xref: /freebsd/sys/kern/kern_intr.c (revision 01ded8b942effbbb4d9225c4227f264e499e9698)
1 /*-
2  * Copyright (c) 1997, Stefan Esser <se@freebsd.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice unmodified, this list of conditions, and the following
10  *    disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_ddb.h"
31 
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/conf.h>
35 #include <sys/cpuset.h>
36 #include <sys/rtprio.h>
37 #include <sys/systm.h>
38 #include <sys/interrupt.h>
39 #include <sys/kernel.h>
40 #include <sys/kthread.h>
41 #include <sys/ktr.h>
42 #include <sys/limits.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mutex.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/random.h>
49 #include <sys/resourcevar.h>
50 #include <sys/sched.h>
51 #include <sys/smp.h>
52 #include <sys/sysctl.h>
53 #include <sys/syslog.h>
54 #include <sys/unistd.h>
55 #include <sys/vmmeter.h>
56 #include <machine/atomic.h>
57 #include <machine/cpu.h>
58 #include <machine/md_var.h>
59 #include <machine/stdarg.h>
60 #ifdef DDB
61 #include <ddb/ddb.h>
62 #include <ddb/db_sym.h>
63 #endif
64 
65 /*
66  * Describe an interrupt thread.  There is one of these per interrupt event.
67  */
68 struct intr_thread {
69 	struct intr_event *it_event;
70 	struct thread *it_thread;	/* Kernel thread. */
71 	int	it_flags;		/* (j) IT_* flags. */
72 	int	it_need;		/* Needs service. */
73 };
74 
75 /* Interrupt thread flags kept in it_flags */
76 #define	IT_DEAD		0x000001	/* Thread is waiting to exit. */
77 
78 struct	intr_entropy {
79 	struct	thread *td;
80 	uintptr_t event;
81 };
82 
83 struct	intr_event *clk_intr_event;
84 struct	intr_event *tty_intr_event;
85 void	*vm_ih;
86 struct proc *intrproc;
87 
88 static MALLOC_DEFINE(M_ITHREAD, "ithread", "Interrupt Threads");
89 
90 static int intr_storm_threshold = 1000;
91 TUNABLE_INT("hw.intr_storm_threshold", &intr_storm_threshold);
92 SYSCTL_INT(_hw, OID_AUTO, intr_storm_threshold, CTLFLAG_RW,
93     &intr_storm_threshold, 0,
94     "Number of consecutive interrupts before storm protection is enabled");
95 static TAILQ_HEAD(, intr_event) event_list =
96     TAILQ_HEAD_INITIALIZER(event_list);
97 static struct mtx event_lock;
98 MTX_SYSINIT(intr_event_list, &event_lock, "intr event list", MTX_DEF);
99 
100 static void	intr_event_update(struct intr_event *ie);
101 #ifdef INTR_FILTER
102 static int	intr_event_schedule_thread(struct intr_event *ie,
103 		    struct intr_thread *ithd);
104 static int	intr_filter_loop(struct intr_event *ie,
105 		    struct trapframe *frame, struct intr_thread **ithd);
106 static struct intr_thread *ithread_create(const char *name,
107 			      struct intr_handler *ih);
108 #else
109 static int	intr_event_schedule_thread(struct intr_event *ie);
110 static struct intr_thread *ithread_create(const char *name);
111 #endif
112 static void	ithread_destroy(struct intr_thread *ithread);
113 static void	ithread_execute_handlers(struct proc *p,
114 		    struct intr_event *ie);
115 #ifdef INTR_FILTER
116 static void	priv_ithread_execute_handler(struct proc *p,
117 		    struct intr_handler *ih);
118 #endif
119 static void	ithread_loop(void *);
120 static void	ithread_update(struct intr_thread *ithd);
121 static void	start_softintr(void *);
122 
123 /* Map an interrupt type to an ithread priority. */
124 u_char
125 intr_priority(enum intr_type flags)
126 {
127 	u_char pri;
128 
129 	flags &= (INTR_TYPE_TTY | INTR_TYPE_BIO | INTR_TYPE_NET |
130 	    INTR_TYPE_CAM | INTR_TYPE_MISC | INTR_TYPE_CLK | INTR_TYPE_AV);
131 	switch (flags) {
132 	case INTR_TYPE_TTY:
133 		pri = PI_TTY;
134 		break;
135 	case INTR_TYPE_BIO:
136 		pri = PI_DISK;
137 		break;
138 	case INTR_TYPE_NET:
139 		pri = PI_NET;
140 		break;
141 	case INTR_TYPE_CAM:
142 		pri = PI_DISK;
143 		break;
144 	case INTR_TYPE_AV:
145 		pri = PI_AV;
146 		break;
147 	case INTR_TYPE_CLK:
148 		pri = PI_REALTIME;
149 		break;
150 	case INTR_TYPE_MISC:
151 		pri = PI_DULL;          /* don't care */
152 		break;
153 	default:
154 		/* We didn't specify an interrupt level. */
155 		panic("intr_priority: no interrupt type in flags");
156 	}
157 
158 	return pri;
159 }
160 
161 /*
162  * Update an ithread based on the associated intr_event.
