xref: /freebsd/sys/kern/kern_intr.c (revision 641a6cfb86023499caafe26a4d821a0b885cf00b)
1 /*-
2  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_ddb.h"
31 
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/cpuset.h>
36 #include <sys/rtprio.h>
37 #include <sys/systm.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/ktr.h>
42 #include <sys/limits.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/random.h>
49 #include <sys/resourcevar.h>
50 #include <sys/sched.h>
51 #include <sys/smp.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/unistd.h>
55 #include <sys/vmmeter.h>
56 #include <machine/atomic.h>
57 #include <machine/cpu.h>
58 #include <machine/md_var.h>
59 #include <machine/stdarg.h>
60 #ifdef DDB
61 #include <ddb/ddb.h>
62 #include <ddb/db_sym.h>
63 #endif
64 
65 /*
66  * Describe an interrupt thread.  There is one of these per interrupt event.
67  */
68 struct intr_thread {
69 	struct intr_event *it_event;
70 	struct thread *it_thread;	/* Kernel thread. */
71 	int	it_flags;		/* (j) IT_* flags. */
72 	int	it_need;		/* Needs service. */
73 };
74 
75 /* Interrupt thread flags kept in it_flags */
76 #define	IT_DEAD		0x000001	/* Thread is waiting to exit. */
77 #define	IT_WAIT		0x000002	/* Thread is waiting for completion. */
78 
79 struct	intr_entropy {
80 	struct	thread *td;
81 	uintptr_t event;
82 };
83 
84 struct	intr_event *clk_intr_event;
85 struct	intr_event *tty_intr_event;
86 void	*vm_ih;
87 struct proc *intrproc;
88 
89 static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads");
90 
91 static int intr_storm_threshold = 1000;
92 TUNABLE_INT("hw.intr_storm_threshold", &intr_storm_threshold);
93 SYSCTL_INT(_hw, OID_AUTO, intr_storm_threshold, CTLFLAG_RW,
94     &intr_storm_threshold, 0,
95     "Number of consecutive interrupts before storm protection is enabled");
96 static TAILQ_HEAD(, intr_event) event_list =
97     TAILQ_HEAD_INITIALIZER(event_list);
98 static struct mtx event_lock;
99 MTX_SYSINIT(intr_event_list, &event_lock, "intr event list", MTX_DEF);
100 
101 static void	intr_event_update(struct intr_event *ie);
102 #ifdef INTR_FILTER
103 static int	intr_event_schedule_thread(struct intr_event *ie,
104 		    struct intr_thread *ithd);
105 static int	intr_filter_loop(struct intr_event *ie,
106 		    struct trapframe *frame, struct intr_thread **ithd);
107 static struct intr_thread *ithread_create(const char *name,
108 			      struct intr_handler *ih);
109 #else
110 static int	intr_event_schedule_thread(struct intr_event *ie);
111 static struct intr_thread *ithread_create(const char *name);
112 #endif
113 static void	ithread_destroy(struct intr_thread *ithread);
114 static void	ithread_execute_handlers(struct proc *p,
115 		    struct intr_event *ie);
116 #ifdef INTR_FILTER
117 static void	priv_ithread_execute_handler(struct proc *p,
118 		    struct intr_handler *ih);
119 #endif
120 static void	ithread_loop(void *);
121 static void	ithread_update(struct intr_thread *ithd);
122 static void	start_softintr(void *);
123 
124 /* Map an interrupt type to an ithread priority. */
125 u_char
126 intr_priority(enum intr_type flags)
127 {
128 	u_char pri;
129 
130 	flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET |
131 	    INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV);
132 	switch (flags) {
133 	case INTR_TYPE_TTY:
134 		pri = PI_TTY;
135 		break;
136 	case INTR_TYPE_BIO:
137 		pri = PI_DISK;
138 		break;
139 	case INTR_TYPE_NET:
140 		pri = PI_NET;
141 		break;
142 	case INTR_TYPE_CAM:
143 		pri = PI_DISK;
144 		break;
145 	case INTR_TYPE_AV:
146 		pri = PI_AV;
147 		break;
148 	case INTR_TYPE_CLK:
149 		pri = PI_REALTIME;
150 		break;
151 	case INTR_TYPE_MISC:
152 		pri = PI_DULL;          /* don't care */
153 		break;
154 	default:
155 		/* We didn't specify an interrupt level. */
156 		panic("intr_priority: no interrupt type in flags");
157 	}
158 
159 	return pri;
160 }
161 
162 /*
163  * Update an ithread based on the associated intr_event.
164  */
165 static void
166 ithread_update(struct intr_thread *ithd)
167 {
168 	struct intr_event *ie;
169 	struct thread *td;
170 	u_char pri;
171 
172 	ie = ithd->it_event;
173 	td = ithd->it_thread;
174 
175 	/* Determine the overall priority of this event. */
176 	if (TAILQ_EMPTY(&ie->ie_handlers))
177 		pri = PRI_MAX_ITHD;
178 	else
179 		pri = TAILQ_FIRST(&ie->ie_handlers)->ih_pri;
180 
181 	/* Update name and priority. */
182 	strlcpy(td->td_name, ie->ie_fullname, sizeof(td->td_name));
183 #ifdef KTR
184 	sched_clear_tdname(td);
185 #endif
186 	thread_lock(td);
187 	sched_prio(td, pri);
188 	thread_unlock(td);
189 }
190 
191 /*
192  * Regenerate the full name of an interrupt event and update its priority.
193  */
194 static void
195 intr_event_update(struct intr_event *ie)
196 {
197 	struct intr_handler *ih;
198 	char *last;
199 	int missed, space;
200 
201 	/* Start off with no entropy and just the name of the event. */
202 	mtx_assert(&ie->ie_lock, MA_OWNED);
203 	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
204 	ie->ie_flags &= ~IE_ENTROPY;
205 	missed = 0;
206 	space = 1;
207 
208 	/* Run through all the handlers updating values. */
209 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
210 		if (strlen(ie->ie_fullname) + strlen(ih->ih_name) + 1 <
211 		    sizeof(ie->ie_fullname)) {
212 			strcat(ie->ie_fullname, " ");
213 			strcat(ie->ie_fullname, ih->ih_name);
214 			space = 0;
215 		} else
216 			missed++;
217 		if (ih->ih_flags & IH_ENTROPY)
218 			ie->ie_flags |= IE_ENTROPY;
219 	}
220 
221 	/*
222 	 * If the handler names were too long, add +'s to indicate missing
223 	 * names. If we run out of room and still have +'s to add, change
224 	 * the last character from a + to a *.
225 	 */
226 	last = &ie->ie_fullname[sizeof(ie->ie_fullname) - 2];
227 	while (missed-- > 0) {
228 		if (strlen(ie->ie_fullname) + 1 == sizeof(ie->ie_fullname)) {
229 			if (*last == '+') {
230 				*last = '*';
231 				break;
232 			} else
233 				*last = '+';
234 		} else if (space) {
235 			strcat(ie->ie_fullname, " +");
236 			space = 0;
237 		} else
238 			strcat(ie->ie_fullname, "+");
239 	}
240 
241 	/*
242 	 * If this event has an ithread, update it's priority and
243 	 * name.
244 	 */
245 	if (ie->ie_thread != NULL)
246 		ithread_update(ie->ie_thread);
247 	CTR2(KTR_INTR, "%s: updated %s", __func__, ie->ie_fullname);
248 }
249 
250 int
251 intr_event_create(struct intr_event **event, void *source, int flags, int irq,
252     void (*pre_ithread)(void *), void (*post_ithread)(void *),
253     void (*post_filter)(void *), int (*assign_cpu)(void *, u_char),
254     const char *fmt, ...)
