xref: /freebsd/sys/kern/kern_intr.c (revision 195ebc7e9e4b129de810833791a19dfb4349d6a9)
1 /*-
2  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_ddb.h"
31 
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/cpuset.h>
36 #include <sys/rtprio.h>
37 #include <sys/systm.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/ktr.h>
42 #include <sys/limits.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/proc.h>
47 #include <sys/random.h>
48 #include <sys/resourcevar.h>
49 #include <sys/sched.h>
50 #include <sys/smp.h>
51 #include <sys/sysctl.h>
52 #include <sys/syslog.h>
53 #include <sys/unistd.h>
54 #include <sys/vmmeter.h>
55 #include <machine/atomic.h>
56 #include <machine/cpu.h>
57 #include <machine/md_var.h>
58 #include <machine/stdarg.h>
59 #ifdef DDB
60 #include <ddb/ddb.h>
61 #include <ddb/db_sym.h>
62 #endif
63 
64 /*
65  * Describe an interrupt thread.  There is one of these per interrupt event.
66  */
67 struct intr_thread {
68 	struct intr_event *it_event;
69 	struct thread *it_thread;	/* Kernel thread. */
70 	int	it_flags;		/* (j) IT_* flags. */
71 	int	it_need;		/* Needs service. */
72 };
73 
74 /* Interrupt thread flags kept in it_flags */
75 #define	IT_DEAD		0x000001	/* Thread is waiting to exit. */
76 
77 struct	intr_entropy {
78 	struct	thread *td;
79 	uintptr_t event;
80 };
81 
82 struct	intr_event *clk_intr_event;
83 struct	intr_event *tty_intr_event;
84 void	*vm_ih;
85 struct proc *intrproc;
86 
87 static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads");
88 
89 static int intr_storm_threshold = 1000;
90 TUNABLE_INT("hw.intr_storm_threshold", &intr_storm_threshold);
91 SYSCTL_INT(_hw, OID_AUTO, intr_storm_threshold, CTLFLAG_RW,
92     &intr_storm_threshold, 0,
93     "Number of consecutive interrupts before storm protection is enabled");
94 static TAILQ_HEAD(, intr_event) event_list =
95     TAILQ_HEAD_INITIALIZER(event_list);
96 static struct mtx event_lock;
97 MTX_SYSINIT(intr_event_list, &event_lock, "intr event list", MTX_DEF);
98 
99 static void	intr_event_update(struct intr_event *ie);
100 #ifdef INTR_FILTER
101 static int	intr_event_schedule_thread(struct intr_event *ie,
102 		    struct intr_thread *ithd);
103 static int	intr_filter_loop(struct intr_event *ie,
104 		    struct trapframe *frame, struct intr_thread **ithd);
105 static struct intr_thread *ithread_create(const char *name,
106 			      struct intr_handler *ih);
107 #else
108 static int	intr_event_schedule_thread(struct intr_event *ie);
109 static struct intr_thread *ithread_create(const char *name);
110 #endif
111 static void	ithread_destroy(struct intr_thread *ithread);
112 static void	ithread_execute_handlers(struct proc *p,
113 		    struct intr_event *ie);
114 #ifdef INTR_FILTER
115 static void	priv_ithread_execute_handler(struct proc *p,
116 		    struct intr_handler *ih);
117 #endif
118 static void	ithread_loop(void *);
119 static void	ithread_update(struct intr_thread *ithd);
120 static void	start_softintr(void *);
121 
122 /* Map an interrupt type to an ithread priority. */
123 u_char
124 intr_priority(enum intr_type flags)
125 {
126 	u_char pri;
127 
128 	flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET |
129 	    INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV);
130 	switch (flags) {
131 	case INTR_TYPE_TTY:
132 		pri = PI_TTYLOW;
133 		break;
134 	case INTR_TYPE_BIO:
135 		/*
136 		 * XXX We need to refine this.  BSD/OS distinguishes
137 		 * between tape and disk priorities.
138 		 */
139 		pri = PI_DISK;
140 		break;
141 	case INTR_TYPE_NET:
142 		pri = PI_NET;
143 		break;
144 	case INTR_TYPE_CAM:
145 		pri = PI_DISK;          /* XXX or PI_CAM? */
146 		break;
147 	case INTR_TYPE_AV:		/* Audio/video */
148 		pri = PI_AV;
149 		break;
150 	case INTR_TYPE_CLK:
151 		pri = PI_REALTIME;
152 		break;
153 	case INTR_TYPE_MISC:
154 		pri = PI_DULL;          /* don't care */
155 		break;
156 	default:
157 		/* We didn't specify an interrupt level. */
158 		panic("intr_priority: no interrupt type in flags");
159 	}
160 
161 	return pri;
162 }
163 
164 /*
165  * Update an ithread based on the associated intr_event.
166  */
167 static void
168 ithread_update(struct intr_thread *ithd)
169 {
170 	struct intr_event *ie;
171 	struct thread *td;
172 	u_char pri;
173 
174 	ie = ithd->it_event;
175 	td = ithd->it_thread;
176 
177 	/* Determine the overall priority of this event. */
178 	if (TAILQ_EMPTY(&ie->ie_handlers))
179 		pri = PRI_MAX_ITHD;
180 	else
181 		pri = TAILQ_FIRST(&ie->ie_handlers)->ih_pri;
182 
183 	/* Update name and priority. */
184 	strlcpy(td->td_name, ie->ie_fullname, sizeof(td->td_name));
185 	thread_lock(td);
186 	sched_prio(td, pri);
187 	thread_unlock(td);
188 }
189 
190 /*
191  * Regenerate the full name of an interrupt event and update its priority.
192  */
193 static void
194 intr_event_update(struct intr_event *ie)
195 {
196 	struct intr_handler *ih;
197 	char *last;
198 	int missed, space;
199 
200 	/* Start off with no entropy and just the name of the event. */
201 	mtx_assert(&ie->ie_lock, MA_OWNED);
202 	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
203 	ie->ie_flags &= ~IE_ENTROPY;
204 	missed = 0;
205 	space = 1;
206 
207 	/* Run through all the handlers updating values. */
208 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
209 		if (strlen(ie->ie_fullname) + strlen(ih->ih_name) + 1 <
210 		    sizeof(ie->ie_fullname)) {
211 			strcat(ie->ie_fullname, " ");
212 			strcat(ie->ie_fullname, ih->ih_name);
213 			space = 0;
214 		} else
215 			missed++;
216 		if (ih->ih_flags & IH_ENTROPY)
217 			ie->ie_flags |= IE_ENTROPY;
218 	}
219 
220 	/*
221 	 * If the handler names were too long, add +'s to indicate missing
222 	 * names. If we run out of room and still have +'s to add, change
223 	 * the last character from a + to a *.
224 	 */
225 	last = &ie->ie_fullname[sizeof(ie->ie_fullname) - 2];
226 	while (missed-- > 0) {
227 		if (strlen(ie->ie_fullname) + 1 == sizeof(ie->ie_fullname)) {
228 			if (*last == '+') {
229 				*last = '*';
230 				break;
231 			} else
232 				*last = '+';
233 		} else if (space) {
234 			strcat(ie->ie_fullname, " +");
235 			space = 0;
236 		} else
237 			strcat(ie->ie_fullname, "+");
238 	}
239 
240 	/*
241 	 * If this event has an ithread, update it's priority and
242 	 * name.
