1 /*- 2 * Copyright (c) 1997, Stefan Esser <se@freebsd.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice unmodified, this list of conditions, and the following 10 * disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_ddb.h" 31 32 #include <sys/param.h> 33 #include <sys/bus.h> 34 #include <sys/conf.h> 35 #include <sys/cpuset.h> 36 #include <sys/rtprio.h> 37 #include <sys/systm.h> 38 #include <sys/interrupt.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/ktr.h> 42 #include <sys/limits.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mutex.h> 46 #include <sys/priv.h> 47 #include <sys/proc.h> 48 #include <sys/random.h> 49 #include <sys/resourcevar.h> 50 #include <sys/sched.h> 51 #include <sys/smp.h> 52 #include <sys/sysctl.h> 53 #include <sys/syslog.h> 54 #include <sys/unistd.h> 55 #include <sys/vmmeter.h> 56 #include <machine/atomic.h> 57 #include <machine/cpu.h> 58 #include <machine/md_var.h> 59 #include <machine/stdarg.h> 60 #ifdef DDB 61 #include <ddb/ddb.h> 62 #include <ddb/db_sym.h> 63 #endif 64 65 /* 66 * Describe an interrupt thread. There is one of these per interrupt event. 67 */ 68 struct intr_thread { 69 struct intr_event *it_event; 70 struct thread *it_thread; /* Kernel thread. */ 71 int it_flags; /* (j) IT_* flags. */ 72 int it_need; /* Needs service. */ 73 }; 74 75 /* Interrupt thread flags kept in it_flags */ 76 #define IT_DEAD 0x000001 /* Thread is waiting to exit. */ 77 #define IT_WAIT 0x000002 /* Thread is waiting for completion. */ 78 79 struct intr_entropy { 80 struct thread *td; 81 uintptr_t event; 82 }; 83 84 struct intr_event *clk_intr_event; 85 struct intr_event *tty_intr_event; 86 void *vm_ih; 87 struct proc *intrproc; 88 89 static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads"); 90 91 static int intr_storm_threshold = 1000; 92 TUNABLE_INT("hw.intr_storm_threshold", &intr_storm_threshold); 93 SYSCTL_INT(_hw, OID_AUTO, intr_storm_threshold, CTLFLAG_RW, 94 &intr_storm_threshold, 0, 95 "Number of consecutive interrupts before storm protection is enabled"); 96 static TAILQ_HEAD(, intr_event) event_list = 97 TAILQ_HEAD_INITIALIZER(event_list); 98 static struct mtx event_lock; 99 MTX_SYSINIT(intr_event_list, &event_lock, "intr event list", MTX_DEF); 100 101 static void intr_event_update(struct intr_event *ie); 102 #ifdef INTR_FILTER 103 static int intr_event_schedule_thread(struct intr_event *ie, 104 struct intr_thread *ithd); 105 static int intr_filter_loop(struct intr_event *ie, 106 struct trapframe *frame, struct intr_thread **ithd); 107 static struct intr_thread *ithread_create(const char *name, 108 struct intr_handler *ih); 109 #else 110 static int intr_event_schedule_thread(struct intr_event *ie); 111 static struct intr_thread *ithread_create(const char *name); 112 #endif 113 static void ithread_destroy(struct intr_thread *ithread); 114 static void ithread_execute_handlers(struct proc *p, 115 struct intr_event *ie); 116 #ifdef INTR_FILTER 117 static void priv_ithread_execute_handler(struct proc *p, 118 struct intr_handler *ih); 119 #endif 120 static void ithread_loop(void *); 121 static void ithread_update(struct intr_thread *ithd); 122 static void start_softintr(void *); 123 124 /* Map an interrupt type to an ithread priority. */ 125 u_char 126 intr_priority(enum intr_type flags) 127 { 128 u_char pri; 129 130 flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET | 131 INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV); 132 switch (flags) { 133 case INTR_TYPE_TTY: 134 pri = PI_TTY; 135 break; 136 case INTR_TYPE_BIO: 137 pri = PI_DISK; 138 break; 139 case INTR_TYPE_NET: 140 pri = PI_NET; 141 break; 142 case INTR_TYPE_CAM: 143 pri = PI_DISK; 144 break; 145 case INTR_TYPE_AV: 146 pri = PI_AV; 147 break; 148 case INTR_TYPE_CLK: 149 pri = PI_REALTIME; 150 break; 151 case INTR_TYPE_MISC: 152 pri = PI_DULL; /* don't care */ 153 break; 154 default: 155 /* We didn't specify an interrupt level. */ 156 panic("intr_priority: no interrupt type in flags"); 157 } 158 159 return pri; 160 } 161 162 /* 163 * Update an ithread based on the associated intr_event. 164 */ 165 static void 166 ithread_update(struct intr_thread *ithd) 167 { 168 struct intr_event *ie; 169 struct thread *td; 170 u_char pri; 171 172 ie = ithd->it_event; 173 td = ithd->it_thread; 174 175 /* Determine the overall priority of this event. */ 176 if (TAILQ_EMPTY(&ie->ie_handlers)) 177 pri = PRI_MAX_ITHD; 178 else 179 pri = TAILQ_FIRST(&ie->ie_handlers)->ih_pri; 180 181 /* Update name and priority. */ 182 strlcpy(td->td_name, ie->ie_fullname, sizeof(td->td_name)); 183 #ifdef KTR 184 sched_clear_tdname(td); 185 #endif 186 thread_lock(td); 187 sched_prio(td, pri); 188 thread_unlock(td); 189 } 190 191 /* 192 * Regenerate the full name of an interrupt event and update its priority. 193 */ 194 static void 195 intr_event_update(struct intr_event *ie) 196 { 197 struct intr_handler *ih; 198 char *last; 199 int missed, space; 200 201 /* Start off with no entropy and just the name of the event. */ 202 mtx_assert(&ie->ie_lock, MA_OWNED); 203 strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname)); 204 ie->ie_flags &= ~IE_ENTROPY; 205 missed = 0; 206 space = 1; 207 208 /* Run through all the handlers updating values. */ 209 TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) { 210 if (strlen(ie->ie_fullname) + strlen(ih->ih_name) + 1 < 211 sizeof(ie->ie_fullname)) { 212 strcat(ie->ie_fullname, " "); 213 strcat(ie->ie_fullname, ih->ih_name); 214 space = 0; 215 } else 216 missed++; 217 if (ih->ih_flags & IH_ENTROPY) 218 ie->ie_flags |= IE_ENTROPY; 219 } 220 221 /* 222 * If the handler names were too long, add +'s to indicate missing 223 * names. If we run out of room and still have +'s to add, change 224 * the last character from a + to a *. 225 */ 226 last = &ie->ie_fullname[sizeof(ie->ie_fullname) - 2]; 227 while (missed-- > 0) { 228 if (strlen(ie->ie_fullname) + 1 == sizeof(ie->ie_fullname)) { 229 if (*last == '+') { 230 *last = '*'; 231 break; 232 } else 233 *last = '+'; 234 } else if (space) { 235 strcat(ie->ie_fullname, " +"); 236 space = 0; 237 } else 238 strcat(ie->ie_fullname, "+"); 239 } 240 241 /* 242 * If this event has an ithread, update it's priority and 243 * name. 244 */ 245 if (ie->ie_thread != NULL) 246 ithread_update(ie->ie_thread); 247 CTR2(KTR_INTR, "%s: updated %s", __func__, ie->ie_fullname); 248 } 249 250 int 251 intr_event_create(struct intr_event **event, void *source, int flags, int irq, 252 void (*pre_ithread)(void *), void (*post_ithread)(void *), 253 void (*post_filter)(void *), int (*assign_cpu)(void *, u_char), 254 const char *fmt, ...) 