255 {
256 	struct intr_event *ie;
257 	va_list ap;
258 
259 	/* The only valid flag during creation is IE_SOFT. */
260 	if ((flags & ~IE_SOFT) != 0)
261 		return (EINVAL);
262 	ie = malloc(sizeof(struct intr_event), M_ITHREAD, M_WAITOK | M_ZERO);
263 	ie->ie_source = source;
264 	ie->ie_pre_ithread = pre_ithread;
265 	ie->ie_post_ithread = post_ithread;
266 	ie->ie_post_filter = post_filter;
267 	ie->ie_assign_cpu = assign_cpu;
268 	ie->ie_flags = flags;
269 	ie->ie_irq = irq;
270 	ie->ie_cpu = NOCPU;
271 	TAILQ_INIT(&ie->ie_handlers);
272 	mtx_init(&ie->ie_lock, "intr event", NULL, MTX_DEF);
273 
274 	va_start(ap, fmt);
275 	vsnprintf(ie->ie_name, sizeof(ie->ie_name), fmt, ap);
276 	va_end(ap);
277 	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
278 	mtx_lock(&event_lock);
279 	TAILQ_INSERT_TAIL(&event_list, ie, ie_list);
280 	mtx_unlock(&event_lock);
281 	if (event != NULL)
282 		*event = ie;
283 	CTR2(KTR_INTR, "%s: created %s", __func__, ie->ie_name);
284 	return (0);
285 }
286 
287 /*
288  * Bind an interrupt event to the specified CPU.  Note that not all
289  * platforms support binding an interrupt to a CPU.  For those
290  * platforms this request will fail.  For supported platforms, any
291  * associated ithreads as well as the primary interrupt context will
292  * be bound to the specificed CPU.  Using a cpu id of NOCPU unbinds
293  * the interrupt event.
294  */
295 int
296 intr_event_bind(struct intr_event *ie, u_char cpu)
297 {
298 	cpuset_t mask;
299 	lwpid_t id;
300 	int error;
301 
302 	/* Need a CPU to bind to. */
303 	if (cpu != NOCPU && CPU_ABSENT(cpu))
304 		return (EINVAL);
305 
306 	if (ie->ie_assign_cpu == NULL)
307 		return (EOPNOTSUPP);
308 
309 	error = priv_check(curthread, PRIV_SCHED_CPUSET_INTR);
310 	if (error)
311 		return (error);
312 
313 	/*
314 	 * If we have any ithreads try to set their mask first to verify
315 	 * permissions, etc.
316 	 */
317 	mtx_lock(&ie->ie_lock);
318 	if (ie->ie_thread != NULL) {
319 		CPU_ZERO(&mask);
320 		if (cpu == NOCPU)
321 			CPU_COPY(cpuset_root, &mask);
322 		else
323 			CPU_SET(cpu, &mask);
324 		id = ie->ie_thread->it_thread->td_tid;
325 		mtx_unlock(&ie->ie_lock);
326 		error = cpuset_setthread(id, &mask);
327 		if (error)
328 			return (error);
329 	} else
330 		mtx_unlock(&ie->ie_lock);
331 	error = ie->ie_assign_cpu(ie->ie_source, cpu);
332 	if (error) {
333 		mtx_lock(&ie->ie_lock);
334 		if (ie->ie_thread != NULL) {
335 			CPU_ZERO(&mask);
336 			if (ie->ie_cpu == NOCPU)
337 				CPU_COPY(cpuset_root, &mask);
338 			else
339 				CPU_SET(cpu, &mask);
340 			id = ie->ie_thread->it_thread->td_tid;
341 			mtx_unlock(&ie->ie_lock);
342 			(void)cpuset_setthread(id, &mask);
343 		} else
344 			mtx_unlock(&ie->ie_lock);
345 		return (error);
346 	}
347 
348 	mtx_lock(&ie->ie_lock);
349 	ie->ie_cpu = cpu;
350 	mtx_unlock(&ie->ie_lock);
351 
352 	return (error);
353 }
354 
355 static struct intr_event *
356 intr_lookup(int irq)
357 {
358 	struct intr_event *ie;
359 
360 	mtx_lock(&event_lock);
361 	TAILQ_FOREACH(ie, &event_list, ie_list)
362 		if (ie->ie_irq == irq &&
363 		    (ie->ie_flags & IE_SOFT) == 0 &&
364 		    TAILQ_FIRST(&ie->ie_handlers) != NULL)
365 			break;
366 	mtx_unlock(&event_lock);
367 	return (ie);
368 }
369 
370 int
371 intr_setaffinity(int irq, void *m)
372 {
373 	struct intr_event *ie;
374 	cpuset_t *mask;
375 	u_char cpu;
376 	int n;
377 
378 	mask = m;
379 	cpu = NOCPU;
380 	/*
381 	 * If we're setting all cpus we can unbind.  Otherwise make sure
382 	 * only one cpu is in the set.
383 	 */
384 	if (CPU_CMP(cpuset_root, mask)) {
385 		for (n = 0; n < CPU_SETSIZE; n++) {
386 			if (!CPU_ISSET(n, mask))
387 				continue;
388 			if (cpu != NOCPU)
389 				return (EINVAL);
390 			cpu = (u_char)n;
391 		}
392 	}
393 	ie = intr_lookup(irq);
394 	if (ie == NULL)
395 		return (ESRCH);
396 	return (intr_event_bind(ie, cpu));
397 }
398 
399 int
400 intr_getaffinity(int irq, void *m)
401 {
402 	struct intr_event *ie;
403 	cpuset_t *mask;
404 
405 	mask = m;
406 	ie = intr_lookup(irq);
407 	if (ie == NULL)
408 		return (ESRCH);
409 	CPU_ZERO(mask);
410 	mtx_lock(&ie->ie_lock);
411 	if (ie->ie_cpu == NOCPU)
412 		CPU_COPY(cpuset_root, mask);
413 	else
414 		CPU_SET(ie->ie_cpu, mask);
415 	mtx_unlock(&ie->ie_lock);
416 	return (0);
417 }
418 
419 int
420 intr_event_destroy(struct intr_event *ie)
421 {
422 
423 	mtx_lock(&event_lock);
424 	mtx_lock(&ie->ie_lock);
425 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
426 		mtx_unlock(&ie->ie_lock);
427 		mtx_unlock(&event_lock);
428 		return (EBUSY);
429 	}
430 	TAILQ_REMOVE(&event_list, ie, ie_list);
431 #ifndef notyet
432 	if (ie->ie_thread != NULL) {
433 		ithread_destroy(ie->ie_thread);
434 		ie->ie_thread = NULL;
435 	}
436 #endif
437 	mtx_unlock(&ie->ie_lock);
438 	mtx_unlock(&event_lock);
439 	mtx_destroy(&ie->ie_lock);
440 	free(ie, M_ITHREAD);
441 	return (0);
442 }
443 
444 #ifndef INTR_FILTER
445 static struct intr_thread *
446 ithread_create(const char *name)
447 {
448 	struct intr_thread *ithd;
449 	struct thread *td;
450 	int error;
451 
452 	ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
453 
454 	error = kproc_kthread_add(ithread_loop, ithd, &intrproc,
455 		    &td, RFSTOPPED | RFHIGHPID,
456 	    	    0, "intr", "%s", name);
457 	if (error)
458 		panic("kproc_create() failed with %d", error);
459 	thread_lock(td);
460 	sched_class(td, PRI_ITHD);
461 	TD_SET_IWAIT(td);
462 	thread_unlock(td);
463 	td->td_pflags |= TDP_ITHREAD;
464 	ithd->it_thread = td;
465 	CTR2(KTR_INTR, "%s: created %s", __func__, name);
466 	return (ithd);
467 }
468 #else
469 static struct intr_thread *
470 ithread_create(const char *name, struct intr_handler *ih)
471 {
472 	struct intr_thread *ithd;
473 	struct thread *td;
474 	int error;
475 
476 	ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
477 
478 	error = kproc_kthread_add(ithread_loop, ih, &intrproc,
479 		    &td, RFSTOPPED | RFHIGHPID,
480 	    	    0, "intr", "%s", name);
481 	if (error)
482 		panic("kproc_create() failed with %d", error);
483 	thread_lock(td);
484 	sched_class(td, PRI_ITHD);
485 	TD_SET_IWAIT(td);
486 	thread_unlock(td);
487 	td->td_pflags |= TDP_ITHREAD;
488 	ithd->it_thread = td;
489 	CTR2(KTR_INTR, "%s: created %s", __func__, name);
490 	return (ithd);
491 }
492 #endif
493 
494 static void
495 ithread_destroy(struct intr_thread *ithread)
496 {
497 	struct thread *td;
498 
499 	CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_event->ie_name);
500 	td = ithread->it_thread;
501 	thread_lock(td);
502 	ithread->it_flags |= IT_DEAD;
503 	if (TD_AWAITING_INTR(td)) {
504 		TD_CLR_IWAIT(td);
505 		sched_add(td, SRQ_INTR);
506 	}
507 	thread_unlock(td);
508 }
509 
510 #ifndef INTR_FILTER
511 int
512 intr_event_add_handler(struct intr_event *ie, const char *name,
513     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
514     enum intr_type flags, void **cookiep)
515 {
516 	struct intr_handler *ih, *temp_ih;
