1481 	/* Schedule the ithread if needed. */
1482 	if (thread) {
1483 		error = intr_event_schedule_thread(ie);
1484 #ifndef XEN
1485 		KASSERT(error == 0, ("bad stray interrupt"));
1486 #else
1487 		if (error != 0)
1488 			log(LOG_WARNING, "bad stray interrupt");
1489 #endif
1490 	}
1491 	critical_exit();
1492 	td->td_intr_nesting_level--;
1493 	return (0);
1494 }
1495 #else
1496 /*
1497  * This is the main code for interrupt threads.
1498  */
1499 static void
1500 ithread_loop(void *arg)
1501 {
1502 	struct intr_thread *ithd;
1503 	struct intr_handler *ih;
1504 	struct intr_event *ie;
1505 	struct thread *td;
1506 	struct proc *p;
1507 	int priv;
1508 	int wake;
1509 
1510 	td = curthread;
1511 	p = td->td_proc;
1512 	ih = (struct intr_handler *)arg;
1513 	priv = (ih->ih_thread != NULL) ? 1 : 0;
1514 	ithd = (priv) ? ih->ih_thread : ih->ih_event->ie_thread;
1515 	KASSERT(ithd->it_thread == td,
1516 	    ("%s: ithread and proc linkage out of sync", __func__));
1517 	ie = ithd->it_event;
1518 	ie->ie_count = 0;
1519 	wake = 0;
1520 
1521 	/*
1522 	 * As long as we have interrupts outstanding, go through the
1523 	 * list of handlers, giving each one a go at it.
1524 	 */
1525 	for (;;) {
1526 		/*
1527 		 * If we are an orphaned thread, then just die.
1528 		 */
1529 		if (ithd->it_flags & IT_DEAD) {
1530 			CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
1531 			    p->p_pid, td->td_name);
1532 			free(ithd, M_ITHREAD);
1533 			kthread_exit();
1534 		}
1535 
1536 		/*
1537 		 * Service interrupts.  If another interrupt arrives while
1538 		 * we are running, it will set it_need to note that we
1539 		 * should make another pass.
1540 		 */
1541 		while (ithd->it_need) {
1542 			/*
1543 			 * This might need a full read and write barrier
1544 			 * to make sure that this write posts before any
1545 			 * of the memory or device accesses in the
1546 			 * handlers.
1547 			 */
1548 			atomic_store_rel_int(&ithd->it_need, 0);
1549 			if (priv)
1550 				priv_ithread_execute_handler(p, ih);
1551 			else
1552 				ithread_execute_handlers(p, ie);
1553 		}
1554 		WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
1555 		mtx_assert(&Giant, MA_NOTOWNED);
1556 
1557 		/*
1558 		 * Processed all our interrupts.  Now get the sched
1559 		 * lock.  This may take a while and it_need may get
1560 		 * set again, so we have to check it again.
1561 		 */
1562 		thread_lock(td);
1563 		if (!ithd->it_need && !(ithd->it_flags & (IT_DEAD | IT_WAIT))) {
1564 			TD_SET_IWAIT(td);
1565 			ie->ie_count = 0;
1566 			mi_switch(SW_VOL | SWT_IWAIT, NULL);
1567 		}
1568 		if (ithd->it_flags & IT_WAIT) {
1569 			wake = 1;
1570 			ithd->it_flags &= ~IT_WAIT;
1571 		}
1572 		thread_unlock(td);
1573 		if (wake) {
1574 			wakeup(ithd);
1575 			wake = 0;
1576 		}
1577 	}
1578 }
1579 
1580 /*
1581  * Main loop for interrupt filter.
1582  *
1583  * Some architectures (i386, amd64 and arm) require the optional frame
1584  * parameter, and use it as the main argument for fast handler execution
1585  * when ih_argument == NULL.
1586  *
1587  * Return value:
1588  * o FILTER_STRAY:              No filter recognized the event, and no
1589  *                              filter-less handler is registered on this
1590  *                              line.
1591  * o FILTER_HANDLED:            A filter claimed the event and served it.