255 { 256 struct intr_event *ie; 257 va_list ap; 258 259 /* The only valid flag during creation is IE_SOFT. */ 260 if ((flags & ~IE_SOFT) != 0) 261 return (EINVAL); 262 ie = malloc(sizeof(struct intr_event), M_ITHREAD, M_WAITOK | M_ZERO); 263 ie->ie_source = source; 264 ie->ie_pre_ithread = pre_ithread; 265 ie->ie_post_ithread = post_ithread; 266 ie->ie_post_filter = post_filter; 267 ie->ie_assign_cpu = assign_cpu; 268 ie->ie_flags = flags; 269 ie->ie_irq = irq; 270 ie->ie_cpu = NOCPU; 271 TAILQ_INIT(&ie->ie_handlers); 272 mtx_init(&ie->ie_lock, "intr event", NULL, MTX_DEF); 273 274 va_start(ap, fmt); 275 vsnprintf(ie->ie_name, sizeof(ie->ie_name), fmt, ap); 276 va_end(ap); 277 strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname)); 278 mtx_lock(&event_lock); 279 TAILQ_INSERT_TAIL(&event_list, ie, ie_list); 280 mtx_unlock(&event_lock); 281 if (event != NULL) 282 *event = ie; 283 CTR2(KTR_INTR, "%s: created %s", __func__, ie->ie_name); 284 return (0); 285 } 286 287 /* 288 * Bind an interrupt event to the specified CPU. Note that not all 289 * platforms support binding an interrupt to a CPU. For those 290 * platforms this request will fail. For supported platforms, any 291 * associated ithreads as well as the primary interrupt context will 292 * be bound to the specificed CPU. Using a cpu id of NOCPU unbinds 293 * the interrupt event. 294 */ 295 int 296 intr_event_bind(struct intr_event *ie, u_char cpu) 297 { 298 cpuset_t mask; 299 lwpid_t id; 300 int error; 301 302 /* Need a CPU to bind to. */ 303 if (cpu != NOCPU && CPU_ABSENT(cpu)) 304 return (EINVAL); 305 306 if (ie->ie_assign_cpu == NULL) 307 return (EOPNOTSUPP); 308 309 error = priv_check(curthread, PRIV_SCHED_CPUSET_INTR); 310 if (error) 311 return (error); 312 313 /* 314 * If we have any ithreads try to set their mask first to verify 315 * permissions, etc. 316 */ 317 mtx_lock(&ie->ie_lock); 318 if (ie->ie_thread != NULL) { 319 CPU_ZERO(&mask); 320 if (cpu == NOCPU) 321 CPU_COPY(cpuset_root, &mask); 322 else 323 CPU_SET(cpu, &mask); 324 id = ie->ie_thread->it_thread->td_tid; 325 mtx_unlock(&ie->ie_lock); 326 error = cpuset_setthread(id, &mask); 327 if (error) 328 return (error); 329 } else 330 mtx_unlock(&ie->ie_lock); 331 error = ie->ie_assign_cpu(ie->ie_source, cpu); 332 if (error) { 333 mtx_lock(&ie->ie_lock); 334 if (ie->ie_thread != NULL) { 335 CPU_ZERO(&mask); 336 if (ie->ie_cpu == NOCPU) 337 CPU_COPY(cpuset_root, &mask); 338 else 339 CPU_SET(cpu, &mask); 340 id = ie->ie_thread->it_thread->td_tid; 341 mtx_unlock(&ie->ie_lock); 342 (void)cpuset_setthread(id, &mask); 343 } else 344 mtx_unlock(&ie->ie_lock); 345 return (error); 346 } 347 348 mtx_lock(&ie->ie_lock); 349 ie->ie_cpu = cpu; 350 mtx_unlock(&ie->ie_lock); 351 352 return (error); 353 } 354 355 static struct intr_event * 356 intr_lookup(int irq) 357 { 358 struct intr_event *ie; 359 360 mtx_lock(&event_lock); 361 TAILQ_FOREACH(ie, &event_list, ie_list) 362 if (ie->ie_irq == irq && 363 (ie->ie_flags & IE_SOFT) == 0 && 364 TAILQ_FIRST(&ie->ie_handlers) != NULL) 365 break; 366 mtx_unlock(&event_lock); 367 return (ie); 368 } 369 370 int 371 intr_setaffinity(int irq, void *m) 372 { 373 struct intr_event *ie; 374 cpuset_t *mask; 375 u_char cpu; 376 int n; 377 378 mask = m; 379 cpu = NOCPU; 380 /* 381 * If we're setting all cpus we can unbind. Otherwise make sure 382 * only one cpu is in the set. 383 */ 384 if (CPU_CMP(cpuset_root, mask)) { 385 for (n = 0; n < CPU_SETSIZE; n++) { 386 if (!CPU_ISSET(n, mask)) 387 continue; 388 if (cpu != NOCPU) 389 return (EINVAL); 390 cpu = (u_char)n; 391 } 392 } 393 ie = intr_lookup(irq); 394 if (ie == NULL) 395 return (ESRCH); 396 return (intr_event_bind(ie, cpu)); 397 } 398 399 int 400 intr_getaffinity(int irq, void *m) 401 { 402 struct intr_event *ie; 403 cpuset_t *mask; 404 405 mask = m; 406 ie = intr_lookup(irq); 407 if (ie == NULL) 408 return (ESRCH); 409 CPU_ZERO(mask); 410 mtx_lock(&ie->ie_lock); 411 if (ie->ie_cpu == NOCPU) 412 CPU_COPY(cpuset_root, mask); 413 else 414 CPU_SET(ie->ie_cpu, mask); 415 mtx_unlock(&ie->ie_lock); 416 return (0); 417 } 418 419 int 420 intr_event_destroy(struct intr_event *ie) 421 { 422 423 mtx_lock(&event_lock); 424 mtx_lock(&ie->ie_lock); 425 if (!TAILQ_EMPTY(&ie->ie_handlers)) { 426 mtx_unlock(&ie->ie_lock); 427 mtx_unlock(&event_lock); 428 return (EBUSY); 429 } 430 TAILQ_REMOVE(&event_list, ie, ie_list); 431 #ifndef notyet 432 if (ie->ie_thread != NULL) { 433 ithread_destroy(ie->ie_thread); 434 ie->ie_thread = NULL; 435 } 436 #endif 437 mtx_unlock(&ie->ie_lock); 438 mtx_unlock(&event_lock); 439 mtx_destroy(&ie->ie_lock); 440 free(ie, M_ITHREAD); 441 return (0); 442 } 443 444 #ifndef INTR_FILTER 445 static struct intr_thread * 446 ithread_create(const char *name) 447 { 448 struct intr_thread *ithd; 449 struct thread *td; 450 int error; 451 452 ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO); 453 454 error = kproc_kthread_add(ithread_loop, ithd, &intrproc, 455 &td, RFSTOPPED | RFHIGHPID, 456 0, "intr", "%s", name); 457 if (error) 458 panic("kproc_create() failed with %d", error); 459 thread_lock(td); 460 sched_class(td, PRI_ITHD); 461 TD_SET_IWAIT(td); 462 thread_unlock(td); 463 td->td_pflags |= TDP_ITHREAD; 464 ithd->it_thread = td; 465 CTR2(KTR_INTR, "%s: created %s", __func__, name); 466 return (ithd); 467 } 468 #else 469 static struct intr_thread * 470 ithread_create(const char *name, struct intr_handler *ih) 471 { 472 struct intr_thread *ithd; 473 struct thread *td; 474 int error; 475 476 ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO); 477 478 error = kproc_kthread_add(ithread_loop, ih, &intrproc, 479 &td, RFSTOPPED | RFHIGHPID, 480 0, "intr", "%s", name); 481 if (error) 482 panic("kproc_create() failed with %d", error); 483 thread_lock(td); 484 sched_class(td, PRI_ITHD); 485 TD_SET_IWAIT(td); 486 thread_unlock(td); 487 td->td_pflags |= TDP_ITHREAD; 488 ithd->it_thread = td; 489 CTR2(KTR_INTR, "%s: created %s", __func__, name); 490 return (ithd); 491 } 492 #endif 493 494 static void 495 ithread_destroy(struct intr_thread *ithread) 496 { 497 struct thread *td; 498 499 CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_event->ie_name); 500 td = ithread->it_thread; 501 thread_lock(td); 502 ithread->it_flags |= IT_DEAD; 503 if (TD_AWAITING_INTR(td)) { 504 TD_CLR_IWAIT(td); 505 sched_add(td, SRQ_INTR); 506 } 507 thread_unlock(td); 508 } 509 510 #ifndef INTR_FILTER 511 int 512 intr_event_add_handler(struct intr_event *ie, const char *name, 513 driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri, 514 enum intr_type flags, void **cookiep) 515 { 516 struct