517 	struct intr_thread *it;
518 
519 	if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
520 		return (EINVAL);
521 
522 	/* Allocate and populate an interrupt handler structure. */
523 	ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
524 	ih->ih_filter = filter;
525 	ih->ih_handler = handler;
526 	ih->ih_argument = arg;
527 	strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
528 	ih->ih_event = ie;
529 	ih->ih_pri = pri;
530 	if (flags & INTR_EXCL)
531 		ih->ih_flags = IH_EXCLUSIVE;
532 	if (flags & INTR_MPSAFE)
533 		ih->ih_flags |= IH_MPSAFE;
534 	if (flags & INTR_ENTROPY)
535 		ih->ih_flags |= IH_ENTROPY;
536 
537 	/* We can only have one exclusive handler in a event. */
538 	mtx_lock(&ie->ie_lock);
539 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
540 		if ((flags & INTR_EXCL) ||
541 		    (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
542 			mtx_unlock(&ie->ie_lock);
543 			free(ih, M_ITHREAD);
544 			return (EINVAL);
545 		}
546 	}
547 
548 	/* Add the new handler to the event in priority order. */
549 	TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
550 		if (temp_ih->ih_pri > ih->ih_pri)
551 			break;
552 	}
553 	if (temp_ih == NULL)
554 		TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
555 	else
556 		TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
557 	intr_event_update(ie);
558 
559 	/* Create a thread if we need one. */
560 	while (ie->ie_thread == NULL && handler != NULL) {
561 		if (ie->ie_flags & IE_ADDING_THREAD)
562 			msleep(ie, &ie->ie_lock, 0, "ithread", 0);
563 		else {
564 			ie->ie_flags |= IE_ADDING_THREAD;
565 			mtx_unlock(&ie->ie_lock);
566 			it = ithread_create("intr: newborn");
567 			mtx_lock(&ie->ie_lock);
568 			ie->ie_flags &= ~IE_ADDING_THREAD;
569 			ie->ie_thread = it;
570 			it->it_event = ie;
571 			ithread_update(it);
572 			wakeup(ie);
573 		}
574 	}
575 	CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
576 	    ie->ie_name);
577 	mtx_unlock(&ie->ie_lock);
578 
579 	if (cookiep != NULL)
580 		*cookiep = ih;
581 	return (0);
582 }
583 #else
584 int
585 intr_event_add_handler(struct intr_event *ie, const char *name,
586     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
587     enum intr_type flags, void **cookiep)
588 {
589 	struct intr_handler *ih, *temp_ih;
590 	struct intr_thread *it;
591 
592 	if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
593 		return (EINVAL);
594 
595 	/* Allocate and populate an interrupt handler structure. */
596 	ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
597 	ih->ih_filter = filter;
598 	ih->ih_handler = handler;
599 	ih->ih_argument = arg;
600 	strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
601 	ih->ih_event = ie;
602 	ih->ih_pri = pri;
603 	if (flags & INTR_EXCL)
604 		ih->ih_flags = IH_EXCLUSIVE;
605 	if (flags & INTR_MPSAFE)
606 		ih->ih_flags |= IH_MPSAFE;
607 	if (flags & INTR_ENTROPY)
608 		ih->ih_flags |= IH_ENTROPY;
609 
610 	/* We can only have one exclusive handler in a event. */
611 	mtx_lock(&ie->ie_lock);
612 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
613 		if ((flags & INTR_EXCL) ||
614 		    (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
615 			mtx_unlock(&ie->ie_lock);
616 			free(ih, M_ITHREAD);
617 			return (EINVAL);
618 		}
619 	}
620 
621 	/* Add the new handler to the event in priority order. */
622 	TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
623 		if (temp_ih->ih_pri > ih->ih_pri)
624 			break;
625 	}
626 	if (temp_ih == NULL)
627 		TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
628 	else
629 		TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
630 	intr_event_update(ie);
631 
632 	/* For filtered handlers, create a private ithread to run on. */
633 	if (filter != NULL && handler != NULL) {
634 		mtx_unlock(&ie->ie_lock);
635 		it = ithread_create("intr: newborn", ih);
636 		mtx_lock(&ie->ie_lock);
637 		it->it_event = ie;
638 		ih->ih_thread = it;
639 		ithread_update(it); /* XXX - do we really need this?!?!? */
640 	} else { /* Create the global per-event thread if we need one. */
641 		while (ie->ie_thread == NULL && handler != NULL) {
642 			if (ie->ie_flags & IE_ADDING_THREAD)
643 				msleep(ie, &ie->ie_lock, 0, "ithread", 0);
644 			else {
645 				ie->ie_flags |= IE_ADDING_THREAD;
646 				mtx_unlock(&ie->ie_lock);
647 				it = ithread_create("intr: newborn", ih);
648 				mtx_lock(&ie->ie_lock);
649 				ie->ie_flags &= ~IE_ADDING_THREAD;
650 				ie->ie_thread = it;
651 				it->it_event = ie;
652 				ithread_update(it);
653 				wakeup(ie);
654 			}
655 		}
656 	}
657 	CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
658 	    ie->ie_name);
659 	mtx_unlock(&ie->ie_lock);
660 
661 	if (cookiep != NULL)
662 		*cookiep = ih;
663 	return (0);
664 }
665 #endif
666 
667 /*
668  * Append a description preceded by a ':' to the name of the specified
669  * interrupt handler.
670  */
671 int
672 intr_event_describe_handler(struct intr_event *ie, void *cookie,
673     const char *descr)
674 {
675 	struct intr_handler *ih;
676 	size_t space;
677 	char *start;
678 
679 	mtx_lock(&ie->ie_lock);
680 #ifdef INVARIANTS
681 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
682 		if (ih == cookie)
683 			break;
684 	}
685 	if (ih == NULL) {
686 		mtx_unlock(&ie->ie_lock);
687 		panic("handler %p not found in interrupt event %p", cookie, ie);
688 	}
689 #endif
690 	ih = cookie;
691 
692 	/*
693 	 * Look for an existing description by checking for an
694 	 * existing ":".  This assumes device names do not include
695 	 * colons.  If one is found, prepare to insert the new
696 	 * description at that point.  If one is not found, find the
697 	 * end of the name to use as the insertion point.
698 	 */
699 	start = strchr(ih->ih_name, ':');
700 	if (start == NULL)
701 		start = strchr(ih->ih_name, 0);
702 
703 	/*
704 	 * See if there is enough remaining room in the string for the
705 	 * description + ":".  The "- 1" leaves room for the trailing
706 	 * '\0'.  The "+ 1" accounts for the colon.
707 	 */
708 	space = sizeof(ih->ih_name) - (start - ih->ih_name) - 1;
709 	if (strlen(descr) + 1 > space) {
710 		mtx_unlock(&ie->ie_lock);
711 		return (ENOSPC);
712 	}
713 
714 	/* Append a colon followed by the description. */
715 	*start = ':';
716 	strcpy(start + 1, descr);
717 	intr_event_update(ie);
718 	mtx_unlock(&ie->ie_lock);
719 	return (0);
720 }
721 
722 /*
723  * Return the ie_source field from the intr_event an intr_handler is
724  * associated with.
725  */
726 void *
727 intr_handler_source(void *cookie)
728 {
729 	struct intr_handler *ih;
730 	struct intr_event *ie;
731 
732 	ih = (struct intr_handler *)cookie;
733 	if (ih == NULL)
734 		return (NULL);
735 	ie = ih->ih_event;
736 	KASSERT(ie != NULL,
737 	    ("interrupt handler \"%s\" has a NULL interrupt event",
738 	    ih->ih_name));
739 	return (ie->ie_source);
740 }
741 
742 /*
743  * Sleep until an ithread finishes executing an interrupt handler.