243 	 */
244 	if (ie->ie_thread != NULL)
245 		ithread_update(ie->ie_thread);
246 	CTR2(KTR_INTR, "%s: updated %s", __func__, ie->ie_fullname);
247 }
248 
249 int
250 intr_event_create(struct intr_event **event, void *source, int flags, int irq,
251     void (*pre_ithread)(void *), void (*post_ithread)(void *),
252     void (*post_filter)(void *), int (*assign_cpu)(void *, u_char),
253     const char *fmt, ...)
254 {
255 	struct intr_event *ie;
256 	va_list ap;
257 
258 	/* The only valid flag during creation is IE_SOFT. */
259 	if ((flags & ~IE_SOFT) != 0)
260 		return (EINVAL);
261 	ie = malloc(sizeof(struct intr_event), M_ITHREAD, M_WAITOK | M_ZERO);
262 	ie->ie_source = source;
263 	ie->ie_pre_ithread = pre_ithread;
264 	ie->ie_post_ithread = post_ithread;
265 	ie->ie_post_filter = post_filter;
266 	ie->ie_assign_cpu = assign_cpu;
267 	ie->ie_flags = flags;
268 	ie->ie_irq = irq;
269 	ie->ie_cpu = NOCPU;
270 	TAILQ_INIT(&ie->ie_handlers);
271 	mtx_init(&ie->ie_lock, "intr event", NULL, MTX_DEF);
272 
273 	va_start(ap, fmt);
274 	vsnprintf(ie->ie_name, sizeof(ie->ie_name), fmt, ap);
275 	va_end(ap);
276 	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
277 	mtx_lock(&event_lock);
278 	TAILQ_INSERT_TAIL(&event_list, ie, ie_list);
279 	mtx_unlock(&event_lock);
280 	if (event != NULL)
281 		*event = ie;
282 	CTR2(KTR_INTR, "%s: created %s", __func__, ie->ie_name);
283 	return (0);
284 }
285 
286 /*
287  * Bind an interrupt event to the specified CPU.  Note that not all
288  * platforms support binding an interrupt to a CPU.  For those
289  * platforms this request will fail.  For supported platforms, any
290  * associated ithreads as well as the primary interrupt context will
291  * be bound to the specificed CPU.  Using a cpu id of NOCPU unbinds
292  * the interrupt event.
293  */
294 int
295 intr_event_bind(struct intr_event *ie, u_char cpu)
296 {
297 	cpuset_t mask;
298 	lwpid_t id;
299 	int error;
300 
301 	/* Need a CPU to bind to. */
302 	if (cpu != NOCPU && CPU_ABSENT(cpu))
303 		return (EINVAL);
304 
305 	if (ie->ie_assign_cpu == NULL)
306 		return (EOPNOTSUPP);
307 	/*
308 	 * If we have any ithreads try to set their mask first since this
309 	 * can fail.
310 	 */
311 	mtx_lock(&ie->ie_lock);
312 	if (ie->ie_thread != NULL) {
313 		CPU_ZERO(&mask);
314 		if (cpu == NOCPU)
315 			CPU_COPY(cpuset_root, &mask);
316 		else
317 			CPU_SET(cpu, &mask);
318 		id = ie->ie_thread->it_thread->td_tid;
319 		mtx_unlock(&ie->ie_lock);
320 		error = cpuset_setthread(id, &mask);
321 		if (error)
322 			return (error);
323 	} else
324 		mtx_unlock(&ie->ie_lock);
325 	error = ie->ie_assign_cpu(ie->ie_source, cpu);
326 	if (error)
327 		return (error);
328 	mtx_lock(&ie->ie_lock);
329 	ie->ie_cpu = cpu;
330 	mtx_unlock(&ie->ie_lock);
331 
332 	return (error);
333 }
334 
335 static struct intr_event *
336 intr_lookup(int irq)
337 {
338 	struct intr_event *ie;
339 
340 	mtx_lock(&event_lock);
341 	TAILQ_FOREACH(ie, &event_list, ie_list)
342 		if (ie->ie_irq == irq &&
343 		    (ie->ie_flags & IE_SOFT) == 0 &&
344 		    TAILQ_FIRST(&ie->ie_handlers) != NULL)
345 			break;
346 	mtx_unlock(&event_lock);
347 	return (ie);
348 }
349 
350 int
351 intr_setaffinity(int irq, void *m)
352 {
353 	struct intr_event *ie;
354 	cpuset_t *mask;
355 	u_char cpu;
356 	int n;
357 
358 	mask = m;
359 	cpu = NOCPU;
360 	/*
361 	 * If we're setting all cpus we can unbind.  Otherwise make sure
362 	 * only one cpu is in the set.
363 	 */
364 	if (CPU_CMP(cpuset_root, mask)) {
365 		for (n = 0; n < CPU_SETSIZE; n++) {
366 			if (!CPU_ISSET(n, mask))
367 				continue;
368 			if (cpu != NOCPU)
369 				return (EINVAL);
370 			cpu = (u_char)n;
371 		}
372 	}
373 	ie = intr_lookup(irq);
374 	if (ie == NULL)
375 		return (ESRCH);
376 	intr_event_bind(ie, cpu);
377 	return (0);
378 }
379 
380 int
381 intr_getaffinity(int irq, void *m)
382 {
383 	struct intr_event *ie;
384 	cpuset_t *mask;
385 
386 	mask = m;
387 	ie = intr_lookup(irq);
388 	if (ie == NULL)
389 		return (ESRCH);
390 	CPU_ZERO(mask);
391 	mtx_lock(&ie->ie_lock);
392 	if (ie->ie_cpu == NOCPU)
393 		CPU_COPY(cpuset_root, mask);
394 	else
395 		CPU_SET(ie->ie_cpu, mask);
396 	mtx_unlock(&ie->ie_lock);
397 	return (0);
398 }
399 
400 int
401 intr_event_destroy(struct intr_event *ie)
402 {
403 
404 	mtx_lock(&event_lock);
405 	mtx_lock(&ie->ie_lock);
406 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
407 		mtx_unlock(&ie->ie_lock);
408 		mtx_unlock(&event_lock);
409 		return (EBUSY);
410 	}
411 	TAILQ_REMOVE(&event_list, ie, ie_list);
412 #ifndef notyet
413 	if (ie->ie_thread != NULL) {
414 		ithread_destroy(ie->ie_thread);
415 		ie->ie_thread = NULL;
416 	}
417 #endif
418 	mtx_unlock(&ie->ie_lock);
419 	mtx_unlock(&event_lock);
420 	mtx_destroy(&ie->ie_lock);
421 	free(ie, M_ITHREAD);
422 	return (0);
423 }
424 
425 #ifndef INTR_FILTER
426 static struct intr_thread *
427 ithread_create(const char *name)
428 {
429 	struct intr_thread *ithd;
430 	struct thread *td;
431 	int error;
432 
433 	ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
434 
435 	error = kproc_kthread_add(ithread_loop, ithd, &intrproc,
436 		    &td, RFSTOPPED | RFHIGHPID,
437 	    	    0, "intr", "%s", name);
438 	if (error)
439 		panic("kproc_create() failed with %d", error);
440 	thread_lock(td);
441 	sched_class(td, PRI_ITHD);
442 	TD_SET_IWAIT(td);
443 	thread_unlock(td);
444 	td->td_pflags |= TDP_ITHREAD;
445 	ithd->it_thread = td;
446 	CTR2(KTR_INTR, "%s: created %s", __func__, name);
447 	return (ithd);
448 }
449 #else
450 static struct intr_thread *
451 ithread_create(const char *name, struct intr_handler *ih)
452 {
453 	struct intr_thread *ithd;
454 	struct thread *td;
455 	int error;
456 
457 	ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
458 
459 	error = kproc_kthread_add(ithread_loop, ih, &intrproc,