intr_handler *ih, *temp_ih; 517 struct intr_thread *it; 518 519 if (ie == NULL || name == NULL || (handler == NULL && filter == NULL)) 520 return (EINVAL); 521 522 /* Allocate and populate an interrupt handler structure. */ 523 ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO); 524 ih->ih_filter = filter; 525 ih->ih_handler = handler; 526 ih->ih_argument = arg; 527 strlcpy(ih->ih_name, name, sizeof(ih->ih_name)); 528 ih->ih_event = ie; 529 ih->ih_pri = pri; 530 if (flags & INTR_EXCL) 531 ih->ih_flags = IH_EXCLUSIVE; 532 if (flags & INTR_MPSAFE) 533 ih->ih_flags |= IH_MPSAFE; 534 if (flags & INTR_ENTROPY) 535 ih->ih_flags |= IH_ENTROPY; 536 537 /* We can only have one exclusive handler in a event. */ 538 mtx_lock(&ie->ie_lock); 539 if (!TAILQ_EMPTY(&ie->ie_handlers)) { 540 if ((flags & INTR_EXCL) || 541 (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) { 542 mtx_unlock(&ie->ie_lock); 543 free(ih, M_ITHREAD); 544 return (EINVAL); 545 } 546 } 547 548 /* Add the new handler to the event in priority order. */ 549 TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) { 550 if (temp_ih->ih_pri > ih->ih_pri) 551 break; 552 } 553 if (temp_ih == NULL) 554 TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next); 555 else 556 TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next); 557 intr_event_update(ie); 558 559 /* Create a thread if we need one. */ 560 while (ie->ie_thread == NULL && handler != NULL) { 561 if (ie->ie_flags & IE_ADDING_THREAD) 562 msleep(ie, &ie->ie_lock, 0, "ithread", 0); 563 else { 564 ie->ie_flags |= IE_ADDING_THREAD; 565 mtx_unlock(&ie->ie_lock); 566 it = ithread_create("intr: newborn"); 567 mtx_lock(&ie->ie_lock); 568 ie->ie_flags &= ~IE_ADDING_THREAD; 569 ie->ie_thread = it; 570 it->it_event = ie; 571 ithread_update(it); 572 wakeup(ie); 573 } 574 } 575 CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name, 576 ie->ie_name); 577 mtx_unlock(&ie->ie_lock); 578 579 if (cookiep != NULL) 580 *cookiep = ih; 581 return (0); 582 } 583 #else 584 int 585 intr_event_add_handler(struct intr_event *ie, const char *name, 586 driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri, 587 enum intr_type flags, void **cookiep) 588 { 589 struct intr_handler *ih, *temp_ih; 590 struct intr_thread *it; 591 592 if (ie == NULL || name == NULL || (handler == NULL && filter == NULL)) 593 return (EINVAL); 594 595 /* Allocate and populate an interrupt handler structure. */ 596 ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO); 597 ih->ih_filter = filter; 598 ih->ih_handler = handler; 599 ih->ih_argument = arg; 600 strlcpy(ih->ih_name, name, sizeof(ih->ih_name)); 601 ih->ih_event = ie; 602 ih->ih_pri = pri; 603 if (flags & INTR_EXCL) 604 ih->ih_flags = IH_EXCLUSIVE; 605 if (flags & INTR_MPSAFE) 606 ih->ih_flags |= IH_MPSAFE; 607 if (flags & INTR_ENTROPY) 608 ih->ih_flags |= IH_ENTROPY; 609 610 /* We can only have one exclusive handler in a event. */ 611 mtx_lock(&ie->ie_lock); 612 if (!TAILQ_EMPTY(&ie->ie_handlers)) { 613 if ((flags & INTR_EXCL) || 614 (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) { 615 mtx_unlock(&ie->ie_lock); 616 free(ih, M_ITHREAD); 617 return (EINVAL); 618 } 619 } 620 621 /* Add the new handler to the event in priority order. */ 622 TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) { 623 if (temp_ih->ih_pri > ih->ih_pri) 624 break; 625 } 626 if (temp_ih == NULL) 627 TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next); 628 else 629 TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next); 630 intr_event_update(ie); 631 632 /* For filtered handlers, create a private ithread to run on. */ 633 if (filter != NULL && handler != NULL) { 634 mtx_unlock(&ie->ie_lock); 635 it = ithread_create("intr: newborn", ih); 636 mtx_lock(&ie->ie_lock); 637 it->it_event = ie; 638 ih->ih_thread = it; 639 ithread_update(it); /* XXX - do we really need this?!?!? */ 640 } else { /* Create the global per-event thread if we need one. */ 641 while (ie->ie_thread == NULL && handler != NULL) { 642 if (ie->ie_flags & IE_ADDING_THREAD) 643 msleep(ie, &ie->ie_lock, 0, "ithread", 0); 644 else { 645 ie->ie_flags |= IE_ADDING_THREAD; 646 mtx_unlock(&ie->ie_lock); 647 it = ithread_create("intr: newborn", ih); 648 mtx_lock(&ie->ie_lock); 649 ie->ie_flags &= ~IE_ADDING_THREAD; 650 ie->ie_thread = it; 651 it->it_event = ie; 652 ithread_update(it); 653 wakeup(ie); 654 } 655 } 656 } 657 CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name, 658 ie->ie_name); 659 mtx_unlock(&ie->ie_lock); 660 661 if (cookiep != NULL) 662 *cookiep = ih; 663 return (0); 664 } 665 #endif 666 667 /* 668 * Append a description preceded by a ':' to the name of the specified 669 * interrupt handler. 670 */ 671 int 672 intr_event_describe_handler(struct intr_event *ie, void *cookie, 673 const char *descr) 674 { 675 struct intr_handler *ih; 676 size_t space; 677 char *start; 678 679 mtx_lock(&ie->ie_lock); 680 #ifdef INVARIANTS 681 TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) { 682 if (ih == cookie) 683 break; 684 } 685 if (ih == NULL) { 686 mtx_unlock(&ie->ie_lock); 687 panic("handler %p not found in interrupt event %p", cookie, ie); 688 } 689 #endif 690 ih = cookie; 691 692 /* 693 * Look for an existing description by checking for an 694 * existing ":". This assumes device names do not include 695 * colons. If one is found, prepare to insert the new 696 * description at that point. If one is not found, find the 697 * end of the name to use as the insertion point. 698 */ 699 start = strchr(ih->ih_name, ':'); 700 if (start == NULL) 701 start = strchr(ih->ih_name, 0); 702 703 /* 704 * See if there is enough remaining room in the string for the 705 * description + ":". The "- 1" leaves room for the trailing 706 * '\0'. The "+ 1" accounts for the colon. 707 */ 708 space = sizeof(ih->ih_name) - (start - ih->ih_name) - 1; 709 if (strlen(descr) + 1 > space) { 710 mtx_unlock(&ie->ie_lock); 711 return (ENOSPC); 712 } 713 714 /* Append a colon followed by the description. */ 715 *start = ':'; 716 strcpy(start + 1, descr); 717 intr_event_update(ie); 718 mtx_unlock(&ie->ie_lock); 719 return (0); 720 } 721 722 /* 723 * Return the ie_source field from the intr_event an intr_handler is 724 * associated with. 725 */ 726 void * 727 intr_handler_source(void *cookie) 728 { 729 struct intr_handler *ih; 730 struct intr_event *ie; 731 732 ih = (struct intr_handler *)cookie; 733 if (ih == NULL) 734 return (NULL); 735 ie = ih->ih_event; 736 KASSERT(ie != NULL, 737 ("interrupt handler \"%s\" has a NULL interrupt event", 738 ih->ih_name)); 739 return (ie->ie_source); 740 } 741 742 /* 743 * Sleep until an ithread finishes executing an interrupt handler. 