744  *
745  * XXX Doesn't currently handle interrupt filters or fast interrupt
746  * handlers.  This is intended for compatibility with linux drivers
747  * only.  Do not use in BSD code.
748  */
749 void
750 _intr_drain(int irq)
751 {
752 	struct intr_event *ie;
753 	struct intr_thread *ithd;
754 	struct thread *td;
755 
756 	ie = intr_lookup(irq);
757 	if (ie == NULL)
758 		return;
759 	if (ie->ie_thread == NULL)
760 		return;
761 	ithd = ie->ie_thread;
762 	td = ithd->it_thread;
763 	/*
764 	 * We set the flag and wait for it to be cleared to avoid
765 	 * long delays with potentially busy interrupt handlers
766 	 * were we to only sample TD_AWAITING_INTR() every tick.
767 	 */
768 	thread_lock(td);
769 	if (!TD_AWAITING_INTR(td)) {
770 		ithd->it_flags |= IT_WAIT;
771 		while (ithd->it_flags & IT_WAIT) {
772 			thread_unlock(td);
773 			pause("idrain", 1);
774 			thread_lock(td);
775 		}
776 	}
777 	thread_unlock(td);
778 	return;
779 }
780 
781 
782 #ifndef INTR_FILTER
783 int
784 intr_event_remove_handler(void *cookie)
785 {
786 	struct intr_handler *handler = (struct intr_handler *)cookie;
787 	struct intr_event *ie;
788 #ifdef INVARIANTS
789 	struct intr_handler *ih;
790 #endif
791 #ifdef notyet
792 	int dead;
793 #endif
794 
795 	if (handler == NULL)
796 		return (EINVAL);
797 	ie = handler->ih_event;
798 	KASSERT(ie != NULL,
799 	    ("interrupt handler \"%s\" has a NULL interrupt event",
800 	    handler->ih_name));
801 	mtx_lock(&ie->ie_lock);
802 	CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
803 	    ie->ie_name);
804 #ifdef INVARIANTS
805 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
806 		if (ih == handler)
807 			goto ok;
808 	mtx_unlock(&ie->ie_lock);
809 	panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
810 	    ih->ih_name, ie->ie_name);
811 ok:
812 #endif
813 	/*
814 	 * If there is no ithread, then just remove the handler and return.
815 	 * XXX: Note that an INTR_FAST handler might be running on another
816 	 * CPU!
817 	 */
818 	if (ie->ie_thread == NULL) {
819 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
820 		mtx_unlock(&ie->ie_lock);
821 		free(handler, M_ITHREAD);
822 		return (0);
823 	}
824 
825 	/*
826 	 * If the interrupt thread is already running, then just mark this
827 	 * handler as being dead and let the ithread do the actual removal.
828 	 *
829 	 * During a cold boot while cold is set, msleep() does not sleep,
830 	 * so we have to remove the handler here rather than letting the
831 	 * thread do it.
832 	 */
833 	thread_lock(ie->ie_thread->it_thread);
834 	if (!TD_AWAITING_INTR(ie->ie_thread->it_thread) && !cold) {
835 		handler->ih_flags |= IH_DEAD;
836 
837 		/*
838 		 * Ensure that the thread will process the handler list
839 		 * again and remove this handler if it has already passed
840 		 * it on the list.
841 		 */
842 		ie->ie_thread->it_need = 1;
843 	} else
844 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
845 	thread_unlock(ie->ie_thread->it_thread);
846 	while (handler->ih_flags & IH_DEAD)
847 		msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
848 	intr_event_update(ie);
849 #ifdef notyet
850 	/*
851 	 * XXX: This could be bad in the case of ppbus(8).  Also, I think
852 	 * this could lead to races of stale data when servicing an
853 	 * interrupt.
854 	 */
855 	dead = 1;
856 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
857 		if (!(ih->ih_flags & IH_FAST)) {
858 			dead = 0;
859 			break;
860 		}
861 	}
862 	if (dead) {
863 		ithread_destroy(ie->ie_thread);
864 		ie->ie_thread = NULL;
865 	}
866 #endif
867 	mtx_unlock(&ie->ie_lock);
868 	free(handler, M_ITHREAD);
869 	return (0);
870 }
871 
872 static int
873 intr_event_schedule_thread(struct intr_event *ie)
874 {
875 	struct intr_entropy entropy;
876 	struct intr_thread *it;
877 	struct thread *td;
878 	struct thread *ctd;
879 	struct proc *p;
880 
881 	/*
882 	 * If no ithread or no handlers, then we have a stray interrupt.
883 	 */
884 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) ||
885 	    ie->ie_thread == NULL)
886 		return (EINVAL);
887 
888 	ctd = curthread;
889 	it = ie->ie_thread;
890 	td = it->it_thread;
891 	p = td->td_proc;
892 
893 	/*
894 	 * If any of the handlers for this ithread claim to be good
895 	 * sources of entropy, then gather some.
896 	 */
897 	if (harvest.interrupt && ie->ie_flags & IE_ENTROPY) {
898 		CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", __func__,
899 		    p->p_pid, td->td_name);
900 		entropy.event = (uintptr_t)ie;
901 		entropy.td = ctd;
902 		random_harvest(&entropy, sizeof(entropy), 2, 0,
903 		    RANDOM_INTERRUPT);
904 	}
905 
906 	KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
907 
908 	/*
909 	 * Set it_need to tell the thread to keep running if it is already
910 	 * running.  Then, lock the thread and see if we actually need to
911 	 * put it on the runqueue.
912 	 */
913 	it->it_need = 1;
914 	thread_lock(td);
915 	if (TD_AWAITING_INTR(td)) {
916 		CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
917 		    td->td_name);
918 		TD_CLR_IWAIT(td);
919 		sched_add(td, SRQ_INTR);
920 	} else {
921 		CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
922 		    __func__, p->p_pid, td->td_name, it->it_need, td->td_state);
923 	}
924 	thread_unlock(td);
925 
926 	return (0);
927 }
928 #else
929 int
930 intr_event_remove_handler(void *cookie)
931 {
932 	struct intr_handler *handler = (struct intr_handler *)cookie;
933 	struct intr_event *ie;
934 	struct intr_thread *it;
935 #ifdef INVARIANTS
936 	struct intr_handler *ih;
937 #endif
938 #ifdef notyet
939 	int dead;
940 #endif
941 
942 	if (handler == NULL)
943 		return (EINVAL);
944 	ie = handler->ih_event;
945 	KASSERT(ie != NULL,
946 	    ("interrupt handler \"%s\" has a NULL interrupt event",
947 	    handler->ih_name));
948 	mtx_lock(&ie->ie_lock);
949 	CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
950 	    ie->ie_name);
951 #ifdef INVARIANTS
952 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
953 		if (ih == handler)
954 			goto ok;
955 	mtx_unlock(&ie->ie_lock);
956 	panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
957 	    ih->ih_name, ie->ie_name);
958 ok:
959 #endif
960 	/*
961 	 * If there are no ithreads (per event and per handler), then
962 	 * just remove the handler and return.
963 	 * XXX: Note that an INTR_FAST handler might be running on another CPU!
964 	 */
965 	if (ie->ie_thread == NULL && handler->ih_thread == NULL) {
966 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
967 		mtx_unlock(&ie->ie_lock);
968 		free(handler, M_ITHREAD);
969 		return (0);
970 	}
971 
972 	/* Private or global ithread? */
973 	it = (handler->ih_thread) ? handler->ih_thread : ie->ie_thread;
974 	/*
975 	 * If the interrupt thread is already running, then just mark this
976 	 * handler as being dead and let the ithread do the actual removal.
977 	 *
978 	 * During a cold boot while cold is set, msleep() does not sleep,
979 	 * so we have to remove the handler here rather than letting the
980 	 * thread do it.
981 	 */
982 	thread_lock(it->it_thread);
983 	if (!TD_AWAITING_INTR(it->it_thread) && !cold) {
984 		handler->ih_flags |= IH_DEAD;
985 
986 		/*
987 		 * Ensure that the thread will process the handler list
988 		 * again and remove this handler if it has already passed
989 		 * it on the list.
990 		 */
991 		it->it_need = 1;
992 	} else
993 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
994 	thread_unlock(it->it_thread);
995 	while (handler->ih_flags & IH_DEAD)
996 		msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
997 	/*
998 	 * At this point, the handler has been disconnected from the event,
999 	 * so we can kill the private ithread if any.