460 		    &td, RFSTOPPED | RFHIGHPID,
461 	    	    0, "intr", "%s", name);
462 	if (error)
463 		panic("kproc_create() failed with %d", error);
464 	thread_lock(td);
465 	sched_class(td, PRI_ITHD);
466 	TD_SET_IWAIT(td);
467 	thread_unlock(td);
468 	td->td_pflags |= TDP_ITHREAD;
469 	ithd->it_thread = td;
470 	CTR2(KTR_INTR, "%s: created %s", __func__, name);
471 	return (ithd);
472 }
473 #endif
474 
475 static void
476 ithread_destroy(struct intr_thread *ithread)
477 {
478 	struct thread *td;
479 
480 	CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_event->ie_name);
481 	td = ithread->it_thread;
482 	thread_lock(td);
483 	ithread->it_flags |= IT_DEAD;
484 	if (TD_AWAITING_INTR(td)) {
485 		TD_CLR_IWAIT(td);
486 		sched_add(td, SRQ_INTR);
487 	}
488 	thread_unlock(td);
489 }
490 
491 #ifndef INTR_FILTER
492 int
493 intr_event_add_handler(struct intr_event *ie, const char *name,
494     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
495     enum intr_type flags, void **cookiep)
496 {
497 	struct intr_handler *ih, *temp_ih;
498 	struct intr_thread *it;
499 
500 	if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
501 		return (EINVAL);
502 
503 	/* Allocate and populate an interrupt handler structure. */
504 	ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
505 	ih->ih_filter = filter;
506 	ih->ih_handler = handler;
507 	ih->ih_argument = arg;
508 	ih->ih_name = name;
509 	ih->ih_event = ie;
510 	ih->ih_pri = pri;
511 	if (flags & INTR_EXCL)
512 		ih->ih_flags = IH_EXCLUSIVE;
513 	if (flags & INTR_MPSAFE)
514 		ih->ih_flags |= IH_MPSAFE;
515 	if (flags & INTR_ENTROPY)
516 		ih->ih_flags |= IH_ENTROPY;
517 
518 	/* We can only have one exclusive handler in a event. */
519 	mtx_lock(&ie->ie_lock);
520 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
521 		if ((flags & INTR_EXCL) ||
522 		    (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
523 			mtx_unlock(&ie->ie_lock);
524 			free(ih, M_ITHREAD);
525 			return (EINVAL);
526 		}
527 	}
528 
529 	/* Add the new handler to the event in priority order. */
530 	TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
531 		if (temp_ih->ih_pri > ih->ih_pri)
532 			break;
533 	}
534 	if (temp_ih == NULL)
535 		TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
536 	else
537 		TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
538 	intr_event_update(ie);
539 
540 	/* Create a thread if we need one. */
541 	while (ie->ie_thread == NULL && handler != NULL) {
542 		if (ie->ie_flags & IE_ADDING_THREAD)
543 			msleep(ie, &ie->ie_lock, 0, "ithread", 0);
544 		else {
545 			ie->ie_flags |= IE_ADDING_THREAD;
546 			mtx_unlock(&ie->ie_lock);
547 			it = ithread_create("intr: newborn");
548 			mtx_lock(&ie->ie_lock);
549 			ie->ie_flags &= ~IE_ADDING_THREAD;
550 			ie->ie_thread = it;
551 			it->it_event = ie;
552 			ithread_update(it);
553 			wakeup(ie);
554 		}
555 	}
556 	CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
557 	    ie->ie_name);
558 	mtx_unlock(&ie->ie_lock);
559 
560 	if (cookiep != NULL)
561 		*cookiep = ih;
562 	return (0);
563 }
564 #else
565 int
566 intr_event_add_handler(struct intr_event *ie, const char *name,
567     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
568     enum intr_type flags, void **cookiep)
569 {
570 	struct intr_handler *ih, *temp_ih;
571 	struct intr_thread *it;
572 
573 	if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
574 		return (EINVAL);
575 
576 	/* Allocate and populate an interrupt handler structure. */
577 	ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
578 	ih->ih_filter = filter;
579 	ih->ih_handler = handler;
580 	ih->ih_argument = arg;
581 	ih->ih_name = name;
582 	ih->ih_event = ie;
583 	ih->ih_pri = pri;
584 	if (flags & INTR_EXCL)
585 		ih->ih_flags = IH_EXCLUSIVE;
586 	if (flags & INTR_MPSAFE)
587 		ih->ih_flags |= IH_MPSAFE;
588 	if (flags & INTR_ENTROPY)
589 		ih->ih_flags |= IH_ENTROPY;
590 
591 	/* We can only have one exclusive handler in a event. */
592 	mtx_lock(&ie->ie_lock);
593 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
594 		if ((flags & INTR_EXCL) ||
595 		    (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
596 			mtx_unlock(&ie->ie_lock);
597 			free(ih, M_ITHREAD);
598 			return (EINVAL);
599 		}
600 	}
601 
602 	/* Add the new handler to the event in priority order. */
603 	TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
604 		if (temp_ih->ih_pri > ih->ih_pri)
605 			break;
606 	}
607 	if (temp_ih == NULL)
608 		TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
609 	else
610 		TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
611 	intr_event_update(ie);
612 
613 	/* For filtered handlers, create a private ithread to run on. */
614 	if (filter != NULL && handler != NULL) {
615 		mtx_unlock(&ie->ie_lock);
616 		it = ithread_create("intr: newborn", ih);
617 		mtx_lock(&ie->ie_lock);
618 		it->it_event = ie;
619 		ih->ih_thread = it;
620 		ithread_update(it); // XXX - do we really need this?!?!?
621 	} else { /* Create the global per-event thread if we need one. */
622 		while (ie->ie_thread == NULL && handler != NULL) {
623 			if (ie->ie_flags & IE_ADDING_THREAD)
624 				msleep(ie, &ie->ie_lock, 0, "ithread", 0);
625 			else {
626 				ie->ie_flags |= IE_ADDING_THREAD;
627 				mtx_unlock(&ie->ie_lock);
628 				it = ithread_create("intr: newborn", ih);
629 				mtx_lock(&ie->ie_lock);
630 				ie->ie_flags &= ~IE_ADDING_THREAD;
631 				ie->ie_thread = it;
632 				it->it_event = ie;
633 				ithread_update(it);
634 				wakeup(ie);
635 			}
636 		}
637 	}
638 	CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
639 	    ie->ie_name);
640 	mtx_unlock(&ie->ie_lock);
641 
642 	if (cookiep != NULL)
643 		*cookiep = ih;
644 	return (0);
645 }
646 #endif
647 
648 /*
649  * Return the ie_source field from the intr_event an intr_handler is
650  * associated with.