744 * 745 * XXX Doesn't currently handle interrupt filters or fast interrupt 746 * handlers. This is intended for compatibility with linux drivers 747 * only. Do not use in BSD code. 748 */ 749 void 750 _intr_drain(int irq) 751 { 752 struct intr_event *ie; 753 struct intr_thread *ithd; 754 struct thread *td; 755 756 ie = intr_lookup(irq); 757 if (ie == NULL) 758 return; 759 if (ie->ie_thread == NULL) 760 return; 761 ithd = ie->ie_thread; 762 td = ithd->it_thread; 763 /* 764 * We set the flag and wait for it to be cleared to avoid 765 * long delays with potentially busy interrupt handlers 766 * were we to only sample TD_AWAITING_INTR() every tick. 767 */ 768 thread_lock(td); 769 if (!TD_AWAITING_INTR(td)) { 770 ithd->it_flags |= IT_WAIT; 771 while (ithd->it_flags & IT_WAIT) { 772 thread_unlock(td); 773 pause("idrain", 1); 774 thread_lock(td); 775 } 776 } 777 thread_unlock(td); 778 return; 779 } 780 781 782 #ifndef INTR_FILTER 783 int 784 intr_event_remove_handler(void *cookie) 785 { 786 struct intr_handler *handler = (struct intr_handler *)cookie; 787 struct intr_event *ie; 788 #ifdef INVARIANTS 789 struct intr_handler *ih; 790 #endif 791 #ifdef notyet 792 int dead; 793 #endif 794 795 if (handler == NULL) 796 return (EINVAL); 797 ie = handler->ih_event; 798 KASSERT(ie != NULL, 799 ("interrupt handler \"%s\" has a NULL interrupt event", 800 handler->ih_name)); 801 mtx_lock(&ie->ie_lock); 802 CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name, 803 ie->ie_name); 804 #ifdef INVARIANTS 805 TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) 806 if (ih == handler) 807 goto ok; 808 mtx_unlock(&ie->ie_lock); 809 panic("interrupt handler \"%s\" not found in interrupt event \"%s\"", 810 ih->ih_name, ie->ie_name); 811 ok: 812 #endif 813 /* 814 * If there is no ithread, then just remove the handler and return. 815 * XXX: Note that an INTR_FAST handler might be running on another 816 * CPU! 817 */ 818 if (ie->ie_thread == NULL) { 819 TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next); 820 mtx_unlock(&ie->ie_lock); 821 free(handler, M_ITHREAD); 822 return (0); 823 } 824 825 /* 826 * If the interrupt thread is already running, then just mark this 827 * handler as being dead and let the ithread do the actual removal. 828 * 829 * During a cold boot while cold is set, msleep() does not sleep, 830 * so we have to remove the handler here rather than letting the 831 * thread do it. 832 */ 833 thread_lock(ie->ie_thread->it_thread); 834 if (!TD_AWAITING_INTR(ie->ie_thread->it_thread) && !cold) { 835 handler->ih_flags |= IH_DEAD; 836 837 /* 838 * Ensure that the thread will process the handler list 839 * again and remove this handler if it has already passed 840 * it on the list. 841 */ 842 ie->ie_thread->it_need = 1; 843 } else 844 TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next); 845 thread_unlock(ie->ie_thread->it_thread); 846 while (handler->ih_flags & IH_DEAD) 847 msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0); 848 intr_event_update(ie); 849 #ifdef notyet 850 /* 851 * XXX: This could be bad in the case of ppbus(8). Also, I think 852 * this could lead to races of stale data when servicing an 853 * interrupt. 854 */ 855 dead = 1; 856 TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) { 857 if (!(ih->ih_flags & IH_FAST)) { 858 dead = 0; 859 break; 860 } 861 } 862 if (dead) { 863 ithread_destroy(ie->ie_thread); 864 ie->ie_thread = NULL; 865 } 866 #endif 867 mtx_unlock(&ie->ie_lock); 868 free(handler, M_ITHREAD); 869 return (0); 870 } 871 872 static int 873 intr_event_schedule_thread(struct intr_event *ie) 874 { 875 struct intr_entropy entropy; 876 struct intr_thread *it; 877 struct thread *td; 878 struct thread *ctd; 879 struct proc *p; 880 881 /* 882 * If no ithread or no handlers, then we have a stray interrupt. 883 */ 884 if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) || 885 ie->ie_thread == NULL) 886 return (EINVAL); 887 888 ctd = curthread; 889 it = ie->ie_thread; 890 td = it->it_thread; 891 p = td->td_proc; 892 893 /* 894 * If any of the handlers for this ithread claim to be good 895 * sources of entropy, then gather some. 896 */ 897 if (harvest.interrupt && ie->ie_flags & IE_ENTROPY) { 898 CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", __func__, 899 p->p_pid, td->td_name); 900 entropy.event = (uintptr_t)ie; 901 entropy.td = ctd; 902 random_harvest(&entropy, sizeof(entropy), 2, 0, 903 RANDOM_INTERRUPT); 904 } 905 906 KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name)); 907 908 /* 909 * Set it_need to tell the thread to keep running if it is already 910 * running. Then, lock the thread and see if we actually need to 911 * put it on the runqueue. 912 */ 913 it->it_need = 1; 914 thread_lock(td); 915 if (TD_AWAITING_INTR(td)) { 916 CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid, 917 td->td_name); 918 TD_CLR_IWAIT(td); 919 sched_add(td, SRQ_INTR); 920 } else { 921 CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d", 922 __func__, p->p_pid, td->td_name, it->it_need, td->td_state); 923 } 924 thread_unlock(td); 925 926 return (0); 927 } 928 #else 929 int 930 intr_event_remove_handler(void *cookie) 931 { 932 struct intr_handler *handler = (struct intr_handler *)cookie; 933 struct intr_event *ie; 934 struct intr_thread *it; 935 #ifdef INVARIANTS 936 struct intr_handler *ih; 937 #endif 938 #ifdef notyet 939 int dead; 940 #endif 941 942 if (handler == NULL) 943 return (EINVAL); 944 ie = handler->ih_event; 945 KASSERT(ie != NULL, 946 ("interrupt handler \"%s\" has a NULL interrupt event", 947 handler->ih_name)); 948 mtx_lock(&ie->ie_lock); 949 CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name, 950 ie->ie_name); 951 #ifdef INVARIANTS 952 TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) 953 if (ih == handler) 954 goto ok; 955 mtx_unlock(&ie->ie_lock); 956 panic("interrupt handler \"%s\" not found in interrupt event \"%s\"", 957 ih->ih_name, ie->ie_name); 958 ok: 959 #endif 960 /* 961 * If there are no ithreads (per event and per handler), then 962 * just remove the handler and return. 963 * XXX: Note that an INTR_FAST handler might be running on another CPU! 964 */ 965 if (ie->ie_thread == NULL && handler->ih_thread == NULL) { 966 TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next); 967 mtx_unlock(&ie->ie_lock); 968 free(handler, M_ITHREAD); 969 return (0); 970 } 971 972 /* Private or global ithread? */ 973 it = (handler->ih_thread) ? handler->ih_thread : ie->ie_thread; 974 /* 975 * If the interrupt thread is already running, then just mark this 976 * handler as being dead and let the ithread do the actual removal. 