163  */
164 static void
165 ithread_update(struct intr_thread *ithd)
166 {
167 	struct intr_event *ie;
168 	struct thread *td;
169 	u_char pri;
170 
171 	ie = ithd->it_event;
172 	td = ithd->it_thread;
173 
174 	/* Determine the overall priority of this event. */
175 	if (TAILQ_EMPTY(&ie->ie_handlers))
176 		pri = PRI_MAX_ITHD;
177 	else
178 		pri = TAILQ_FIRST(&ie->ie_handlers)->ih_pri;
179 
180 	/* Update name and priority. */
181 	strlcpy(td->td_name, ie->ie_fullname, sizeof(td->td_name));
182 	thread_lock(td);
183 	sched_prio(td, pri);
184 	thread_unlock(td);
185 }
186 
187 /*
188  * Regenerate the full name of an interrupt event and update its priority.
189  */
190 static void
191 intr_event_update(struct intr_event *ie)
192 {
193 	struct intr_handler *ih;
194 	char *last;
195 	int missed, space;
196 
197 	/* Start off with no entropy and just the name of the event. */
198 	mtx_assert(&ie->ie_lock, MA_OWNED);
199 	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
200 	ie->ie_flags &= ~IE_ENTROPY;
201 	missed = 0;
202 	space = 1;
203 
204 	/* Run through all the handlers updating values. */
205 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
206 		if (strlen(ie->ie_fullname) + strlen(ih->ih_name) + 1 <
207 		    sizeof(ie->ie_fullname)) {
208 			strcat(ie->ie_fullname, " ");
209 			strcat(ie->ie_fullname, ih->ih_name);
210 			space = 0;
211 		} else
212 			missed++;
213 		if (ih->ih_flags & IH_ENTROPY)
214 			ie->ie_flags |= IE_ENTROPY;
215 	}
216 
217 	/*
218 	 * If the handler names were too long, add +'s to indicate missing
219 	 * names. If we run out of room and still have +'s to add, change
220 	 * the last character from a + to a *.
221 	 */
222 	last = &ie->ie_fullname[sizeof(ie->ie_fullname) - 2];
223 	while (missed-- > 0) {
224 		if (strlen(ie->ie_fullname) + 1 == sizeof(ie->ie_fullname)) {
225 			if (*last == '+') {
226 				*last = '*';
227 				break;
228 			} else
229 				*last = '+';
230 		} else if (space) {
231 			strcat(ie->ie_fullname, " +");
232 			space = 0;
233 		} else
234 			strcat(ie->ie_fullname, "+");
235 	}
236 
237 	/*
238 	 * If this event has an ithread, update it's priority and
239 	 * name.
240 	 */
241 	if (ie->ie_thread != NULL)
242 		ithread_update(ie->ie_thread);
243 	CTR2(KTR_INTR, "%s: updated %s", __func__, ie->ie_fullname);
244 }
245 
246 int
247 intr_event_create(struct intr_event **event, void *source, int flags, int irq,
248     void (*pre_ithread)(void *), void (*post_ithread)(void *),
249     void (*post_filter)(void *), int (*assign_cpu)(void *, u_char),
250     const char *fmt, ...)