651  */
652 void *
653 intr_handler_source(void *cookie)
654 {
655 	struct intr_handler *ih;
656 	struct intr_event *ie;
657 
658 	ih = (struct intr_handler *)cookie;
659 	if (ih == NULL)
660 		return (NULL);
661 	ie = ih->ih_event;
662 	KASSERT(ie != NULL,
663 	    ("interrupt handler \"%s\" has a NULL interrupt event",
664 	    ih->ih_name));
665 	return (ie->ie_source);
666 }
667 
668 #ifndef INTR_FILTER
669 int
670 intr_event_remove_handler(void *cookie)
671 {
672 	struct intr_handler *handler = (struct intr_handler *)cookie;
673 	struct intr_event *ie;
674 #ifdef INVARIANTS
675 	struct intr_handler *ih;
676 #endif
677 #ifdef notyet
678 	int dead;
679 #endif
680 
681 	if (handler == NULL)
682 		return (EINVAL);
683 	ie = handler->ih_event;
684 	KASSERT(ie != NULL,
685 	    ("interrupt handler \"%s\" has a NULL interrupt event",
686 	    handler->ih_name));
687 	mtx_lock(&ie->ie_lock);
688 	CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
689 	    ie->ie_name);
690 #ifdef INVARIANTS
691 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
692 		if (ih == handler)
693 			goto ok;
694 	mtx_unlock(&ie->ie_lock);
695 	panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
696 	    ih->ih_name, ie->ie_name);
697 ok:
698 #endif
699 	/*
700 	 * If there is no ithread, then just remove the handler and return.
701 	 * XXX: Note that an INTR_FAST handler might be running on another
702 	 * CPU!
703 	 */
704 	if (ie->ie_thread == NULL) {
705 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
706 		mtx_unlock(&ie->ie_lock);
707 		free(handler, M_ITHREAD);
708 		return (0);
709 	}
710 
711 	/*
712 	 * If the interrupt thread is already running, then just mark this
713 	 * handler as being dead and let the ithread do the actual removal.
714 	 *
715 	 * During a cold boot while cold is set, msleep() does not sleep,
716 	 * so we have to remove the handler here rather than letting the
717 	 * thread do it.
718 	 */
719 	thread_lock(ie->ie_thread->it_thread);
720 	if (!TD_AWAITING_INTR(ie->ie_thread->it_thread) && !cold) {
721 		handler->ih_flags |= IH_DEAD;
722 
723 		/*
724 		 * Ensure that the thread will process the handler list
725 		 * again and remove this handler if it has already passed
726 		 * it on the list.
727 		 */
728 		ie->ie_thread->it_need = 1;
729 	} else
730 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
731 	thread_unlock(ie->ie_thread->it_thread);
732 	while (handler->ih_flags & IH_DEAD)
733 		msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
734 	intr_event_update(ie);
735 #ifdef notyet
736 	/*
737 	 * XXX: This could be bad in the case of ppbus(8).  Also, I think
738 	 * this could lead to races of stale data when servicing an
739 	 * interrupt.
740 	 */
741 	dead = 1;
742 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
743 		if (!(ih->ih_flags & IH_FAST)) {
744 			dead = 0;
745 			break;
746 		}
747 	}
748 	if (dead) {
749 		ithread_destroy(ie->ie_thread);
750 		ie->ie_thread = NULL;
751 	}
752 #endif
753 	mtx_unlock(&ie->ie_lock);
754 	free(handler, M_ITHREAD);
755 	return (0);
756 }
757 
758 static int
759 intr_event_schedule_thread(struct intr_event *ie)
760 {
761 	struct intr_entropy entropy;
762 	struct intr_thread *it;
763 	struct thread *td;
764 	struct thread *ctd;
765 	struct proc *p;
766 
767 	/*
768 	 * If no ithread or no handlers, then we have a stray interrupt.
769 	 */
770 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) ||
771 	    ie->ie_thread == NULL)
772 		return (EINVAL);
773 
774 	ctd = curthread;
775 	it = ie->ie_thread;
776 	td = it->it_thread;
777 	p = td->td_proc;
778 
779 	/*
780 	 * If any of the handlers for this ithread claim to be good
781 	 * sources of entropy, then gather some.
782 	 */
783 	if (harvest.interrupt && ie->ie_flags & IE_ENTROPY) {
784 		CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", __func__,
785 		    p->p_pid, td->td_name);
786 		entropy.event = (uintptr_t)ie;
787 		entropy.td = ctd;
788 		random_harvest(&entropy, sizeof(entropy), 2, 0,
789 		    RANDOM_INTERRUPT);
790 	}
791 
792 	KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
793 
794 	/*
795 	 * Set it_need to tell the thread to keep running if it is already
796 	 * running.  Then, lock the thread and see if we actually need to
797 	 * put it on the runqueue.
798 	 */
799 	it->it_need = 1;
800 	thread_lock(td);
801 	if (TD_AWAITING_INTR(td)) {
802 		CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
803 		    td->td_name);
804 		TD_CLR_IWAIT(td);
805 		sched_add(td, SRQ_INTR);
806 	} else {
807 		CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
808 		    __func__, p->p_pid, td->td_name, it->it_need, td->td_state);
809 	}
810 	thread_unlock(td);
811 
812 	return (0);
813 }
814 #else
815 int
816 intr_event_remove_handler(void *cookie)
817 {
818 	struct intr_handler *handler = (struct intr_handler *)cookie;
819 	struct intr_event *ie;
820 	struct intr_thread *it;
821 #ifdef INVARIANTS
822 	struct intr_handler *ih;
823 #endif
824 #ifdef notyet
825 	int dead;
826 #endif
827 
828 	if (handler == NULL)
829 		return (EINVAL);
830 	ie = handler->ih_event;
831 	KASSERT(ie != NULL,
832 	    ("interrupt handler \"%s\" has a NULL interrupt event",
833 	    handler->ih_name));
834 	mtx_lock(&ie->ie_lock);
835 	CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
836 	    ie->ie_name);
837 #ifdef INVARIANTS
838 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
839 		if (ih == handler)
840 			goto ok;
841 	mtx_unlock(&ie->ie_lock);
842 	panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
843 	    ih->ih_name, ie->ie_name);
844 ok:
845 #endif
846 	/*
847 	 * If there are no ithreads (per event and per handler), then
848 	 * just remove the handler and return.
849 	 * XXX: Note that an INTR_FAST handler might be running on another CPU!
850 	 */
851 	if (ie->ie_thread == NULL && handler->ih_thread == NULL) {
852 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
853 		mtx_unlock(&ie->ie_lock);
854 		free(handler, M_ITHREAD);
855 		return (0);
856 	}
857 
858 	/* Private or global ithread? */
859 	it = (handler->ih_thread) ? handler->ih_thread : ie->ie_thread;
860 	/*
861 	 * If the interrupt thread is already running, then just mark this
862 	 * handler as being dead and let the ithread do the actual removal.
863 	 *
864 	 * During a cold boot while cold is set, msleep() does not sleep,
865 	 * so we have to remove the handler here rather than letting the
866 	 * thread do it.
867 	 */
868 	thread_lock(it->it_thread);
869 	if (!TD_AWAITING_INTR(it->it_thread) && !cold) {
870 		handler->ih_flags |= IH_DEAD;
871 
872 		/*
873 		 * Ensure that the thread will process the handler list
874 		 * again and remove this handler if it has already passed
875 		 * it on the list.
876 		 */
877 		it->it_need = 1;
878 	} else
879 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
880 	thread_unlock(it->it_thread);
881 	while (handler->ih_flags & IH_DEAD)
882 		msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
883 	/*
884 	 * At this point, the handler has been disconnected from the event,
885 	 * so we can kill the private ithread if any.
886 	 */
887 	if (handler->ih_thread) {
888 		ithread_destroy(handler->ih_thread);
889 		handler->ih_thread = NULL;
890 	}
891 	intr_event_update(ie);
892 #ifdef notyet
893 	/*
894 	 * XXX: This could be bad in the case of ppbus(8).  Also, I think
895 	 * this could lead to races of stale data when servicing an
896 	 * interrupt.