977 * 978 * During a cold boot while cold is set, msleep() does not sleep, 979 * so we have to remove the handler here rather than letting the 980 * thread do it. 981 */ 982 thread_lock(it->it_thread); 983 if (!TD_AWAITING_INTR(it->it_thread) && !cold) { 984 handler->ih_flags |= IH_DEAD; 985 986 /* 987 * Ensure that the thread will process the handler list 988 * again and remove this handler if it has already passed 989 * it on the list. 990 */ 991 it->it_need = 1; 992 } else 993 TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next); 994 thread_unlock(it->it_thread); 995 while (handler->ih_flags & IH_DEAD) 996 msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0); 997 /* 998 * At this point, the handler has been disconnected from the event, 999 * so we can kill the private ithread if any. 1000 */ 1001 if (handler->ih_thread) { 1002 ithread_destroy(handler->ih_thread); 1003 handler->ih_thread = NULL; 1004 } 1005 intr_event_update(ie); 1006 #ifdef notyet 1007 /* 1008 * XXX: This could be bad in the case of ppbus(8). Also, I think 1009 * this could lead to races of stale data when servicing an 1010 * interrupt. 1011 */ 1012 dead = 1; 1013 TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) { 1014 if (handler != NULL) { 1015 dead = 0; 1016 break; 1017 } 1018 } 1019 if (dead) { 1020 ithread_destroy(ie->ie_thread); 1021 ie->ie_thread = NULL; 1022 } 1023 #endif 1024 mtx_unlock(&ie->ie_lock); 1025 free(handler, M_ITHREAD); 1026 return (0); 1027 } 1028 1029 static int 1030 intr_event_schedule_thread(struct intr_event *ie, struct intr_thread *it) 1031 { 1032 struct intr_entropy entropy; 1033 struct thread *td; 1034 struct thread *ctd; 1035 struct proc *p; 1036 1037 /* 1038 * If no ithread or no handlers, then we have a stray interrupt. 1039 */ 1040 if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) || it == NULL) 1041 return (EINVAL); 1042 1043 ctd = curthread; 1044 td = it->it_thread; 1045 p = td->td_proc; 1046 1047 /* 1048 * If any of the handlers for this ithread claim to be good 1049 * sources of entropy, then gather some. 1050 */ 1051 if (harvest.interrupt && ie->ie_flags & IE_ENTROPY) { 1052 CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", __func__, 1053 p->p_pid, td->td_name); 1054 entropy.event = (uintptr_t)ie; 1055 entropy.td = ctd; 1056 random_harvest(&entropy, sizeof(entropy), 2, 0, 1057 RANDOM_INTERRUPT); 1058 } 1059 1060 KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name)); 1061 1062 /* 1063 * Set it_need to tell the thread to keep running if it is already 1064 * running. Then, lock the thread and see if we actually need to 1065 * put it on the runqueue. 1066 */ 1067 it->it_need = 1; 1068 thread_lock(td); 1069 if (TD_AWAITING_INTR(td)) { 1070 CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid, 1071 td->td_name); 1072 TD_CLR_IWAIT(td); 1073 sched_add(td, SRQ_INTR); 1074 } else { 1075 CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d", 1076 __func__, p->p_pid, td->td_name, it->it_need, td->td_state); 1077 } 1078 thread_unlock(td); 1079 1080 return (0); 1081 } 1082 #endif 1083 1084 /* 1085 * Allow interrupt event binding for software interrupt handlers -- a no-op, 1086 * since interrupts are generated in software rather than being directed by 1087 * a PIC. 1088 */ 1089 static int 1090 swi_assign_cpu(void *arg, u_char cpu) 1091 { 1092 1093 return (0); 1094 } 1095 1096 /* 1097 * Add a software interrupt handler to a specified event. If a given event 1098 * is not specified, then a new event is created. 1099 */ 1100 int 1101 swi_add(struct intr_event **eventp, const char *name, driver_intr_t handler, 1102 void *arg, int pri, enum intr_type flags, void **cookiep) 1103 { 1104 struct thread *td; 1105 struct intr_event *ie; 1106 int error; 1107 1108 if (flags & INTR_ENTROPY) 1109 return (EINVAL); 1110 1111 ie = (eventp != NULL) ? *eventp : NULL; 1112 1113 if (ie != NULL) { 1114 if (!(ie->ie_flags & IE_SOFT)) 1115 return (EINVAL); 1116 } else { 1117 error = intr_event_create(&ie, NULL, IE_SOFT, 0, 1118 NULL, NULL, NULL, swi_assign_cpu, "swi%d:", pri); 1119 if (error) 1120 return (error); 1121 if (eventp != NULL) 1122 *eventp = ie; 1123 } 1124 error = intr_event_add_handler(ie, name, NULL, handler, arg, 1125 PI_SWI(pri), flags, cookiep); 1126 if (error) 1127 return (error); 1128 if (pri == SWI_CLOCK) { 1129 td = ie->ie_thread->it_thread; 1130 thread_lock(td); 1131 td->td_flags |= TDF_NOLOAD; 1132 thread_unlock(td); 1133 } 1134 return (0); 1135 } 1136 1137 /* 1138 * Schedule a software interrupt thread. 1139 */ 1140 void 1141 swi_sched(void *cookie, int flags) 1142 { 1143 struct intr_handler *ih = (struct intr_handler *)cookie; 1144 struct intr_event *ie = ih->ih_event; 1145 int error; 1146 1147 CTR3(KTR_INTR, "swi_sched: %s %s need=%d", ie->ie_name, ih->ih_name, 1148 ih->ih_need); 1149 1150 /* 1151 * Set ih_need for this handler so that if the ithread is already 1152 * running it will execute this handler on the next pass. Otherwise, 1153 * it will execute it the next time it runs. 1154 */ 1155 atomic_store_rel_int(&ih->ih_need, 1); 1156 1157 if (!(flags & SWI_DELAY)) { 1158 PCPU_INC(cnt.v_soft); 1159 #ifdef INTR_FILTER 1160 error = intr_event_schedule_thread(ie, ie->ie_thread); 1161 #else 1162 error = intr_event_schedule_thread(ie); 1163 #endif 1164 KASSERT(error == 0, ("stray software interrupt")); 1165 } 1166 } 1167 1168 /* 1169 * Remove a software interrupt handler. Currently this code does not 1170 * remove the associated interrupt event if it becomes empty. Calling code 1171 * may do so manually via intr_event_destroy(), but that's not really 1172 * an optimal interface. 1173 */ 1174 int 1175 swi_remove(void *cookie) 1176 { 1177 1178 return (intr_event_remove_handler(cookie)); 1179 } 1180 1181 #ifdef INTR_FILTER 1182 static void 1183 priv_ithread_execute_handler(struct proc *p, struct intr_handler *ih) 1184 { 1185 struct intr_event *ie; 1186 1187 ie = ih->ih_event; 1188 /* 1189 * If this handler is marked for death, remove it from 1190 * the list of handlers and wake up the sleeper. 1191 */ 1192 if (ih->ih_flags & IH_DEAD) { 1193 mtx_lock(&ie->ie_lock); 1194 TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next); 1195 ih->ih_flags &= ~IH_DEAD; 1196 wakeup(ih); 1197 mtx_unlock(&ie->ie_lock); 1198 return; 1199 } 1200 1201 /* Execute this handler. */ 1202 CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x", 1203 __func__, p->p_pid, (void *)ih->ih_handler, ih->ih_argument, 1204 ih->ih_name, ih->ih_flags); 1205 1206 if (!