1000 	 */
1001 	if (handler->ih_thread) {
1002 		ithread_destroy(handler->ih_thread);
1003 		handler->ih_thread = NULL;
1004 	}
1005 	intr_event_update(ie);
1006 #ifdef notyet
1007 	/*
1008 	 * XXX: This could be bad in the case of ppbus(8).  Also, I think
1009 	 * this could lead to races of stale data when servicing an
1010 	 * interrupt.
1011 	 */
1012 	dead = 1;
1013 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1014 		if (handler != NULL) {
1015 			dead = 0;
1016 			break;
1017 		}
1018 	}
1019 	if (dead) {
1020 		ithread_destroy(ie->ie_thread);
1021 		ie->ie_thread = NULL;
1022 	}
1023 #endif
1024 	mtx_unlock(&ie->ie_lock);
1025 	free(handler, M_ITHREAD);
1026 	return (0);
1027 }
1028 
1029 static int
1030 intr_event_schedule_thread(struct intr_event *ie, struct intr_thread *it)
1031 {
1032 	struct intr_entropy entropy;
1033 	struct thread *td;
1034 	struct thread *ctd;
1035 	struct proc *p;
1036 
1037 	/*
1038 	 * If no ithread or no handlers, then we have a stray interrupt.
1039 	 */
1040 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) || it == NULL)
1041 		return (EINVAL);
1042 
1043 	ctd = curthread;
1044 	td = it->it_thread;
1045 	p = td->td_proc;
1046 
1047 	/*
1048 	 * If any of the handlers for this ithread claim to be good
1049 	 * sources of entropy, then gather some.
1050 	 */
1051 	if (harvest.interrupt && ie->ie_flags & IE_ENTROPY) {
1052 		CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", __func__,
1053 		    p->p_pid, td->td_name);
1054 		entropy.event = (uintptr_t)ie;
1055 		entropy.td = ctd;
1056 		random_harvest(&entropy, sizeof(entropy), 2, 0,
1057 		    RANDOM_INTERRUPT);
1058 	}
1059 
1060 	KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
1061 
1062 	/*
1063 	 * Set it_need to tell the thread to keep running if it is already
1064 	 * running.  Then, lock the thread and see if we actually need to
1065 	 * put it on the runqueue.
1066 	 */
1067 	it->it_need = 1;
1068 	thread_lock(td);
1069 	if (TD_AWAITING_INTR(td)) {
1070 		CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
1071 		    td->td_name);
1072 		TD_CLR_IWAIT(td);
1073 		sched_add(td, SRQ_INTR);
1074 	} else {
1075 		CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
1076 		    __func__, p->p_pid, td->td_name, it->it_need, td->td_state);
1077 	}
1078 	thread_unlock(td);
1079 
1080 	return (0);
1081 }
1082 #endif
1083 
1084 /*
1085  * Allow interrupt event binding for software interrupt handlers -- a no-op,
1086  * since interrupts are generated in software rather than being directed by
1087  * a PIC.
1088  */
1089 static int
1090 swi_assign_cpu(void *arg, u_char cpu)
1091 {
1092 
1093 	return (0);
1094 }
1095 
1096 /*
1097  * Add a software interrupt handler to a specified event.  If a given event
1098  * is not specified, then a new event is created.
1099  */
1100 int
1101 swi_add(struct intr_event **eventp, const char *name, driver_intr_t handler,
1102 	    void *arg, int pri, enum intr_type flags, void **cookiep)
1103 {
1104 	struct thread *td;
1105 	struct intr_event *ie;
1106 	int error;
1107 
1108 	if (flags & INTR_ENTROPY)
1109 		return (EINVAL);
1110 
1111 	ie = (eventp != NULL) ? *eventp : NULL;
1112 
1113 	if (ie != NULL) {
1114 		if (!(ie->ie_flags & IE_SOFT))
1115 			return (EINVAL);
1116 	} else {
1117 		error = intr_event_create(&ie, NULL, IE_SOFT, 0,
1118 		    NULL, NULL, NULL, swi_assign_cpu, "swi%d:", pri);
1119 		if (error)
1120 			return (error);
1121 		if (eventp != NULL)
1122 			*eventp = ie;
1123 	}
1124 	error = intr_event_add_handler(ie, name, NULL, handler, arg,
1125 	    PI_SWI(pri), flags, cookiep);
1126 	if (error)
1127 		return (error);
1128 	if (pri == SWI_CLOCK) {
1129 		td = ie->ie_thread->it_thread;
1130 		thread_lock(td);
1131 		td->td_flags |= TDF_NOLOAD;
1132 		thread_unlock(td);
1133 	}
1134 	return (0);
1135 }
1136 
1137 /*
1138  * Schedule a software interrupt thread.
1139  */
1140 void
1141 swi_sched(void *cookie, int flags)
1142 {
1143 	struct intr_handler *ih = (struct intr_handler *)cookie;
1144 	struct intr_event *ie = ih->ih_event;
1145 	int error;
1146 
1147 	CTR3(KTR_INTR, "swi_sched: %s %s need=%d", ie->ie_name, ih->ih_name,
1148 	    ih->ih_need);
1149 
1150 	/*
1151 	 * Set ih_need for this handler so that if the ithread is already
1152 	 * running it will execute this handler on the next pass.  Otherwise,
1153 	 * it will execute it the next time it runs.
1154 	 */
1155 	atomic_store_rel_int(&ih->ih_need, 1);
1156 
1157 	if (!(flags & SWI_DELAY)) {
1158 		PCPU_INC(cnt.v_soft);
1159 #ifdef INTR_FILTER
1160 		error = intr_event_schedule_thread(ie, ie->ie_thread);
1161 #else
1162 		error = intr_event_schedule_thread(ie);
1163 #endif
1164 		KASSERT(error == 0, ("stray software interrupt"));
1165 	}
1166 }
1167 
1168 /*
1169  * Remove a software interrupt handler.  Currently this code does not
1170  * remove the associated interrupt event if it becomes empty.  Calling code
1171  * may do so manually via intr_event_destroy(), but that's not really
1172  * an optimal interface.
1173  */
1174 int
1175 swi_remove(void *cookie)
1176 {
1177 
1178 	return (intr_event_remove_handler(cookie));
1179 }
1180 
1181 #ifdef INTR_FILTER
1182 static void
1183 priv_ithread_execute_handler(struct proc *p, struct intr_handler *ih)
1184 {
1185 	struct intr_event *ie;
1186 
1187 	ie = ih->ih_event;
1188 	/*
1189 	 * If this handler is marked for death, remove it from
1190 	 * the list of handlers and wake up the sleeper.
1191 	 */
1192 	if (ih->ih_flags & IH_DEAD) {
1193 		mtx_lock(&ie->ie_lock);
1194 		TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
1195 		ih->ih_flags &= ~IH_DEAD;
1196 		wakeup(ih);
1197 		mtx_unlock(&ie->ie_lock);
1198 		return;
1199 	}
1200 
1201 	/* Execute this handler. */
1202 	CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
1203 	     __func__, p->p_pid, (void *)ih->ih_handler, ih->ih_argument,
1204 	     ih->ih_name, ih->ih_flags);
1205 
1206 	if (!(ih->ih_flags & IH_MPSAFE))
1207 		mtx_lock(&Giant);
1208 	ih->ih_handler(ih->ih_argument);
1209 	if (!(ih->ih_flags & IH_MPSAFE))
1210 		mtx_unlock(&Giant);
1211 }
1212 #endif
1213 
1214 /*
1215  * This is a public function for use by drivers that mux interrupt
1216  * handlers for child devices from their interrupt handler.
1217  */
1218 void
1219 intr_event_execute_handlers(struct proc *p, struct intr_event *ie)
1220 {
1221 	struct intr_handler *ih, *ihn;
1222 
1223 	TAILQ_FOREACH_SAFE(ih, &ie->ie_handlers, ih_next, ihn) {
1224 		/*
1225 		 * If this handler is marked for death, remove it from
1226 		 * the list of handlers and wake up the sleeper.