897 	 */
898 	dead = 1;
899 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
900 		if (handler != NULL) {
901 			dead = 0;
902 			break;
903 		}
904 	}
905 	if (dead) {
906 		ithread_destroy(ie->ie_thread);
907 		ie->ie_thread = NULL;
908 	}
909 #endif
910 	mtx_unlock(&ie->ie_lock);
911 	free(handler, M_ITHREAD);
912 	return (0);
913 }
914 
915 static int
916 intr_event_schedule_thread(struct intr_event *ie, struct intr_thread *it)
917 {
918 	struct intr_entropy entropy;
919 	struct thread *td;
920 	struct thread *ctd;
921 	struct proc *p;
922 
923 	/*
924 	 * If no ithread or no handlers, then we have a stray interrupt.
925 	 */
926 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) || it == NULL)
927 		return (EINVAL);
928 
929 	ctd = curthread;
930 	td = it->it_thread;
931 	p = td->td_proc;
932 
933 	/*
934 	 * If any of the handlers for this ithread claim to be good
935 	 * sources of entropy, then gather some.
936 	 */
937 	if (harvest.interrupt && ie->ie_flags & IE_ENTROPY) {
938 		CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", __func__,
939 		    p->p_pid, td->td_name);
940 		entropy.event = (uintptr_t)ie;
941 		entropy.td = ctd;
942 		random_harvest(&entropy, sizeof(entropy), 2, 0,
943 		    RANDOM_INTERRUPT);
944 	}
945 
946 	KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
947 
948 	/*
949 	 * Set it_need to tell the thread to keep running if it is already
950 	 * running.  Then, lock the thread and see if we actually need to
951 	 * put it on the runqueue.
952 	 */
953 	it->it_need = 1;
954 	thread_lock(td);
955 	if (TD_AWAITING_INTR(td)) {
956 		CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
957 		    td->td_name);
958 		TD_CLR_IWAIT(td);
959 		sched_add(td, SRQ_INTR);
960 	} else {
961 		CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
962 		    __func__, p->p_pid, td->td_name, it->it_need, td->td_state);
963 	}
964 	thread_unlock(td);
965 
966 	return (0);
967 }
968 #endif
969 
970 /*
971  * Allow interrupt event binding for software interrupt handlers -- a no-op,
972  * since interrupts are generated in software rather than being directed by
973  * a PIC.
974  */
975 static int
976 swi_assign_cpu(void *arg, u_char cpu)
977 {
978 
979 	return (0);
980 }
981 
982 /*
983  * Add a software interrupt handler to a specified event.  If a given event
984  * is not specified, then a new event is created.
985  */
986 int
987 swi_add(struct intr_event **eventp, const char *name, driver_intr_t handler,
988 	    void *arg, int pri, enum intr_type flags, void **cookiep)
989 {
990 	struct intr_event *ie;
991 	int error;
992 
993 	if (flags & INTR_ENTROPY)
994 		return (EINVAL);
995 
996 	ie = (eventp != NULL) ? *eventp : NULL;
997 
998 	if (ie != NULL) {
999 		if (!(ie->ie_flags & IE_SOFT))
1000 			return (EINVAL);
1001 	} else {
1002 		error = intr_event_create(&ie, NULL, IE_SOFT, 0,
1003 		    NULL, NULL, NULL, swi_assign_cpu, "swi%d:", pri);
1004 		if (error)
1005 			return (error);
1006 		if (eventp != NULL)
1007 			*eventp = ie;
1008 	}
1009 	error = intr_event_add_handler(ie, name, NULL, handler, arg,
1010 	    (pri * RQ_PPQ) + PI_SOFT, flags, cookiep);
1011 	if (error)
1012 		return (error);
1013 	if (pri == SWI_CLOCK) {
1014 		struct proc *p;
1015 		p = ie->ie_thread->it_thread->td_proc;
1016 		PROC_LOCK(p);
1017 		p->p_flag |= P_NOLOAD;
1018 		PROC_UNLOCK(p);
1019 	}
1020 	return (0);
1021 }
1022 
1023 /*
1024  * Schedule a software interrupt thread.
1025  */
1026 void
1027 swi_sched(void *cookie, int flags)
1028 {
1029 	struct intr_handler *ih = (struct intr_handler *)cookie;
1030 	struct intr_event *ie = ih->ih_event;
1031 	int error;
1032 
1033 	CTR3(KTR_INTR, "swi_sched: %s %s need=%d", ie->ie_name, ih->ih_name,
1034 	    ih->ih_need);
1035 
1036 	/*
1037 	 * Set ih_need for this handler so that if the ithread is already
1038 	 * running it will execute this handler on the next pass.  Otherwise,
1039 	 * it will execute it the next time it runs.
1040 	 */
1041 	atomic_store_rel_int(&ih->ih_need, 1);
1042 
1043 	if (!(flags & SWI_DELAY)) {
1044 		PCPU_INC(cnt.v_soft);
1045 #ifdef INTR_FILTER
1046 		error = intr_event_schedule_thread(ie, ie->ie_thread);
1047 #else
1048 		error = intr_event_schedule_thread(ie);
1049 #endif
1050 		KASSERT(error == 0, ("stray software interrupt"));
1051 	}
1052 }
1053 
1054 /*
1055  * Remove a software interrupt handler.  Currently this code does not
1056  * remove the associated interrupt event if it becomes empty.  Calling code
1057  * may do so manually via intr_event_destroy(), but that's not really
1058  * an optimal interface.
1059  */
1060 int
1061 swi_remove(void *cookie)
1062 {
1063 
1064 	return (intr_event_remove_handler(cookie));
1065 }
1066 
1067 #ifdef INTR_FILTER
1068 static void
1069 priv_ithread_execute_handler(struct proc *p, struct intr_handler *ih)
1070 {
1071 	struct intr_event *ie;
1072 
1073 	ie = ih->ih_event;
1074 	/*
1075 	 * If this handler is marked for death, remove it from
1076 	 * the list of handlers and wake up the sleeper.
1077 	 */
1078 	if (ih->ih_flags & IH_DEAD) {
1079 		mtx_lock(&ie->ie_lock);
1080 		TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
1081 		ih->ih_flags &= ~IH_DEAD;
1082 		wakeup(ih);
1083 		mtx_unlock(&ie->ie_lock);
1084 		return;
1085 	}
1086 
1087 	/* Execute this handler. */
1088 	CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
1089 	     __func__, p->p_pid, (void *)ih->ih_handler, ih->ih_argument,
1090 	     ih->ih_name, ih->ih_flags);
1091 
1092 	if (!(ih->ih_flags & IH_MPSAFE))
1093 		mtx_lock(&Giant);
1094 	ih->ih_handler(ih->ih_argument);
1095 	if (!(ih->ih_flags & IH_MPSAFE))
1096 		mtx_unlock(&Giant);
1097 }
1098 #endif
1099 
1100 /*
1101  * This is a public function for use by drivers that mux interrupt
1102  * handlers for child devices from their interrupt handler.
1103  */
1104 void
1105 intr_event_execute_handlers(struct proc *p, struct intr_event *ie)
1106 {
1107 	struct intr_handler *ih, *ihn;
1108 
1109 	TAILQ_FOREACH_SAFE(ih, &ie->ie_handlers, ih_next, ihn) {
1110 		/*
1111 		 * If this handler is marked for death, remove it from
1112 		 * the list of handlers and wake up the sleeper.