(ih->ih_flags & IH_MPSAFE)) 1207 mtx_lock(&Giant); 1208 ih->ih_handler(ih->ih_argument); 1209 if (!(ih->ih_flags & IH_MPSAFE)) 1210 mtx_unlock(&Giant); 1211 } 1212 #endif 1213 1214 /* 1215 * This is a public function for use by drivers that mux interrupt 1216 * handlers for child devices from their interrupt handler. 1217 */ 1218 void 1219 intr_event_execute_handlers(struct proc *p, struct intr_event *ie) 1220 { 1221 struct intr_handler *ih, *ihn; 1222 1223 TAILQ_FOREACH_SAFE(ih, &ie->ie_handlers, ih_next, ihn) { 1224 /* 1225 * If this handler is marked for death, remove it from 1226 * the list of handlers and wake up the sleeper. 1227 */ 1228 if (ih->ih_flags & IH_DEAD) { 1229 mtx_lock(&ie->ie_lock); 1230 TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next); 1231 ih->ih_flags &= ~IH_DEAD; 1232 wakeup(ih); 1233 mtx_unlock(&ie->ie_lock); 1234 continue; 1235 } 1236 1237 /* Skip filter only handlers */ 1238 if (ih->ih_handler == NULL) 1239 continue; 1240 1241 /* 1242 * For software interrupt threads, we only execute 1243 * handlers that have their need flag set. Hardware 1244 * interrupt threads always invoke all of their handlers. 1245 */ 1246 if (ie->ie_flags & IE_SOFT) { 1247 if (!ih->ih_need) 1248 continue; 1249 else 1250 atomic_store_rel_int(&ih->ih_need, 0); 1251 } 1252 1253 /* Execute this handler. */ 1254 CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x", 1255 __func__, p->p_pid, (void *)ih->ih_handler, 1256 ih->ih_argument, ih->ih_name, ih->ih_flags); 1257 1258 if (!(ih->ih_flags & IH_MPSAFE)) 1259 mtx_lock(&Giant); 1260 ih->ih_handler(ih->ih_argument); 1261 if (!(ih->ih_flags & IH_MPSAFE)) 1262 mtx_unlock(&Giant); 1263 } 1264 } 1265 1266 static void 1267 ithread_execute_handlers(struct proc *p, struct intr_event *ie) 1268 { 1269 1270 /* Interrupt handlers should not sleep. */ 1271 if (!(ie->ie_flags & IE_SOFT)) 1272 THREAD_NO_SLEEPING(); 1273 intr_event_execute_handlers(p, ie); 1274 if (!(ie->ie_flags & IE_SOFT)) 1275 THREAD_SLEEPING_OK(); 1276 1277 /* 1278 * Interrupt storm handling: 1279 * 1280 * If this interrupt source is currently storming, then throttle 1281 * it to only fire the handler once per clock tick. 1282 * 1283 * If this interrupt source is not currently storming, but the 1284 * number of back to back interrupts exceeds the storm threshold, 1285 * then enter storming mode. 1286 */ 1287 if (intr_storm_threshold != 0 && ie->ie_count >= intr_storm_threshold && 1288 !(ie->ie_flags & IE_SOFT)) { 1289 /* Report the message only once every second. */ 1290 if (ppsratecheck(&ie->ie_warntm, &ie->ie_warncnt, 1)) { 1291 printf( 1292 "interrupt storm detected on \"%s\"; throttling interrupt source\n", 1293 ie->ie_name); 1294 } 1295 pause("istorm", 1); 1296 } else 1297 ie->ie_count++; 1298 1299 /* 1300 * Now that all the handlers have had a chance to run, reenable 1301 * the interrupt source. 1302 */ 1303 if (ie->ie_post_ithread != NULL) 1304 ie->ie_post_ithread(ie->ie_source); 1305 } 1306 1307 #ifndef INTR_FILTER 1308 /* 1309 * This is the main code for interrupt threads. 1310 */ 1311 static void 1312 ithread_loop(void *arg) 1313 { 1314 struct intr_thread *ithd; 1315 struct intr_event *ie; 1316 struct thread *td; 1317 struct proc *p; 1318 int wake; 1319 1320 td = curthread; 1321 p = td->td_proc; 1322 ithd = (struct intr_thread *)arg; 1323 KASSERT(ithd->it_thread == td, 1324 ("%s: ithread and proc linkage out of sync", __func__)); 1325 ie = ithd->it_event; 1326 ie->ie_count = 0; 1327 wake = 0; 1328 1329 /* 1330 * As long as we have interrupts outstanding, go through the 1331 * list of handlers, giving each one a go at it. 1332 */ 1333 for (;;) { 1334 /* 1335 * If we are an orphaned thread, then just die. 1336 */ 1337 if (ithd->it_flags & IT_DEAD) { 1338 CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__, 1339 p->p_pid, td->td_name); 1340 free(ithd, M_ITHREAD); 1341 kthread_exit(); 1342 } 1343 1344 /* 1345 * Service interrupts. If another interrupt arrives while 1346 * we are running, it will set it_need to note that we 1347 * should make another pass. 1348 */ 1349 while (ithd->it_need) { 1350 /* 1351 * This might need a full read and write barrier 1352 * to make sure that this write posts before any 1353 * of the memory or device accesses in the 1354 * handlers. 1355 */ 1356 atomic_store_rel_int(&ithd->it_need, 0); 1357 ithread_execute_handlers(p, ie); 1358 } 1359 WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread"); 1360 mtx_assert(&Giant, MA_NOTOWNED); 1361 1362 /* 1363 * Processed all our interrupts. Now get the sched 1364 * lock. This may take a while and it_need may get 1365 * set again, so we have to check it again. 1366 */ 1367 thread_lock(td); 1368 if (!ithd->it_need && !(ithd->it_flags & (IT_DEAD | IT_WAIT))) { 1369 TD_SET_IWAIT(td); 1370 ie->ie_count = 0; 1371 mi_switch(SW_VOL | SWT_IWAIT, NULL); 1372 } 1373 if (ithd->it_flags & IT_WAIT) { 1374 wake = 1; 1375 ithd->it_flags &= ~IT_WAIT; 1376 } 1377 thread_unlock(td); 1378 if (wake) { 1379 wakeup(ithd); 1380 wake = 0; 1381 } 1382 } 1383 } 1384 1385 /* 1386 * Main interrupt handling body. 1387 * 1388 * Input: 1389 * o ie: the event connected to this interrupt. 1390 * o frame: some archs (i.e. i386) pass a frame to some. 1391 * handlers as their main argument. 1392 * Return value: 1393 * o 0: everything ok. 1394 * o EINVAL: stray interrupt. 1395 */ 1396 int 1397 intr_event_handle(struct intr_event *ie, struct trapframe *frame) 1398 { 1399 struct intr_handler *ih; 1400 struct trapframe *oldframe; 1401 struct thread *td; 1402 int error, ret, thread; 1403 1404 td = curthread; 1405 1406 /* An interrupt with no event or handlers is a stray interrupt. */ 1407 if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers)) 1408 return (EINVAL); 1409 1410 /* 1411 * Execute fast interrupt handlers directly. 1412 * To support clock handlers, if a handler registers 1413 * with a NULL argument, then we pass it a pointer to 1414 * a trapframe as its argument. 1415 */ 1416 td->td_intr_nesting_level++; 1417 thread = 0; 1418 ret = 0; 1419 critical_enter(); 1420 oldframe = td->td_intr_frame; 1421 td->td_intr_frame = frame; 1422 TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) { 1423 if (ih->ih_filter == NULL) { 1424 thread = 1; 1425 continue; 1426 } 1427 CTR4(KTR_INTR, "%s: exec %p(%p) for %s", __func__, 1428 ih->ih_filter, ih->ih_argument == NULL ? frame : 1429 ih->ih_argument, ih->ih_name); 1430 if (ih->ih_argument == NULL) 1431 ret = ih->ih_filter(frame); 1432 else 1433 ret = ih->ih_filter(ih->ih_argument); 1434 KASSERT(ret == FILTER_STRAY || 1435 ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 && 1436 (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0), 1437 ("%s: incorrect return value %#x from %s", __func__, ret, 1438 ih->ih_name)); 1439 1440 /* 1441 * Wrapper handler special handling: 1442 * 1443 * in some particular cases (like pccard and pccbb), 1444 * the _real_ device handler is wrapped in a couple of 1445 * functions - a filter wrapper and an ithread wrapper. 