1227 		 */
1228 		if (ih->ih_flags & IH_DEAD) {
1229 			mtx_lock(&ie->ie_lock);
1230 			TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
1231 			ih->ih_flags &= ~IH_DEAD;
1232 			wakeup(ih);
1233 			mtx_unlock(&ie->ie_lock);
1234 			continue;
1235 		}
1236 
1237 		/* Skip filter only handlers */
1238 		if (ih->ih_handler == NULL)
1239 			continue;
1240 
1241 		/*
1242 		 * For software interrupt threads, we only execute
1243 		 * handlers that have their need flag set.  Hardware
1244 		 * interrupt threads always invoke all of their handlers.
1245 		 */
1246 		if (ie->ie_flags & IE_SOFT) {
1247 			if (!ih->ih_need)
1248 				continue;
1249 			else
1250 				atomic_store_rel_int(&ih->ih_need, 0);
1251 		}
1252 
1253 		/* Execute this handler. */
1254 		CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
1255 		    __func__, p->p_pid, (void *)ih->ih_handler,
1256 		    ih->ih_argument, ih->ih_name, ih->ih_flags);
1257 
1258 		if (!(ih->ih_flags & IH_MPSAFE))
1259 			mtx_lock(&Giant);
1260 		ih->ih_handler(ih->ih_argument);
1261 		if (!(ih->ih_flags & IH_MPSAFE))
1262 			mtx_unlock(&Giant);
1263 	}
1264 }
1265 
1266 static void
1267 ithread_execute_handlers(struct proc *p, struct intr_event *ie)
1268 {
1269 
1270 	/* Interrupt handlers should not sleep. */
1271 	if (!(ie->ie_flags & IE_SOFT))
1272 		THREAD_NO_SLEEPING();
1273 	intr_event_execute_handlers(p, ie);
1274 	if (!(ie->ie_flags & IE_SOFT))
1275 		THREAD_SLEEPING_OK();
1276 
1277 	/*
1278 	 * Interrupt storm handling:
1279 	 *
1280 	 * If this interrupt source is currently storming, then throttle
1281 	 * it to only fire the handler once  per clock tick.
1282 	 *
1283 	 * If this interrupt source is not currently storming, but the
1284 	 * number of back to back interrupts exceeds the storm threshold,
1285 	 * then enter storming mode.
1286 	 */
1287 	if (intr_storm_threshold != 0 && ie->ie_count >= intr_storm_threshold &&
1288 	    !(ie->ie_flags & IE_SOFT)) {
1289 		/* Report the message only once every second. */
1290 		if (ppsratecheck(&ie->ie_warntm, &ie->ie_warncnt, 1)) {
1291 			printf(
1292 	"interrupt storm detected on \"%s\"; throttling interrupt source\n",
1293 			    ie->ie_name);
1294 		}
1295 		pause("istorm", 1);
1296 	} else
1297 		ie->ie_count++;
1298 
1299 	/*
1300 	 * Now that all the handlers have had a chance to run, reenable
1301 	 * the interrupt source.
1302 	 */
1303 	if (ie->ie_post_ithread != NULL)
1304 		ie->ie_post_ithread(ie->ie_source);
1305 }
1306 
1307 #ifndef INTR_FILTER
1308 /*
1309  * This is the main code for interrupt threads.
1310  */
1311 static void
1312 ithread_loop(void *arg)
1313 {
1314 	struct intr_thread *ithd;
1315 	struct intr_event *ie;
1316 	struct thread *td;
1317 	struct proc *p;
1318 	int wake;
1319 
1320 	td = curthread;
1321 	p = td->td_proc;
1322 	ithd = (struct intr_thread *)arg;
1323 	KASSERT(ithd->it_thread == td,
1324 	    ("%s: ithread and proc linkage out of sync", __func__));
1325 	ie = ithd->it_event;
1326 	ie->ie_count = 0;
1327 	wake = 0;
1328 
1329 	/*
1330 	 * As long as we have interrupts outstanding, go through the
1331 	 * list of handlers, giving each one a go at it.
1332 	 */
1333 	for (;;) {
1334 		/*
1335 		 * If we are an orphaned thread, then just die.
1336 		 */
1337 		if (ithd->it_flags & IT_DEAD) {
1338 			CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
1339 			    p->p_pid, td->td_name);
1340 			free(ithd, M_ITHREAD);
1341 			kthread_exit();
1342 		}
1343 
1344 		/*
1345 		 * Service interrupts.  If another interrupt arrives while
1346 		 * we are running, it will set it_need to note that we
1347 		 * should make another pass.
1348 		 */
1349 		while (ithd->it_need) {
1350 			/*
1351 			 * This might need a full read and write barrier
1352 			 * to make sure that this write posts before any
1353 			 * of the memory or device accesses in the
1354 			 * handlers.
1355 			 */
1356 			atomic_store_rel_int(&ithd->it_need, 0);
1357 			ithread_execute_handlers(p, ie);
1358 		}
1359 		WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
1360 		mtx_assert(&Giant, MA_NOTOWNED);
1361 
1362 		/*
1363 		 * Processed all our interrupts.  Now get the sched
1364 		 * lock.  This may take a while and it_need may get
1365 		 * set again, so we have to check it again.
1366 		 */
1367 		thread_lock(td);
1368 		if (!ithd->it_need && !(ithd->it_flags & (IT_DEAD | IT_WAIT))) {
1369 			TD_SET_IWAIT(td);
1370 			ie->ie_count = 0;
1371 			mi_switch(SW_VOL | SWT_IWAIT, NULL);
1372 		}
1373 		if (ithd->it_flags & IT_WAIT) {
1374 			wake = 1;
1375 			ithd->it_flags &= ~IT_WAIT;
1376 		}
1377 		thread_unlock(td);
1378 		if (wake) {
1379 			wakeup(ithd);
1380 			wake = 0;
1381 		}
1382 	}
1383 }
1384 
1385 /*
1386  * Main interrupt handling body.
1387  *
1388  * Input:
1389  * o ie:                        the event connected to this interrupt.
1390  * o frame:                     some archs (i.e. i386) pass a frame to some.
1391  *                              handlers as their main argument.
1392  * Return value:
1393  * o 0:                         everything ok.
1394  * o EINVAL:                    stray interrupt.
1395  */
1396 int
1397 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
1398 {
1399 	struct intr_handler *ih;
1400 	struct trapframe *oldframe;
1401 	struct thread *td;
1402 	int error, ret, thread;
1403 
1404 	td = curthread;
1405 
1406 	/* An interrupt with no event or handlers is a stray interrupt. */
1407 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
1408 		return (EINVAL);
1409 
1410 	/*
1411 	 * Execute fast interrupt handlers directly.
1412 	 * To support clock handlers, if a handler registers
1413 	 * with a NULL argument, then we pass it a pointer to
1414 	 * a trapframe as its argument.
1415 	 */
1416 	td->td_intr_nesting_level++;
1417 	thread = 0;
1418 	ret = 0;
1419 	critical_enter();
1420 	oldframe = td->td_intr_frame;
1421 	td->td_intr_frame = frame;
1422 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1423 		if (ih->ih_filter == NULL) {
1424 			thread = 1;
1425 			continue;
1426 		}
1427 		CTR4(KTR_INTR, "%s: exec %p(%p) for %s", __func__,
1428 		    ih->ih_filter, ih->ih_argument == NULL ? frame :
1429 		    ih->ih_argument, ih->ih_name);
1430 		if (ih->ih_argument == NULL)
1431 			ret = ih->ih_filter(frame);
1432 		else
1433 			ret = ih->ih_filter(ih->ih_argument);
1434 		KASSERT(ret == FILTER_STRAY ||
1435 		    ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 &&
1436 		    (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0),
1437 		    ("%s: incorrect return value %#x from %s", __func__, ret,
1438 		    ih->ih_name));
1439 
1440 		/*
1441 		 * Wrapper handler special handling:
1442 		 *
1443 		 * in some particular cases (like pccard and pccbb),
1444 		 * the _real_ device handler is wrapped in a couple of
1445 		 * functions - a filter wrapper and an ithread wrapper.
1446 		 * In this case (and just in this case), the filter wrapper
1447 		 * could ask the system to schedule the ithread and mask
1448 		 * the interrupt source if the wrapped handler is composed
1449 		 * of just an ithread handler.