1113 		 */
1114 		if (ih->ih_flags & IH_DEAD) {
1115 			mtx_lock(&ie->ie_lock);
1116 			TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
1117 			ih->ih_flags &= ~IH_DEAD;
1118 			wakeup(ih);
1119 			mtx_unlock(&ie->ie_lock);
1120 			continue;
1121 		}
1122 
1123 		/* Skip filter only handlers */
1124 		if (ih->ih_handler == NULL)
1125 			continue;
1126 
1127 		/*
1128 		 * For software interrupt threads, we only execute
1129 		 * handlers that have their need flag set.  Hardware
1130 		 * interrupt threads always invoke all of their handlers.
1131 		 */
1132 		if (ie->ie_flags & IE_SOFT) {
1133 			if (!ih->ih_need)
1134 				continue;
1135 			else
1136 				atomic_store_rel_int(&ih->ih_need, 0);
1137 		}
1138 
1139 		/* Execute this handler. */
1140 		CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
1141 		    __func__, p->p_pid, (void *)ih->ih_handler,
1142 		    ih->ih_argument, ih->ih_name, ih->ih_flags);
1143 
1144 		if (!(ih->ih_flags & IH_MPSAFE))
1145 			mtx_lock(&Giant);
1146 		ih->ih_handler(ih->ih_argument);
1147 		if (!(ih->ih_flags & IH_MPSAFE))
1148 			mtx_unlock(&Giant);
1149 	}
1150 }
1151 
1152 static void
1153 ithread_execute_handlers(struct proc *p, struct intr_event *ie)
1154 {
1155 
1156 	/* Interrupt handlers should not sleep. */
1157 	if (!(ie->ie_flags & IE_SOFT))
1158 		THREAD_NO_SLEEPING();
1159 	intr_event_execute_handlers(p, ie);
1160 	if (!(ie->ie_flags & IE_SOFT))
1161 		THREAD_SLEEPING_OK();
1162 
1163 	/*
1164 	 * Interrupt storm handling:
1165 	 *
1166 	 * If this interrupt source is currently storming, then throttle
1167 	 * it to only fire the handler once  per clock tick.
1168 	 *
1169 	 * If this interrupt source is not currently storming, but the
1170 	 * number of back to back interrupts exceeds the storm threshold,
1171 	 * then enter storming mode.
1172 	 */
1173 	if (intr_storm_threshold != 0 && ie->ie_count >= intr_storm_threshold &&
1174 	    !(ie->ie_flags & IE_SOFT)) {
1175 		/* Report the message only once every second. */
1176 		if (ppsratecheck(&ie->ie_warntm, &ie->ie_warncnt, 1)) {
1177 			printf(
1178 	"interrupt storm detected on \"%s\"; throttling interrupt source\n",
1179 			    ie->ie_name);
1180 		}
1181 		pause("istorm", 1);
1182 	} else
1183 		ie->ie_count++;
1184 
1185 	/*
1186 	 * Now that all the handlers have had a chance to run, reenable
1187 	 * the interrupt source.
1188 	 */
1189 	if (ie->ie_post_ithread != NULL)
1190 		ie->ie_post_ithread(ie->ie_source);
1191 }
1192 
1193 #ifndef INTR_FILTER
1194 /*
1195  * This is the main code for interrupt threads.
1196  */
1197 static void
1198 ithread_loop(void *arg)
1199 {
1200 	struct intr_thread *ithd;
1201 	struct intr_event *ie;
1202 	struct thread *td;
1203 	struct proc *p;
1204 
1205 	td = curthread;
1206 	p = td->td_proc;
1207 	ithd = (struct intr_thread *)arg;
1208 	KASSERT(ithd->it_thread == td,
1209 	    ("%s: ithread and proc linkage out of sync", __func__));
1210 	ie = ithd->it_event;
1211 	ie->ie_count = 0;
1212 
1213 	/*
1214 	 * As long as we have interrupts outstanding, go through the
1215 	 * list of handlers, giving each one a go at it.
1216 	 */
1217 	for (;;) {
1218 		/*
1219 		 * If we are an orphaned thread, then just die.
1220 		 */
1221 		if (ithd->it_flags & IT_DEAD) {
1222 			CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
1223 			    p->p_pid, td->td_name);
1224 			free(ithd, M_ITHREAD);
1225 			kthread_exit();
1226 		}
1227 
1228 		/*
1229 		 * Service interrupts.  If another interrupt arrives while
1230 		 * we are running, it will set it_need to note that we
1231 		 * should make another pass.
1232 		 */
1233 		while (ithd->it_need) {
1234 			/*
1235 			 * This might need a full read and write barrier
1236 			 * to make sure that this write posts before any
1237 			 * of the memory or device accesses in the
1238 			 * handlers.
1239 			 */
1240 			atomic_store_rel_int(&ithd->it_need, 0);
1241 			ithread_execute_handlers(p, ie);
1242 		}
1243 		WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
1244 		mtx_assert(&Giant, MA_NOTOWNED);
1245 
1246 		/*
1247 		 * Processed all our interrupts.  Now get the sched
1248 		 * lock.  This may take a while and it_need may get
1249 		 * set again, so we have to check it again.
1250 		 */
1251 		thread_lock(td);
1252 		if (!ithd->it_need && !(ithd->it_flags & IT_DEAD)) {
1253 			TD_SET_IWAIT(td);
1254 			ie->ie_count = 0;
1255 			mi_switch(SW_VOL | SWT_IWAIT, NULL);
1256 		}
1257 		thread_unlock(td);
1258 	}
1259 }
1260 
1261 /*
1262  * Main interrupt handling body.
1263  *
1264  * Input:
1265  * o ie:                        the event connected to this interrupt.
1266  * o frame:                     some archs (i.e. i386) pass a frame to some.
1267  *                              handlers as their main argument.
1268  * Return value:
1269  * o 0:                         everything ok.
1270  * o EINVAL:                    stray interrupt.
1271  */
1272 int
1273 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
1274 {
1275 	struct intr_handler *ih;
1276 	struct thread *td;
1277 	int error, ret, thread;
1278 
1279 	td = curthread;
1280 
1281 	/* An interrupt with no event or handlers is a stray interrupt. */
1282 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
1283 		return (EINVAL);
1284 
1285 	/*
1286 	 * Execute fast interrupt handlers directly.
1287 	 * To support clock handlers, if a handler registers
1288 	 * with a NULL argument, then we pass it a pointer to
1289 	 * a trapframe as its argument.
1290 	 */
1291 	td->td_intr_nesting_level++;
1292 	thread = 0;
1293 	ret = 0;
1294 	critical_enter();
1295 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1296 		if (ih->ih_filter == NULL) {
1297 			thread = 1;
1298 			continue;
1299 		}
1300 		CTR4(KTR_INTR, "%s: exec %p(%p) for %s", __func__,
1301 		    ih->ih_filter, ih->ih_argument == NULL ? frame :
1302 		    ih->ih_argument, ih->ih_name);
1303 		if (ih->ih_argument == NULL)
1304 			ret = ih->ih_filter(frame);
1305 		else
1306 			ret = ih->ih_filter(ih->ih_argument);
1307 		/*
1308 		 * Wrapper handler special handling:
1309 		 *
1310 		 * in some particular cases (like pccard and pccbb),
1311 		 * the _real_ device handler is wrapped in a couple of
1312 		 * functions - a filter wrapper and an ithread wrapper.
1313 		 * In this case (and just in this case), the filter wrapper
1314 		 * could ask the system to schedule the ithread and mask
1315 		 * the interrupt source if the wrapped handler is composed
1316 		 * of just an ithread handler.