1446 * In this case (and just in this case), the filter wrapper 1447 * could ask the system to schedule the ithread and mask 1448 * the interrupt source if the wrapped handler is composed 1449 * of just an ithread handler. 1450 * 1451 * TODO: write a generic wrapper to avoid people rolling 1452 * their own 1453 */ 1454 if (!thread) { 1455 if (ret == FILTER_SCHEDULE_THREAD) 1456 thread = 1; 1457 } 1458 } 1459 td->td_intr_frame = oldframe; 1460 1461 if (thread) { 1462 if (ie->ie_pre_ithread != NULL) 1463 ie->ie_pre_ithread(ie->ie_source); 1464 } else { 1465 if (ie->ie_post_filter != NULL) 1466 ie->ie_post_filter(ie->ie_source); 1467 } 1468 1469 /* Schedule the ithread if needed. */ 1470 if (thread) { 1471 error = intr_event_schedule_thread(ie); 1472 #ifndef XEN 1473 KASSERT(error == 0, ("bad stray interrupt")); 1474 #else 1475 if (error != 0) 1476 log(LOG_WARNING, "bad stray interrupt"); 1477 #endif 1478 } 1479 critical_exit(); 1480 td->td_intr_nesting_level--; 1481 return (0); 1482 } 1483 #else 1484 /* 1485 * This is the main code for interrupt threads. 1486 */ 1487 static void 1488 ithread_loop(void *arg) 1489 { 1490 struct intr_thread *ithd; 1491 struct intr_handler *ih; 1492 struct intr_event *ie; 1493 struct thread *td; 1494 struct proc *p; 1495 int priv; 1496 int wake; 1497 1498 td = curthread; 1499 p = td->td_proc; 1500 ih = (struct intr_handler *)arg; 1501 priv = (ih->ih_thread != NULL) ? 1 : 0; 1502 ithd = (priv) ? ih->ih_thread : ih->ih_event->ie_thread; 1503 KASSERT(ithd->it_thread == td, 1504 ("%s: ithread and proc linkage out of sync", __func__)); 1505 ie = ithd->it_event; 1506 ie->ie_count = 0; 1507 wake = 0; 1508 1509 /* 1510 * As long as we have interrupts outstanding, go through the 1511 * list of handlers, giving each one a go at it. 1512 */ 1513 for (;;) { 1514 /* 1515 * If we are an orphaned thread, then just die. 1516 */ 1517 if (ithd->it_flags & IT_DEAD) { 1518 CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__, 1519 p->p_pid, td->td_name); 1520 free(ithd, M_ITHREAD); 1521 kthread_exit(); 1522 } 1523 1524 /* 1525 * Service interrupts. If another interrupt arrives while 1526 * we are running, it will set it_need to note that we 1527 * should make another pass. 1528 */ 1529 while (ithd->it_need) { 1530 /* 1531 * This might need a full read and write barrier 1532 * to make sure that this write posts before any 1533 * of the memory or device accesses in the 1534 * handlers. 1535 */ 1536 atomic_store_rel_int(&ithd->it_need, 0); 1537 if (priv) 1538 priv_ithread_execute_handler(p, ih); 1539 else 1540 ithread_execute_handlers(p, ie); 1541 } 1542 WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread"); 1543 mtx_assert(&Giant, MA_NOTOWNED); 1544 1545 /* 1546 * Processed all our interrupts. Now get the sched 1547 * lock. This may take a while and it_need may get 1548 * set again, so we have to check it again. 1549 */ 1550 thread_lock(td); 1551 if (!ithd->it_need && !(ithd->it_flags & (IT_DEAD | IT_WAIT))) { 1552 TD_SET_IWAIT(td); 1553 ie->ie_count = 0; 1554 mi_switch(SW_VOL | SWT_IWAIT, NULL); 1555 } 1556 if (ithd->it_flags & IT_WAIT) { 1557 wake = 1; 1558 ithd->it_flags &= ~IT_WAIT; 1559 } 1560 thread_unlock(td); 1561 if (wake) { 1562 wakeup(ithd); 1563 wake = 0; 1564 } 1565 } 1566 } 1567 1568 /* 1569 * Main loop for interrupt filter. 1570 * 1571 * Some architectures (i386, amd64 and arm) require the optional frame 1572 * parameter, and use it as the main argument for fast handler execution 1573 * when ih_argument == NULL. 1574 * 1575 * Return value: 1576 * o FILTER_STRAY: No filter recognized the event, and no 1577 * filter-less handler is registered on this 1578 * line. 1579 * o FILTER_HANDLED: A filter claimed the event and served it. 1580 * o FILTER_SCHEDULE_THREAD: No filter claimed the event, but there's at 1581 * least one filter-less handler on this line. 1582 * o FILTER_HANDLED | 1583 * FILTER_SCHEDULE_THREAD: A filter claimed the event, and asked for 1584 * scheduling the per-handler ithread. 1585 * 1586 * In case an ithread has to be scheduled, in *ithd there will be a 1587 * pointer to a struct intr_thread containing the thread to be 1588 * scheduled. 1589 */ 1590 1591 static int 1592 intr_filter_loop(struct intr_event *ie, struct trapframe *frame, 1593 struct intr_thread **ithd) 1594 { 1595 struct intr_handler *ih; 1596 void *arg; 1597 int ret, thread_only; 1598 1599 ret = 0; 1600 thread_only = 0; 1601 TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) { 1602 /* 1603 * Execute fast interrupt handlers directly. 1604 * To support clock handlers, if a handler registers 1605 * with a NULL argument, then we pass it a pointer to 1606 * a trapframe as its argument. 1607 */ 1608 arg = ((ih->ih_argument == NULL) ? frame : ih->ih_argument); 1609 1610 CTR5(KTR_INTR, "%s: exec %p/%p(%p) for %s", __func__, 1611 ih->ih_filter, ih->ih_handler, arg, ih->ih_name); 1612 1613 if (ih->ih_filter != NULL) 1614 ret = ih->ih_filter(arg); 1615 else { 1616 thread_only = 1; 1617 continue; 1618 } 1619 KASSERT(ret == FILTER_STRAY || 1620 ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 && 1621 (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0), 1622 ("%s: incorrect return value %#x from %s", __func__, ret, 1623 ih->ih_name)); 1624 if (ret & FILTER_STRAY) 1625 continue; 1626 else { 1627 *ithd = ih->ih_thread; 1628 return (ret); 1629 } 1630 } 1631 1632 /* 1633 * No filters handled the interrupt and we have at least 1634 * one handler without a filter. In this case, we schedule 1635 * all of the filter-less handlers to run in the ithread. 1636 */ 1637 if (thread_only) { 1638 *ithd = ie->ie_thread; 1639 return (FILTER_SCHEDULE_THREAD); 1640 } 1641 return (FILTER_STRAY); 1642 } 1643 1644 /* 1645 * Main interrupt handling body. 1646 * 1647 * Input: 1648 * o ie: the event connected to this interrupt. 1649 * o frame: some archs (i.e. i386) pass a frame to some. 1650 * handlers as their main argument. 1651 * Return value: 1652 * o 0: everything ok. 1653 * o EINVAL: stray interrupt. 