1592  * o FILTER_SCHEDULE_THREAD:    No filter claimed the event, but there's at
1593  *                              least one filter-less handler on this line.
1594  * o FILTER_HANDLED |
1595  *   FILTER_SCHEDULE_THREAD:    A filter claimed the event, and asked for
1596  *                              scheduling the per-handler ithread.
1597  *
1598  * In case an ithread has to be scheduled, in *ithd there will be a
1599  * pointer to a struct intr_thread containing the thread to be
1600  * scheduled.
1601  */
1602 
1603 static int
1604 intr_filter_loop(struct intr_event *ie, struct trapframe *frame,
1605 		 struct intr_thread **ithd)
1606 {
1607 	struct intr_handler *ih;
1608 	void *arg;
1609 	int ret, thread_only;
1610 
1611 	ret = 0;
1612 	thread_only = 0;
1613 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1614 		/*
1615 		 * Execute fast interrupt handlers directly.
1616 		 * To support clock handlers, if a handler registers
1617 		 * with a NULL argument, then we pass it a pointer to
1618 		 * a trapframe as its argument.
1619 		 */
1620 		arg = ((ih->ih_argument == NULL) ? frame : ih->ih_argument);
1621 
1622 		CTR5(KTR_INTR, "%s: exec %p/%p(%p) for %s", __func__,
1623 		     ih->ih_filter, ih->ih_handler, arg, ih->ih_name);
1624 
1625 		if (ih->ih_filter != NULL)
1626 			ret = ih->ih_filter(arg);
1627 		else {
1628 			thread_only = 1;
1629 			continue;
1630 		}
1631 		KASSERT(ret == FILTER_STRAY ||
1632 		    ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 &&
1633 		    (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0),
1634 		    ("%s: incorrect return value %#x from %s", __func__, ret,
1635 		    ih->ih_name));
1636 		if (ret & FILTER_STRAY)
1637 			continue;
1638 		else {
1639 			*ithd = ih->ih_thread;
1640 			return (ret);
1641 		}
1642 	}
1643 
1644 	/*
1645 	 * No filters handled the interrupt and we have at least
1646 	 * one handler without a filter.  In this case, we schedule
1647 	 * all of the filter-less handlers to run in the ithread.
1648 	 */
1649 	if (thread_only) {
1650 		*ithd = ie->ie_thread;
1651 		return (FILTER_SCHEDULE_THREAD);
1652 	}
1653 	return (FILTER_STRAY);
1654 }
1655 
1656 /*
1657  * Main interrupt handling body.
1658  *
1659  * Input:
1660  * o ie:                        the event connected to this interrupt.
1661  * o frame:                     some archs (i.e. i386) pass a frame to some.
1662  *                              handlers as their main argument.
1663  * Return value:
1664  * o 0:                         everything ok.
1665  * o EINVAL:                    stray interrupt.
1666  */
1667 int
1668 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
1669 {
1670 	struct intr_thread *ithd;
1671 	struct trapframe *oldframe;
1672 	struct thread *td;
1673 	int thread;
1674 
1675 	ithd = NULL;
1676 	td = curthread;
1677 
1678 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