1317 		 *
1318 		 * TODO: write a generic wrapper to avoid people rolling
1319 		 * their own
1320 		 */
1321 		if (!thread) {
1322 			if (ret == FILTER_SCHEDULE_THREAD)
1323 				thread = 1;
1324 		}
1325 	}
1326 
1327 	if (thread) {
1328 		if (ie->ie_pre_ithread != NULL)
1329 			ie->ie_pre_ithread(ie->ie_source);
1330 	} else {
1331 		if (ie->ie_post_filter != NULL)
1332 			ie->ie_post_filter(ie->ie_source);
1333 	}
1334 
1335 	/* Schedule the ithread if needed. */
1336 	if (thread) {
1337 		error = intr_event_schedule_thread(ie);
1338 #ifndef XEN
1339 		KASSERT(error == 0, ("bad stray interrupt"));
1340 #else
1341 		if (error != 0)
1342 			log(LOG_WARNING, "bad stray interrupt");
1343 #endif
1344 	}
1345 	critical_exit();
1346 	td->td_intr_nesting_level--;
1347 	return (0);
1348 }
1349 #else
1350 /*
1351  * This is the main code for interrupt threads.
1352  */
1353 static void
1354 ithread_loop(void *arg)
1355 {
1356 	struct intr_thread *ithd;
1357 	struct intr_handler *ih;
1358 	struct intr_event *ie;
1359 	struct thread *td;
1360 	struct proc *p;
1361 	int priv;
1362 
1363 	td = curthread;
1364 	p = td->td_proc;
1365 	ih = (struct intr_handler *)arg;
1366 	priv = (ih->ih_thread != NULL) ? 1 : 0;
1367 	ithd = (priv) ? ih->ih_thread : ih->ih_event->ie_thread;
1368 	KASSERT(ithd->it_thread == td,
1369 	    ("%s: ithread and proc linkage out of sync", __func__));
1370 	ie = ithd->it_event;
1371 	ie->ie_count = 0;
1372 
1373 	/*
1374 	 * As long as we have interrupts outstanding, go through the
1375 	 * list of handlers, giving each one a go at it.
1376 	 */
1377 	for (;;) {
1378 		/*
1379 		 * If we are an orphaned thread, then just die.
1380 		 */
1381 		if (ithd->it_flags & IT_DEAD) {
1382 			CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
1383 			    p->p_pid, td->td_name);
1384 			free(ithd, M_ITHREAD);
1385 			kthread_exit();
1386 		}
1387 
1388 		/*
1389 		 * Service interrupts.  If another interrupt arrives while
1390 		 * we are running, it will set it_need to note that we
1391 		 * should make another pass.
1392 		 */
1393 		while (ithd->it_need) {
1394 			/*
1395 			 * This might need a full read and write barrier
1396 			 * to make sure that this write posts before any
1397 			 * of the memory or device accesses in the
1398 			 * handlers.
1399 			 */
1400 			atomic_store_rel_int(&ithd->it_need, 0);
1401 			if (priv)
1402 				priv_ithread_execute_handler(p, ih);
1403 			else
1404 				ithread_execute_handlers(p, ie);
1405 		}
1406 		WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
1407 		mtx_assert(&Giant, MA_NOTOWNED);
1408 
1409 		/*
1410 		 * Processed all our interrupts.  Now get the sched
1411 		 * lock.  This may take a while and it_need may get
1412 		 * set again, so we have to check it again.
1413 		 */
1414 		thread_lock(td);
1415 		if (!ithd->it_need && !(ithd->it_flags & IT_DEAD)) {
1416 			TD_SET_IWAIT(td);
1417 			ie->ie_count = 0;
1418 			mi_switch(SW_VOL | SWT_IWAIT, NULL);
1419 		}
1420 		thread_unlock(td);
1421 	}
1422 }
1423 
1424 /*
1425  * Main loop for interrupt filter.
1426  *
1427  * Some architectures (i386, amd64 and arm) require the optional frame
1428  * parameter, and use it as the main argument for fast handler execution
1429  * when ih_argument == NULL.
1430  *
1431  * Return value:
1432  * o FILTER_STRAY:              No filter recognized the event, and no
1433  *                              filter-less handler is registered on this
1434  *                              line.
1435  * o FILTER_HANDLED:            A filter claimed the event and served it.
1436  * o FILTER_SCHEDULE_THREAD:    No filter claimed the event, but there's at
1437  *                              least one filter-less handler on this line.
1438  * o FILTER_HANDLED |
1439  *   FILTER_SCHEDULE_THREAD:    A filter claimed the event, and asked for
1440  *                              scheduling the per-handler ithread.
1441  *
1442  * In case an ithread has to be scheduled, in *ithd there will be a
1443  * pointer to a struct intr_thread containing the thread to be
1444  * scheduled.
1445  */
1446 
1447 static int
1448 intr_filter_loop(struct intr_event *ie, struct trapframe *frame,
1449 		 struct intr_thread **ithd)
1450 {
1451 	struct intr_handler *ih;
1452 	void *arg;
1453 	int ret, thread_only;
1454 
1455 	ret = 0;
1456 	thread_only = 0;
1457 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1458 		/*
1459 		 * Execute fast interrupt handlers directly.
1460 		 * To support clock handlers, if a handler registers
1461 		 * with a NULL argument, then we pass it a pointer to
1462 		 * a trapframe as its argument.
1463 		 */
1464 		arg = ((ih->ih_argument == NULL) ? frame : ih->ih_argument);
1465 
1466 		CTR5(KTR_INTR, "%s: exec %p/%p(%p) for %s", __func__,
1467 		     ih->ih_filter, ih->ih_handler, arg, ih->ih_name);
1468 
1469 		if (ih->ih_filter != NULL)
1470 			ret = ih->ih_filter(arg);
1471 		else {
1472 			thread_only = 1;
1473 			continue;
1474 		}
1475 
1476 		if (ret & FILTER_STRAY)
1477 			continue;
1478 		else {
1479 			*ithd = ih->ih_thread;
1480 			return (ret);
1481 		}
1482 	}
1483 
1484 	/*
1485 	 * No filters handled the interrupt and we have at least
1486 	 * one handler without a filter.  In this case, we schedule
1487 	 * all of the filter-less handlers to run in the ithread.
1488 	 */
1489 	if (thread_only) {
1490 		*ithd = ie->ie_thread;
1491 		return (FILTER_SCHEDULE_THREAD);
1492 	}
1493 	return (FILTER_STRAY);
1494 }
1495 
1496 /*
1497  * Main interrupt handling body.
1498  *
1499  * Input:
1500  * o ie:                        the event connected to this interrupt.
1501  * o frame:                     some archs (i.e. i386) pass a frame to some.
1502  *                              handlers as their main argument.
1503  * Return value:
1504  * o 0:                         everything ok.
1505  * o EINVAL:                    stray interrupt.