1654 */ 1655 int 1656 intr_event_handle(struct intr_event *ie, struct trapframe *frame) 1657 { 1658 struct intr_thread *ithd; 1659 struct trapframe *oldframe; 1660 struct thread *td; 1661 int thread; 1662 1663 ithd = NULL; 1664 td = curthread; 1665 1666 if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers)) 1667 return (EINVAL); 1668 1669 td->td_intr_nesting_level++; 1670 thread = 0; 1671 critical_enter(); 1672 oldframe = td->td_intr_frame; 1673 td->td_intr_frame = frame; 1674 thread = intr_filter_loop(ie, frame, &ithd); 1675 if (thread & FILTER_HANDLED) { 1676 if (ie->ie_post_filter != NULL) 1677 ie->ie_post_filter(ie->ie_source); 1678 } else { 1679 if (ie->ie_pre_ithread != NULL) 1680 ie->ie_pre_ithread(ie->ie_source); 1681 } 1682 td->td_intr_frame = oldframe; 1683 critical_exit(); 1684 1685 /* Interrupt storm logic */ 1686 if (thread & FILTER_STRAY) { 1687 ie->ie_count++; 1688 if (ie->ie_count < intr_storm_threshold) 1689 printf("Interrupt stray detection not present\n"); 1690 } 1691 1692 /* Schedule an ithread if needed. */ 1693 if (thread & FILTER_SCHEDULE_THREAD) { 1694 if (intr_event_schedule_thread(ie, ithd) != 0) 1695 panic("%s: impossible stray interrupt", __func__); 1696 } 1697 td->td_intr_nesting_level--; 1698 return (0); 1699 } 1700 #endif 1701 1702 #ifdef DDB 1703 /* 1704 * Dump details about an interrupt handler 1705 */ 1706 static void 1707 db_dump_intrhand(struct intr_handler *ih) 1708 { 1709 int comma; 1710 1711 db_printf("\t%-10s ", ih->ih_name); 1712 switch (ih->ih_pri) { 1713 case PI_REALTIME: 1714 db_printf("CLK "); 1715 break; 1716 case PI_AV: 1717 db_printf("AV "); 1718 break; 1719 case PI_TTY: 1720 db_printf("TTY "); 1721 break; 1722 case PI_NET: 1723 db_printf("NET "); 1724 break; 1725 case PI_DISK: 1726 db_printf("DISK"); 1727 break; 1728 case PI_DULL: 1729 db_printf("DULL"); 1730 break; 1731 default: 1732 if (ih->ih_pri >= PI_SOFT) 1733 db_printf("SWI "); 1734 else 1735 db_printf("%4u", ih->ih_pri); 1736 break; 1737 } 1738 db_printf(" "); 1739 db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC); 1740 db_printf("(%p)", ih->ih_argument); 1741 if (ih->ih_need || 1742 (ih->ih_flags & (IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD | 1743 IH_MPSAFE)) != 0) { 1744 db_printf(" {"); 1745 comma = 0; 1746 if (ih->ih_flags & IH_EXCLUSIVE) { 1747 if (comma) 1748 db_printf(", "); 1749 db_printf("EXCL"); 1750 comma = 1; 1751 } 1752 if (ih->ih_flags & IH_ENTROPY) { 1753 if (comma) 1754 db_printf(", "); 1755 db_printf("ENTROPY"); 1756 comma = 1; 1757 } 1758 if (ih->ih_flags & IH_DEAD) { 1759 if (comma) 1760 db_printf(", "); 1761 db_printf("DEAD"); 1762 comma = 1; 1763 } 1764 if (ih->ih_flags & IH_MPSAFE) { 1765 if (comma) 1766 db_printf(", "); 1767 db_printf("MPSAFE"); 1768 comma = 1; 1769 } 1770 if (ih->ih_need) { 1771 if (comma) 1772 db_printf(", "); 1773 db_printf("NEED"); 1774 } 1775 db_printf("}"); 1776 } 1777 db_printf("\n"); 1778 } 1779 1780 /* 1781 * Dump details about a event. 1782 */ 1783 void 1784 db_dump_intr_event(struct intr_event *ie, int handlers) 1785 { 1786 struct intr_handler *ih; 1787 struct intr_thread *it; 1788 int comma; 1789 1790 db_printf("%s ", ie->ie_fullname); 1791 it = ie->ie_thread; 1792 if (it != NULL) 1793 db_printf("(pid %d)", it->it_thread->td_proc->p_pid); 1794 else 1795 db_printf("(no thread)"); 1796 if ((ie->ie_flags & (IE_SOFT | IE_ENTROPY | IE_ADDING_THREAD)) != 0 || 1797 (it != NULL && it->it_need)) { 1798 db_printf(" {"); 1799 comma = 0; 1800 if (ie->ie_flags & IE_SOFT) { 1801 db_printf("SOFT"); 1802 comma = 1; 1803 } 1804 if (ie->ie_flags & IE_ENTROPY) { 1805 if (comma) 1806 db_printf(", "); 1807 db_printf("ENTROPY"); 1808 comma = 1; 1809 } 1810 if (ie->ie_flags & IE_ADDING_THREAD) { 1811 if (comma) 1812 db_printf(", "); 1813 db_printf("ADDING_THREAD"); 1814 comma = 1; 1815 } 1816 if (it != NULL && it->it_need) { 1817 if (comma) 1818 db_printf(", "); 1819 db_printf("NEED"); 1820 } 1821 db_printf("}"); 1822 } 1823 db_printf("\n"); 1824 1825 if (handlers) 1826 TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) 1827 db_dump_intrhand(ih); 1828 } 1829 1830 /* 1831 * Dump data about interrupt handlers 1832 */ 1833 DB_SHOW_COMMAND(intr, db_show_intr) 1834 { 1835 struct intr_event *ie; 1836 int all, verbose; 1837 1838 verbose = strchr(modif, 'v') != NULL; 1839 all = strchr(modif, 'a') != NULL; 1840 TAILQ_FOREACH(ie, &event_list, ie_list) { 1841 if (!all && TAILQ_EMPTY(&ie->ie_handlers)) 1842 continue; 1843 db_dump_intr_event(ie, verbose); 1844 if (db_pager_quit) 1845 break; 1846 } 1847 } 1848 #endif /* DDB */ 1849 1850 /* 1851 * Start standard software interrupt threads 1852 */ 1853 static void 1854 start_softintr(void *dummy) 1855 { 1856 1857 if (swi_add(NULL, "vm", swi_vm, NULL, SWI_VM, INTR_MPSAFE, &vm_ih)) 1858 panic("died while creating vm swi ithread"); 1859 } 1860 SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr, 1861 NULL); 1862 1863 /* 1864 * Sysctls used by systat and others: hw.intrnames and hw.intrcnt. 1865 * The data for this machine dependent, and the declarations are in machine 1866 * dependent code. The layout of intrnames and intrcnt however is machine 1867 * independent. 1868 * 1869 * We do not know the length of intrcnt and intrnames at compile time, so 1870 * calculate things at run time. 1871 */ 1872 static int 1873 sysctl_intrnames(SYSCTL_HANDLER_ARGS) 1874 { 1875 return (sysctl_handle_opaque(oidp, intrnames, sintrnames, req)); 1876 } 1877 1878 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD, 1879 NULL, 0, sysctl_intrnames, "", "Interrupt Names"); 1880 1881 static int 1882 sysctl_intrcnt(SYSCTL_HANDLER_ARGS) 1883 { 1884 #ifdef SCTL_MASK32 1885 uint32_t *intrcnt32; 1886 unsigned i; 1887 int error; 1888 1889 if (req->flags & SCTL_MASK32) { 1890 if (!req->oldptr) 1891 return (sysctl_handle_opaque(oidp, NULL, sintrcnt / 2, req)); 1892 intrcnt32 = malloc(sintrcnt / 2, M_TEMP, M_NOWAIT); 1893 if (intrcnt32 == NULL) 1894 return (ENOMEM); 1895 for (i = 0; i < sintrcnt / sizeof (u_long); i++) 1896 intrcnt32[i] = intrcnt[i]; 1897 error = sysctl_handle_opaque(oidp, intrcnt32, sintrcnt / 2, req); 1898 free(intrcnt32, M_TEMP); 1899 return (error); 1900 } 1901 #endif 1902 return (sysctl_handle_opaque(oidp, intrcnt, sintrcnt, req)); 1903 } 1904 1905 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD, 1906 NULL, 0, sysctl_intrcnt, "", "Interrupt Counts"); 1907 1908 #ifdef DDB 1909 /* 1910 * DDB command to dump the interrupt statistics. 1911 */ 1912 DB_SHOW_COMMAND(intrcnt, db_show_intrcnt) 1913 { 1914 u_long *i; 1915 char *cp; 1916 u_int j; 1917 1918 cp = intrnames; 1919 j = 0; 1920 for (i = intrcnt; j < (sintrcnt / sizeof(u_long)) && !db_pager_quit; 1921 i++, j++) { 1922 if (*cp == '\0') 1923 break; 1924 if (*i != 0) 1925 db_printf("%s\t%lu\n", cp, *i); 1926 cp += strlen(cp) + 1; 1927 } 1928 } 1929 #endif 1930