251 {
252 	struct intr_event *ie;
253 	va_list ap;
254 
255 	/* The only valid flag during creation is IE_SOFT. */
256 	if ((flags & ~IE_SOFT) != 0)
257 		return (EINVAL);
258 	ie = malloc(sizeof(struct intr_event), M_ITHREAD, M_WAITOK | M_ZERO);
259 	ie->ie_source = source;
260 	ie->ie_pre_ithread = pre_ithread;
261 	ie->ie_post_ithread = post_ithread;
262 	ie->ie_post_filter = post_filter;
263 	ie->ie_assign_cpu = assign_cpu;
264 	ie->ie_flags = flags;
265 	ie->ie_irq = irq;
266 	ie->ie_cpu = NOCPU;
267 	TAILQ_INIT(&ie->ie_handlers);
268 	mtx_init(&ie->ie_lock, "intr event", NULL, MTX_DEF);
269 
270 	va_start(ap, fmt);
271 	vsnprintf(ie->ie_name, sizeof(ie->ie_name), fmt, ap);
272 	va_end(ap);
273 	strlcpy(ie->ie_fullname, ie->ie_name, sizeof(ie->ie_fullname));
274 	mtx_lock(&event_lock);
275 	TAILQ_INSERT_TAIL(&event_list, ie, ie_list);
276 	mtx_unlock(&event_lock);
277 	if (event != NULL)
278 		*event = ie;
279 	CTR2(KTR_INTR, "%s: created %s", __func__, ie->ie_name);
280 	return (0);
281 }
282 
283 /*
284  * Bind an interrupt event to the specified CPU.  Note that not all
285  * platforms support binding an interrupt to a CPU.  For those
286  * platforms this request will fail.  For supported platforms, any
287  * associated ithreads as well as the primary interrupt context will
288  * be bound to the specificed CPU.  Using a cpu id of NOCPU unbinds
289  * the interrupt event.
290  */
291 int
292 intr_event_bind(struct intr_event *ie, u_char cpu)
293 {
294 	cpuset_t mask;
295 	lwpid_t id;
296 	int error;
297 
298 	/* Need a CPU to bind to. */
299 	if (cpu != NOCPU && CPU_ABSENT(cpu))
300 		return (EINVAL);
301 
302 	if (ie->ie_assign_cpu == NULL)
303 		return (EOPNOTSUPP);
304 
305 	error = priv_check(curthread, PRIV_SCHED_CPUSET_INTR);
306 	if (error)
307 		return (error);
308 
309 	/*
310 	 * If we have any ithreads try to set their mask first to verify
311 	 * permissions, etc.
312 	 */
313 	mtx_lock(&ie->ie_lock);
314 	if (ie->ie_thread != NULL) {
315 		CPU_ZERO(&mask);
316 		if (cpu == NOCPU)
317 			CPU_COPY(cpuset_root, &mask);
318 		else
319 			CPU_SET(cpu, &mask);
320 		id = ie->ie_thread->it_thread->td_tid;
321 		mtx_unlock(&ie->ie_lock);
322 		error = cpuset_setthread(id, &mask);
323 		if (error)
324 			return (error);
325 	} else
326 		mtx_unlock(&ie->ie_lock);
327 	error = ie->ie_assign_cpu(ie->ie_source, cpu);
328 	if (error) {
329 		mtx_lock(&ie->ie_lock);
330 		if (ie->ie_thread != NULL) {
331 			CPU_ZERO(&mask);
332 			if (ie->ie_cpu == NOCPU)
333 				CPU_COPY(cpuset_root, &mask);
334 			else
335 				CPU_SET(cpu, &mask);
336 			id = ie->ie_thread->it_thread->td_tid;
337 			mtx_unlock(&ie->ie_lock);
338 			(void)cpuset_setthread(id, &mask);
339 		} else
340 			mtx_unlock(&ie->ie_lock);
341 		return (error);
342 	}
343 
344 	mtx_lock(&ie->ie_lock);
345 	ie->ie_cpu = cpu;
346 	mtx_unlock(&ie->ie_lock);
347 
348 	return (error);
349 }
350 
351 static struct intr_event *
352 intr_lookup(int irq)
353 {
354 	struct intr_event *ie;
355 
356 	mtx_lock(&event_lock);
357 	TAILQ_FOREACH(ie, &event_list, ie_list)
358 		if (ie->ie_irq == irq &&
359 		    (ie->ie_flags & IE_SOFT) == 0 &&
360 		    TAILQ_FIRST(&ie->ie_handlers) != NULL)
361 			break;
362 	mtx_unlock(&event_lock);
363 	return (ie);
364 }
365 
366 int
367 intr_setaffinity(int irq, void *m)
368 {
369 	struct intr_event *ie;
370 	cpuset_t *mask;
371 	u_char cpu;
372 	int n;
373 
374 	mask = m;
375 	cpu = NOCPU;
376 	/*
377 	 * If we're setting all cpus we can unbind.  Otherwise make sure
378 	 * only one cpu is in the set.