1506  */
1507 int
1508 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
1509 {
1510 	struct intr_thread *ithd;
1511 	struct thread *td;
1512 	int thread;
1513 
1514 	ithd = NULL;
1515 	td = curthread;
1516 
1517 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
1518 		return (EINVAL);
1519 
1520 	td->td_intr_nesting_level++;
1521 	thread = 0;
1522 	critical_enter();
1523 	thread = intr_filter_loop(ie, frame, &ithd);
1524 	if (thread & FILTER_HANDLED) {
1525 		if (ie->ie_post_filter != NULL)
1526 			ie->ie_post_filter(ie->ie_source);
1527 	} else {
1528 		if (ie->ie_pre_ithread != NULL)
1529 			ie->ie_pre_ithread(ie->ie_source);
1530 	}
1531 	critical_exit();
1532 
1533 	/* Interrupt storm logic */
1534 	if (thread & FILTER_STRAY) {
1535 		ie->ie_count++;
1536 		if (ie->ie_count < intr_storm_threshold)
1537 			printf("Interrupt stray detection not present\n");
1538 	}
1539 
1540 	/* Schedule an ithread if needed. */
1541 	if (thread & FILTER_SCHEDULE_THREAD) {
1542 		if (intr_event_schedule_thread(ie, ithd) != 0)
1543 			panic("%s: impossible stray interrupt", __func__);
1544 	}
1545 	td->td_intr_nesting_level--;
1546 	return (0);
1547 }
1548 #endif
1549 
1550 #ifdef DDB
1551 /*
1552  * Dump details about an interrupt handler
1553  */
1554 static void
1555 db_dump_intrhand(struct intr_handler *ih)
1556 {
1557 	int comma;
1558 
1559 	db_printf("\t%-10s ", ih->ih_name);
1560 	switch (ih->ih_pri) {
1561 	case PI_REALTIME:
1562 		db_printf("CLK ");
1563 		break;
1564 	case PI_AV:
1565 		db_printf("AV  ");
1566 		break;
1567 	case PI_TTYHIGH:
1568 	case PI_TTYLOW:
1569 		db_printf("TTY ");
1570 		break;
1571 	case PI_TAPE:
1572 		db_printf("TAPE");
1573 		break;
1574 	case PI_NET:
1575 		db_printf("NET ");
1576 		break;
1577 	case PI_DISK:
1578 	case PI_DISKLOW:
1579 		db_printf("DISK");
1580 		break;
1581 	case PI_DULL:
1582 		db_printf("DULL");
1583 		break;
1584 	default:
1585 		if (ih->ih_pri >= PI_SOFT)
1586 			db_printf("SWI ");
1587 		else
1588 			db_printf("%4u", ih->ih_pri);
1589 		break;
1590 	}
1591 	db_printf(" ");
1592 	db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC);
1593 	db_printf("(%p)", ih->ih_argument);
1594 	if (ih->ih_need ||
1595 	    (ih->ih_flags & (IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD |
1596 	    IH_MPSAFE)) != 0) {
1597 		db_printf(" {");
1598 		comma = 0;
1599 		if (ih->ih_flags & IH_EXCLUSIVE) {
1600 			if (comma)
1601 				db_printf(", ");
1602 			db_printf("EXCL");
1603 			comma = 1;
1604 		}
1605 		if (ih->ih_flags & IH_ENTROPY) {
1606 			if (comma)
1607 				db_printf(", ");
1608 			db_printf("ENTROPY");
1609 			comma = 1;
1610 		}
1611 		if (ih->ih_flags & IH_DEAD) {
1612 			if (comma)
1613 				db_printf(", ");
1614 			db_printf("DEAD");
1615 			comma = 1;
1616 		}
1617 		if (ih->ih_flags & IH_MPSAFE) {
1618 			if (comma)
1619 				db_printf(", ");
1620 			db_printf("MPSAFE");
1621 			comma = 1;
1622 		}
1623 		if (ih->ih_need) {
1624 			if (comma)
1625 				db_printf(", ");
1626 			db_printf("NEED");
1627 		}
1628 		db_printf("}");
1629 	}
1630 	db_printf("\n");
1631 }
1632 
1633 /*
1634  * Dump details about a event.
1635  */
1636 void
1637 db_dump_intr_event(struct intr_event *ie, int handlers)
1638 {
1639 	struct intr_handler *ih;
1640 	struct intr_thread *it;
1641 	int comma;
1642 
1643 	db_printf("%s ", ie->ie_fullname);
1644 	it = ie->ie_thread;
1645 	if (it != NULL)
1646 		db_printf("(pid %d)", it->it_thread->td_proc->p_pid);
1647 	else
1648 		db_printf("(no thread)");
1649 	if ((ie->ie_flags & (IE_SOFT | IE_ENTROPY | IE_ADDING_THREAD)) != 0 ||
1650 	    (it != NULL && it->it_need)) {
1651 		db_printf(" {");
1652 		comma = 0;
1653 		if (ie->ie_flags & IE_SOFT) {
1654 			db_printf("SOFT");
1655 			comma = 1;
1656 		}
1657 		if (ie->ie_flags & IE_ENTROPY) {
1658 			if (comma)
1659 				db_printf(", ");
1660 			db_printf("ENTROPY");
1661 			comma = 1;
1662 		}
1663 		if (ie->ie_flags & IE_ADDING_THREAD) {
1664 			if (comma)
1665 				db_printf(", ");
1666 			db_printf("ADDING_THREAD");
1667 			comma = 1;
1668 		}
1669 		if (it != NULL && it->it_need) {
1670 			if (comma)
1671 				db_printf(", ");
1672 			db_printf("NEED");
1673 		}
1674 		db_printf("}");
1675 	}
1676 	db_printf("\n");
1677 
1678 	if (handlers)
1679 		TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
1680 		    db_dump_intrhand(ih);
1681 }
1682 
1683 /*
1684  * Dump data about interrupt handlers
1685  */
1686 DB_SHOW_COMMAND(intr, db_show_intr)
1687 {
1688 	struct intr_event *ie;
1689 	int all, verbose;
1690 
1691 	verbose = index(modif, 'v') != NULL;
1692 	all = index(modif, 'a') != NULL;
1693 	TAILQ_FOREACH(ie, &event_list, ie_list) {
1694 		if (!all && TAILQ_EMPTY(&ie->ie_handlers))
1695 			continue;
1696 		db_dump_intr_event(ie, verbose);
1697 		if (db_pager_quit)
1698 			break;
1699 	}
1700 }
1701 #endif /* DDB */
1702 
1703 /*
1704  * Start standard software interrupt threads
1705  */
1706 static void
1707 start_softintr(void *dummy)
1708 {
1709 
1710 	if (swi_add(NULL, "vm", swi_vm, NULL, SWI_VM, INTR_MPSAFE, &vm_ih))
1711 		panic("died while creating vm swi ithread");
1712 }
1713 SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr,
1714     NULL);
1715 
1716 /*
1717  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1718  * The data for this machine dependent, and the declarations are in machine
1719  * dependent code.  The layout of intrnames and intrcnt however is machine
1720  * independent.
1721  *
1722  * We do not know the length of intrcnt and intrnames at compile time, so
1723  * calculate things at run time.
1724  */
1725 static int
1726 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1727 {
1728 	return (sysctl_handle_opaque(oidp, intrnames, eintrnames - intrnames,
1729 	   req));
1730 }
1731 
1732 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1733     NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1734 
1735 static int
1736 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1737 {
1738 	return (sysctl_handle_opaque(oidp, intrcnt,
1739 	    (char *)eintrcnt - (char *)intrcnt, req));
1740 }
1741 
1742 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1743     NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
1744 
1745 #ifdef DDB
1746 /*
1747  * DDB command to dump the interrupt statistics.
1748  */
1749 DB_SHOW_COMMAND(intrcnt, db_show_intrcnt)
1750 {
1751 	u_long *i;
1752 	char *cp;
1753 
1754 	cp = intrnames;
1755 	for (i = intrcnt; i != eintrcnt && !db_pager_quit; i++) {
1756 		if (*cp == '\0')
1757 			break;
1758 		if (*i != 0)
1759 			db_printf("%s\t%lu\n", cp, *i);
1760 		cp += strlen(cp) + 1;
1761 	}
1762 }
1763 #endif
1764