1450 		 *
1451 		 * TODO: write a generic wrapper to avoid people rolling
1452 		 * their own
1453 		 */
1454 		if (!thread) {
1455 			if (ret == FILTER_SCHEDULE_THREAD)
1456 				thread = 1;
1457 		}
1458 	}
1459 	td->td_intr_frame = oldframe;
1460 
1461 	if (thread) {
1462 		if (ie->ie_pre_ithread != NULL)
1463 			ie->ie_pre_ithread(ie->ie_source);
1464 	} else {
1465 		if (ie->ie_post_filter != NULL)
1466 			ie->ie_post_filter(ie->ie_source);
1467 	}
1468 
1469 	/* Schedule the ithread if needed. */
1470 	if (thread) {
1471 		error = intr_event_schedule_thread(ie);
1472 #ifndef XEN
1473 		KASSERT(error == 0, ("bad stray interrupt"));
1474 #else
1475 		if (error != 0)
1476 			log(LOG_WARNING, "bad stray interrupt");
1477 #endif
1478 	}
1479 	critical_exit();
1480 	td->td_intr_nesting_level--;
1481 	return (0);
1482 }
1483 #else
1484 /*
1485  * This is the main code for interrupt threads.
1486  */
1487 static void
1488 ithread_loop(void *arg)
1489 {
1490 	struct intr_thread *ithd;
1491 	struct intr_handler *ih;
1492 	struct intr_event *ie;
1493 	struct thread *td;
1494 	struct proc *p;
1495 	int priv;
1496 	int wake;
1497 
1498 	td = curthread;
1499 	p = td->td_proc;
1500 	ih = (struct intr_handler *)arg;
1501 	priv = (ih->ih_thread != NULL) ? 1 : 0;
1502 	ithd = (priv) ? ih->ih_thread : ih->ih_event->ie_thread;
1503 	KASSERT(ithd->it_thread == td,
1504 	    ("%s: ithread and proc linkage out of sync", __func__));
1505 	ie = ithd->it_event;
1506 	ie->ie_count = 0;
1507 	wake = 0;
1508 
1509 	/*
1510 	 * As long as we have interrupts outstanding, go through the
1511 	 * list of handlers, giving each one a go at it.
1512 	 */
1513 	for (;;) {
1514 		/*
1515 		 * If we are an orphaned thread, then just die.
1516 		 */
1517 		if (ithd->it_flags & IT_DEAD) {
1518 			CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
1519 			    p->p_pid, td->td_name);
1520 			free(ithd, M_ITHREAD);
1521 			kthread_exit();
1522 		}
1523 
1524 		/*
1525 		 * Service interrupts.  If another interrupt arrives while
1526 		 * we are running, it will set it_need to note that we
1527 		 * should make another pass.
1528 		 */
1529 		while (ithd->it_need) {
1530 			/*
1531 			 * This might need a full read and write barrier
1532 			 * to make sure that this write posts before any
1533 			 * of the memory or device accesses in the
1534 			 * handlers.
1535 			 */
1536 			atomic_store_rel_int(&ithd->it_need, 0);
1537 			if (priv)
1538 				priv_ithread_execute_handler(p, ih);
1539 			else
1540 				ithread_execute_handlers(p, ie);
1541 		}
1542 		WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
1543 		mtx_assert(&Giant, MA_NOTOWNED);
1544 
1545 		/*
1546 		 * Processed all our interrupts.  Now get the sched
1547 		 * lock.  This may take a while and it_need may get
1548 		 * set again, so we have to check it again.
1549 		 */
1550 		thread_lock(td);
1551 		if (!ithd->it_need && !(ithd->it_flags & (IT_DEAD | IT_WAIT))) {
1552 			TD_SET_IWAIT(td);
1553 			ie->ie_count = 0;
1554 			mi_switch(SW_VOL | SWT_IWAIT, NULL);
1555 		}
1556 		if (ithd->it_flags & IT_WAIT) {
1557 			wake = 1;
1558 			ithd->it_flags &= ~IT_WAIT;
1559 		}
1560 		thread_unlock(td);
1561 		if (wake) {
1562 			wakeup(ithd);
1563 			wake = 0;
1564 		}
1565 	}
1566 }
1567 
1568 /*
1569  * Main loop for interrupt filter.
1570  *
1571  * Some architectures (i386, amd64 and arm) require the optional frame
1572  * parameter, and use it as the main argument for fast handler execution
1573  * when ih_argument == NULL.
1574  *
1575  * Return value:
1576  * o FILTER_STRAY:              No filter recognized the event, and no
1577  *                              filter-less handler is registered on this
1578  *                              line.
1579  * o FILTER_HANDLED:            A filter claimed the event and served it.
1580  * o FILTER_SCHEDULE_THREAD:    No filter claimed the event, but there's at
1581  *                              least one filter-less handler on this line.
1582  * o FILTER_HANDLED |
1583  *   FILTER_SCHEDULE_THREAD:    A filter claimed the event, and asked for
1584  *                              scheduling the per-handler ithread.
1585  *
1586  * In case an ithread has to be scheduled, in *ithd there will be a
1587  * pointer to a struct intr_thread containing the thread to be
1588  * scheduled.
1589  */
1590 
1591 static int
1592 intr_filter_loop(struct intr_event *ie, struct trapframe *frame,
1593 		 struct intr_thread **ithd)
1594 {
1595 	struct intr_handler *ih;
1596 	void *arg;
1597 	int ret, thread_only;
1598 
1599 	ret = 0;
1600 	thread_only = 0;
1601 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1602 		/*
1603 		 * Execute fast interrupt handlers directly.
1604 		 * To support clock handlers, if a handler registers
1605 		 * with a NULL argument, then we pass it a pointer to
1606 		 * a trapframe as its argument.
1607 		 */
1608 		arg = ((ih->ih_argument == NULL) ? frame : ih->ih_argument);
1609 
1610 		CTR5(KTR_INTR, "%s: exec %p/%p(%p) for %s", __func__,
1611 		     ih->ih_filter, ih->ih_handler, arg, ih->ih_name);
1612 
1613 		if (ih->ih_filter != NULL)
1614 			ret = ih->ih_filter(arg);
1615 		else {
1616 			thread_only = 1;
1617 			continue;
1618 		}
1619 		KASSERT(ret == FILTER_STRAY ||
1620 		    ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 &&
1621 		    (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0),
1622 		    ("%s: incorrect return value %#x from %s", __func__, ret,
1623 		    ih->ih_name));
1624 		if (ret & FILTER_STRAY)
1625 			continue;
1626 		else {
1627 			*ithd = ih->ih_thread;
1628 			return (ret);
1629 		}
1630 	}
1631 
1632 	/*
1633 	 * No filters handled the interrupt and we have at least
1634 	 * one handler without a filter.  In this case, we schedule
1635 	 * all of the filter-less handlers to run in the ithread.
1636 	 */
1637 	if (thread_only) {
1638 		*ithd = ie->ie_thread;
1639 		return (FILTER_SCHEDULE_THREAD);
1640 	}
1641 	return (FILTER_STRAY);
1642 }
1643 
1644 /*
1645  * Main interrupt handling body.
1646  *
1647  * Input:
1648  * o ie:                        the event connected to this interrupt.
1649  * o frame:                     some archs (i.e. i386) pass a frame to some.
1650  *                              handlers as their main argument.
1651  * Return value:
1652  * o 0:                         everything ok.
1653  * o EINVAL:                    stray interrupt.