379 	 */
380 	if (CPU_CMP(cpuset_root, mask)) {
381 		for (n = 0; n < CPU_SETSIZE; n++) {
382 			if (!CPU_ISSET(n, mask))
383 				continue;
384 			if (cpu != NOCPU)
385 				return (EINVAL);
386 			cpu = (u_char)n;
387 		}
388 	}
389 	ie = intr_lookup(irq);
390 	if (ie == NULL)
391 		return (ESRCH);
392 	return (intr_event_bind(ie, cpu));
393 }
394 
395 int
396 intr_getaffinity(int irq, void *m)
397 {
398 	struct intr_event *ie;
399 	cpuset_t *mask;
400 
401 	mask = m;
402 	ie = intr_lookup(irq);
403 	if (ie == NULL)
404 		return (ESRCH);
405 	CPU_ZERO(mask);
406 	mtx_lock(&ie->ie_lock);
407 	if (ie->ie_cpu == NOCPU)
408 		CPU_COPY(cpuset_root, mask);
409 	else
410 		CPU_SET(ie->ie_cpu, mask);
411 	mtx_unlock(&ie->ie_lock);
412 	return (0);
413 }
414 
415 int
416 intr_event_destroy(struct intr_event *ie)
417 {
418 
419 	mtx_lock(&event_lock);
420 	mtx_lock(&ie->ie_lock);
421 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
422 		mtx_unlock(&ie->ie_lock);
423 		mtx_unlock(&event_lock);
424 		return (EBUSY);
425 	}
426 	TAILQ_REMOVE(&event_list, ie, ie_list);
427 #ifndef notyet
428 	if (ie->ie_thread != NULL) {
429 		ithread_destroy(ie->ie_thread);
430 		ie->ie_thread = NULL;
431 	}
432 #endif
433 	mtx_unlock(&ie->ie_lock);
434 	mtx_unlock(&event_lock);
435 	mtx_destroy(&ie->ie_lock);
436 	free(ie, M_ITHREAD);
437 	return (0);
438 }
439 
440 #ifndef INTR_FILTER
441 static struct intr_thread *
442 ithread_create(const char *name)
443 {
444 	struct intr_thread *ithd;
445 	struct thread *td;
446 	int error;
447 
448 	ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
449 
450 	error = kproc_kthread_add(ithread_loop, ithd, &intrproc,
451 		    &td, RFSTOPPED | RFHIGHPID,
452 	    	    0, "intr", "%s", name);
453 	if (error)
454 		panic("kproc_create() failed with %d", error);
455 	thread_lock(td);
456 	sched_class(td, PRI_ITHD);
457 	TD_SET_IWAIT(td);
458 	thread_unlock(td);
459 	td->td_pflags |= TDP_ITHREAD;
460 	ithd->it_thread = td;
461 	CTR2(KTR_INTR, "%s: created %s", __func__, name);
462 	return (ithd);
463 }
464 #else
465 static struct intr_thread *
466 ithread_create(const char *name, struct intr_handler *ih)
467 {
468 	struct intr_thread *ithd;
469 	struct thread *td;
470 	int error;
471 
472 	ithd = malloc(sizeof(struct intr_thread), M_ITHREAD, M_WAITOK | M_ZERO);
473 
474 	error = kproc_kthread_add(ithread_loop, ih, &intrproc,
475 		    &td, RFSTOPPED | RFHIGHPID,
476 	    	    0, "intr", "%s", name);
477 	if (error)
478 		panic("kproc_create() failed with %d", error);
479 	thread_lock(td);
480 	sched_class(td, PRI_ITHD);
481 	TD_SET_IWAIT(td);
482 	thread_unlock(td);
483 	td->td_pflags |= TDP_ITHREAD;
484 	ithd->it_thread = td;
485 	CTR2(KTR_INTR, "%s: created %s", __func__, name);
486 	return (ithd);
487 }
488 #endif
489 
490 static void
491 ithread_destroy(struct intr_thread *ithread)
492 {
493 	struct thread *td;
494 
495 	CTR2(KTR_INTR, "%s: killing %s", __func__, ithread->it_event->ie_name);