1679 		return (EINVAL);
1680 
1681 	td->td_intr_nesting_level++;
1682 	thread = 0;
1683 	critical_enter();
1684 	oldframe = td->td_intr_frame;
1685 	td->td_intr_frame = frame;
1686 	thread = intr_filter_loop(ie, frame, &ithd);
1687 	if (thread & FILTER_HANDLED) {
1688 		if (ie->ie_post_filter != NULL)
1689 			ie->ie_post_filter(ie->ie_source);
1690 	} else {
1691 		if (ie->ie_pre_ithread != NULL)
1692 			ie->ie_pre_ithread(ie->ie_source);
1693 	}
1694 	td->td_intr_frame = oldframe;
1695 	critical_exit();
1696 
1697 	/* Interrupt storm logic */
1698 	if (thread & FILTER_STRAY) {
1699 		ie->ie_count++;
1700 		if (ie->ie_count < intr_storm_threshold)
1701 			printf("Interrupt stray detection not present\n");
1702 	}
1703 
1704 	/* Schedule an ithread if needed. */
1705 	if (thread & FILTER_SCHEDULE_THREAD) {
1706 		if (intr_event_schedule_thread(ie, ithd) != 0)
1707 			panic("%s: impossible stray interrupt", __func__);
1708 	}
1709 	td->td_intr_nesting_level--;
1710 	return (0);
1711 }
1712 #endif
1713 
1714 #ifdef DDB
1715 /*
1716  * Dump details about an interrupt handler
1717  */
1718 static void
1719 db_dump_intrhand(struct intr_handler *ih)
1720 {
1721 	int comma;
1722 
1723 	db_printf("\t%-10s ", ih->ih_name);
1724 	switch (ih->ih_pri) {
1725 	case PI_REALTIME:
1726 		db_printf("CLK ");
1727 		break;
1728 	case PI_AV:
1729 		db_printf("AV  ");
1730 		break;
1731 	case PI_TTY:
1732 		db_printf("TTY ");
1733 		break;
1734 	case PI_NET:
1735 		db_printf("NET ");
1736 		break;
1737 	case PI_DISK:
1738 		db_printf("DISK");
1739 		break;
1740 	case PI_DULL:
1741 		db_printf("DULL");
1742 		break;
1743 	default:
1744 		if (ih->ih_pri >= PI_SOFT)
1745 			db_printf("SWI ");
1746 		else
1747 			db_printf("%4u", ih->ih_pri);
1748 		break;
1749 	}
1750 	db_printf(" ");
1751 	db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC);
1752 	db_printf("(%p)", ih->ih_argument);
1753 	if (ih->ih_need ||
1754 	    (ih->ih_flags & (IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD |
1755 	    IH_MPSAFE)) != 0) {
1756 		db_printf(" {");
1757 		comma = 0;
1758 		if (ih->ih_flags & IH_EXCLUSIVE) {
1759 			if (comma)
1760 				db_printf(", ");
1761 			db_printf("EXCL");
1762 			comma = 1;
1763 		}
1764 		if (ih->ih_flags & IH_ENTROPY) {
1765 			if (comma)
1766 				db_printf(", ");
1767 			db_printf("ENTROPY");
1768 			comma = 1;
1769 		}
1770 		if (ih->ih_flags & IH_DEAD) {
1771 			if (comma)
1772 				db_printf(", ");
1773 			db_printf("DEAD");
1774 			comma = 1;
1775 		}
1776 		if (ih->ih_flags & IH_MPSAFE) {
1777 			if (comma)
1778 				db_printf(", ");
1779 			db_printf("MPSAFE");
1780 			comma = 1;
1781 		}
1782 		if (ih->ih_need) {
1783 			if (comma)
1784 				db_printf(", ");
1785 			db_printf("NEED");
1786 		}
1787 		db_printf("}");
1788 	}
1789 	db_printf("\n");
1790 }
1791 
1792 /*
1793  * Dump details about a event.