1654  */
1655 int
1656 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
1657 {
1658 	struct intr_thread *ithd;
1659 	struct trapframe *oldframe;
1660 	struct thread *td;
1661 	int thread;
1662 
1663 	ithd = NULL;
1664 	td = curthread;
1665 
1666 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
1667 		return (EINVAL);
1668 
1669 	td->td_intr_nesting_level++;
1670 	thread = 0;
1671 	critical_enter();
1672 	oldframe = td->td_intr_frame;
1673 	td->td_intr_frame = frame;
1674 	thread = intr_filter_loop(ie, frame, &ithd);
1675 	if (thread & FILTER_HANDLED) {
1676 		if (ie->ie_post_filter != NULL)
1677 			ie->ie_post_filter(ie->ie_source);
1678 	} else {
1679 		if (ie->ie_pre_ithread != NULL)
1680 			ie->ie_pre_ithread(ie->ie_source);
1681 	}
1682 	td->td_intr_frame = oldframe;
1683 	critical_exit();
1684 
1685 	/* Interrupt storm logic */
1686 	if (thread & FILTER_STRAY) {
1687 		ie->ie_count++;
1688 		if (ie->ie_count < intr_storm_threshold)
1689 			printf("Interrupt stray detection not present\n");
1690 	}
1691 
1692 	/* Schedule an ithread if needed. */
1693 	if (thread & FILTER_SCHEDULE_THREAD) {
1694 		if (intr_event_schedule_thread(ie, ithd) != 0)
1695 			panic("%s: impossible stray interrupt", __func__);
1696 	}
1697 	td->td_intr_nesting_level--;
1698 	return (0);
1699 }
1700 #endif
1701 
1702 #ifdef DDB
1703 /*
1704  * Dump details about an interrupt handler
1705  */
1706 static void
1707 db_dump_intrhand(struct intr_handler *ih)
1708 {
1709 	int comma;
1710 
1711 	db_printf("\t%-10s ", ih->ih_name);
1712 	switch (ih->ih_pri) {
1713 	case PI_REALTIME:
1714 		db_printf("CLK ");
1715 		break;
1716 	case PI_AV:
1717 		db_printf("AV  ");
1718 		break;
1719 	case PI_TTY:
1720 		db_printf("TTY ");
1721 		break;
1722 	case PI_NET:
1723 		db_printf("NET ");
1724 		break;
1725 	case PI_DISK:
1726 		db_printf("DISK");
1727 		break;
1728 	case PI_DULL:
1729 		db_printf("DULL");
1730 		break;
1731 	default:
1732 		if (ih->ih_pri >= PI_SOFT)
1733 			db_printf("SWI ");
1734 		else
1735 			db_printf("%4u", ih->ih_pri);
1736 		break;
1737 	}
1738 	db_printf(" ");
1739 	db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC);
1740 	db_printf("(%p)", ih->ih_argument);
1741 	if (ih->ih_need ||
1742 	    (ih->ih_flags & (IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD |
1743 	    IH_MPSAFE)) != 0) {
1744 		db_printf(" {");
1745 		comma = 0;
1746 		if (ih->ih_flags & IH_EXCLUSIVE) {
1747 			if (comma)
1748 				db_printf(", ");
1749 			db_printf("EXCL");
1750 			comma = 1;
1751 		}
1752 		if (ih->ih_flags & IH_ENTROPY) {
1753 			if (comma)
1754 				db_printf(", ");
1755 			db_printf("ENTROPY");
1756 			comma = 1;
1757 		}
1758 		if (ih->ih_flags & IH_DEAD) {
1759 			if (comma)
1760 				db_printf(", ");
1761 			db_printf("DEAD");
1762 			comma = 1;
1763 		}
1764 		if (ih->ih_flags & IH_MPSAFE) {
1765 			if (comma)
1766 				db_printf(", ");
1767 			db_printf("MPSAFE");
1768 			comma = 1;
1769 		}
1770 		if (ih->ih_need) {
1771 			if (comma)
1772 				db_printf(", ");
1773 			db_printf("NEED");
1774 		}
1775 		db_printf("}");
1776 	}
1777 	db_printf("\n");
1778 }
1779 
1780 /*
1781  * Dump details about a event.
1782  */
1783 void
1784 db_dump_intr_event(struct intr_event *ie, int handlers)
1785 {
1786 	struct intr_handler *ih;
1787 	struct intr_thread *it;
1788 	int comma;
1789 
1790 	db_printf("%s ", ie->ie_fullname);
1791 	it = ie->ie_thread;
1792 	if (it != NULL)
1793 		db_printf("(pid %d)", it->it_thread->td_proc->p_pid);
1794 	else
1795 		db_printf("(no thread)");
1796 	if ((ie->ie_flags & (IE_SOFT | IE_ENTROPY | IE_ADDING_THREAD)) != 0 ||
1797 	    (it != NULL && it->it_need)) {
1798 		db_printf(" {");
1799 		comma = 0;
1800 		if (ie->ie_flags & IE_SOFT) {
1801 			db_printf("SOFT");
1802 			comma = 1;
1803 		}
1804 		if (ie->ie_flags & IE_ENTROPY) {
1805 			if (comma)
1806 				db_printf(", ");
1807 			db_printf("ENTROPY");
1808 			comma = 1;
1809 		}
1810 		if (ie->ie_flags & IE_ADDING_THREAD) {
1811 			if (comma)
1812 				db_printf(", ");
1813 			db_printf("ADDING_THREAD");
1814 			comma = 1;
1815 		}
1816 		if (it != NULL && it->it_need) {
1817 			if (comma)
1818 				db_printf(", ");
1819 			db_printf("NEED");
1820 		}
1821 		db_printf("}");
1822 	}
1823 	db_printf("\n");
1824 
1825 	if (handlers)
1826 		TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
1827 		    db_dump_intrhand(ih);
1828 }
1829 
1830 /*
1831  * Dump data about interrupt handlers
1832  */
1833 DB_SHOW_COMMAND(intr, db_show_intr)
1834 {
1835 	struct intr_event *ie;
1836 	int all, verbose;
1837 
1838 	verbose = strchr(modif, 'v') != NULL;
1839 	all = strchr(modif, 'a') != NULL;
1840 	TAILQ_FOREACH(ie, &event_list, ie_list) {
1841 		if (!all && TAILQ_EMPTY(&ie->ie_handlers))
1842 			continue;
1843 		db_dump_intr_event(ie, verbose);
1844 		if (db_pager_quit)
1845 			break;
1846 	}
1847 }
1848 #endif /* DDB */
1849 
1850 /*
1851  * Start standard software interrupt threads
1852  */
1853 static void
1854 start_softintr(void *dummy)
1855 {
1856 
1857 	if (swi_add(NULL, "vm", swi_vm, NULL, SWI_VM, INTR_MPSAFE, &vm_ih))
1858 		panic("died while creating vm swi ithread");
1859 }
1860 SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr,
1861     NULL);
1862 
1863 /*
1864  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1865  * The data for this machine dependent, and the declarations are in machine
1866  * dependent code.  The layout of intrnames and intrcnt however is machine
1867  * independent.
1868  *
1869  * We do not know the length of intrcnt and intrnames at compile time, so
1870  * calculate things at run time.
1871  */
1872 static int
1873 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1874 {
1875 	return (sysctl_handle_opaque(oidp, intrnames, sintrnames, req));
1876 }
1877 
1878 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1879     NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1880 
1881 static int
1882 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1883 {
1884 #ifdef SCTL_MASK32
1885 	uint32_t *intrcnt32;
1886 	unsigned i;
1887 	int error;
1888 
1889 	if (req->flags & SCTL_MASK32) {
1890 		if (!req->oldptr)
1891 			return (sysctl_handle_opaque(oidp, NULL, sintrcnt / 2, req));
1892 		intrcnt32 = malloc(sintrcnt / 2, M_TEMP, M_NOWAIT);
1893 		if (intrcnt32 == NULL)
1894 			return (ENOMEM);
1895 		for (i = 0; i < sintrcnt / sizeof (u_long); i++)
1896 			intrcnt32[i] = intrcnt[i];
1897 		error = sysctl_handle_opaque(oidp, intrcnt32, sintrcnt / 2, req);
1898 		free(intrcnt32, M_TEMP);
1899 		return (error);
1900 	}
1901 #endif
1902 	return (sysctl_handle_opaque(oidp, intrcnt, sintrcnt, req));
1903 }
1904 
1905 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1906     NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
1907 
1908 #ifdef DDB
1909 /*
1910  * DDB command to dump the interrupt statistics.
1911  */
1912 DB_SHOW_COMMAND(intrcnt, db_show_intrcnt)
1913 {
1914 	u_long *i;
1915 	char *cp;
1916 	u_int j;
1917 
1918 	cp = intrnames;
1919 	j = 0;
1920 	for (i = intrcnt; j < (sintrcnt / sizeof(u_long)) && !db_pager_quit;
1921 	    i++, j++) {
1922 		if (*cp == '\0')
1923 			break;
1924 		if (*i != 0)
1925 			db_printf("%s\t%lu\n", cp, *i);
1926 		cp += strlen(cp) + 1;
1927 	}
1928 }
1929 #endif
1930