1794  */
1795 void
1796 db_dump_intr_event(struct intr_event *ie, int handlers)
1797 {
1798 	struct intr_handler *ih;
1799 	struct intr_thread *it;
1800 	int comma;
1801 
1802 	db_printf("%s ", ie->ie_fullname);
1803 	it = ie->ie_thread;
1804 	if (it != NULL)
1805 		db_printf("(pid %d)", it->it_thread->td_proc->p_pid);
1806 	else
1807 		db_printf("(no thread)");
1808 	if ((ie->ie_flags & (IE_SOFT | IE_ENTROPY | IE_ADDING_THREAD)) != 0 ||
1809 	    (it != NULL && it->it_need)) {
1810 		db_printf(" {");
1811 		comma = 0;
1812 		if (ie->ie_flags & IE_SOFT) {
1813 			db_printf("SOFT");
1814 			comma = 1;
1815 		}
1816 		if (ie->ie_flags & IE_ENTROPY) {
1817 			if (comma)
1818 				db_printf(", ");
1819 			db_printf("ENTROPY");
1820 			comma = 1;
1821 		}
1822 		if (ie->ie_flags & IE_ADDING_THREAD) {
1823 			if (comma)
1824 				db_printf(", ");
1825 			db_printf("ADDING_THREAD");
1826 			comma = 1;
1827 		}
1828 		if (it != NULL && it->it_need) {
1829 			if (comma)
1830 				db_printf(", ");
1831 			db_printf("NEED");
1832 		}
1833 		db_printf("}");
1834 	}
1835 	db_printf("\n");
1836 
1837 	if (handlers)
1838 		TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
1839 		    db_dump_intrhand(ih);
1840 }
1841 
1842 /*
1843  * Dump data about interrupt handlers
1844  */
1845 DB_SHOW_COMMAND(intr, db_show_intr)
1846 {
1847 	struct intr_event *ie;
1848 	int all, verbose;
1849 
1850 	verbose = strchr(modif, 'v') != NULL;
1851 	all = strchr(modif, 'a') != NULL;
1852 	TAILQ_FOREACH(ie, &event_list, ie_list) {
1853 		if (!all && TAILQ_EMPTY(&ie->ie_handlers))
1854 			continue;
1855 		db_dump_intr_event(ie, verbose);
1856 		if (db_pager_quit)
1857 			break;
1858 	}
1859 }
1860 #endif /* DDB */
1861 
1862 /*
1863  * Start standard software interrupt threads
1864  */
1865 static void
1866 start_softintr(void *dummy)
1867 {
1868 
1869 	if (swi_add(NULL, "vm", swi_vm, NULL, SWI_VM, INTR_MPSAFE, &vm_ih))
1870 		panic("died while creating vm swi ithread");
1871 }
1872 SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr,
1873     NULL);
1874 
1875 /*
1876  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1877  * The data for this machine dependent, and the declarations are in machine
1878  * dependent code.  The layout of intrnames and intrcnt however is machine
1879  * independent.
1880  *
1881  * We do not know the length of intrcnt and intrnames at compile time, so
1882  * calculate things at run time.
1883  */
1884 static int
1885 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1886 {
1887 	return (sysctl_handle_opaque(oidp, intrnames, sintrnames, req));
1888 }
1889 
1890 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1891     NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1892 
1893 static int
1894 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1895 {
1896 #ifdef SCTL_MASK32
1897 	uint32_t *intrcnt32;
1898 	unsigned i;
1899 	int error;
1900 
1901 	if (req->flags & SCTL_MASK32) {
1902 		if (!req->oldptr)
1903 			return (sysctl_handle_opaque(oidp, NULL, sintrcnt / 2, req));
1904 		intrcnt32 = malloc(sintrcnt / 2, M_TEMP, M_NOWAIT);
1905 		if (intrcnt32 == NULL)
1906 			return (ENOMEM);
1907 		for (i = 0; i < sintrcnt / sizeof (u_long); i++)
1908 			intrcnt32[i] = intrcnt[i];
1909 		error = sysctl_handle_opaque(oidp, intrcnt32, sintrcnt / 2, req);
1910 		free(intrcnt32, M_TEMP);
1911 		return (error);
1912 	}
1913 #endif
1914 	return (sysctl_handle_opaque(oidp, intrcnt, sintrcnt, req));
1915 }
1916 
1917 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1918     NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
1919 
1920 #ifdef DDB
1921 /*
1922  * DDB command to dump the interrupt statistics.
1923  */
1924 DB_SHOW_COMMAND(intrcnt, db_show_intrcnt)
1925 {
1926 	u_long *i;
1927 	char *cp;
1928 	u_int j;
1929 
1930 	cp = intrnames;
1931 	j = 0;
1932 	for (i = intrcnt; j < (sintrcnt / sizeof(u_long)) && !db_pager_quit;
1933 	    i++, j++) {
1934 		if (*cp == '\0')
1935 			break;
1936 		if (*i != 0)
1937 			db_printf("%s\t%lu\n", cp, *i);
1938 		cp += strlen(cp) + 1;
1939 	}
1940 }
1941 #endif
1942