496 	td = ithread->it_thread;
497 	thread_lock(td);
498 	ithread->it_flags |= IT_DEAD;
499 	if (TD_AWAITING_INTR(td)) {
500 		TD_CLR_IWAIT(td);
501 		sched_add(td, SRQ_INTR);
502 	}
503 	thread_unlock(td);
504 }
505 
506 #ifndef INTR_FILTER
507 int
508 intr_event_add_handler(struct intr_event *ie, const char *name,
509     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
510     enum intr_type flags, void **cookiep)
511 {
512 	struct intr_handler *ih, *temp_ih;
513 	struct intr_thread *it;
514 
515 	if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
516 		return (EINVAL);
517 
518 	/* Allocate and populate an interrupt handler structure. */
519 	ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
520 	ih->ih_filter = filter;
521 	ih->ih_handler = handler;
522 	ih->ih_argument = arg;
523 	strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
524 	ih->ih_event = ie;
525 	ih->ih_pri = pri;
526 	if (flags & INTR_EXCL)
527 		ih->ih_flags = IH_EXCLUSIVE;
528 	if (flags & INTR_MPSAFE)
529 		ih->ih_flags |= IH_MPSAFE;
530 	if (flags & INTR_ENTROPY)
531 		ih->ih_flags |= IH_ENTROPY;
532 
533 	/* We can only have one exclusive handler in a event. */
534 	mtx_lock(&ie->ie_lock);
535 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
536 		if ((flags & INTR_EXCL) ||
537 		    (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
538 			mtx_unlock(&ie->ie_lock);
539 			free(ih, M_ITHREAD);
540 			return (EINVAL);
541 		}
542 	}
543 
544 	/* Add the new handler to the event in priority order. */
545 	TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
546 		if (temp_ih->ih_pri > ih->ih_pri)
547 			break;
548 	}
549 	if (temp_ih == NULL)
550 		TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
551 	else
552 		TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
553 	intr_event_update(ie);
554 
555 	/* Create a thread if we need one. */
556 	while (ie->ie_thread == NULL && handler != NULL) {
557 		if (ie->ie_flags & IE_ADDING_THREAD)
558 			msleep(ie, &ie->ie_lock, 0, "ithread", 0);
559 		else {
560 			ie->ie_flags |= IE_ADDING_THREAD;
561 			mtx_unlock(&ie->ie_lock);
562 			it = ithread_create("intr: newborn");
563 			mtx_lock(&ie->ie_lock);
564 			ie->ie_flags &= ~IE_ADDING_THREAD;
565 			ie->ie_thread = it;
566 			it->it_event = ie;
567 			ithread_update(it);
568 			wakeup(ie);
569 		}
570 	}
571 	CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
572 	    ie->ie_name);
573 	mtx_unlock(&ie->ie_lock);
574 
575 	if (cookiep != NULL)
576 		*cookiep = ih;
577 	return (0);
578 }
579 #else
580 int
581 intr_event_add_handler(struct intr_event *ie, const char *name,
582     driver_filter_t filter, driver_intr_t handler, void *arg, u_char pri,
583     enum intr_type flags, void **cookiep)
584 {
585 	struct intr_handler *ih, *temp_ih;
586 	struct intr_thread *it;
587 
588 	if (ie == NULL || name == NULL || (handler == NULL && filter == NULL))
589 		return (EINVAL);
590 
591 	/* Allocate and populate an interrupt handler structure. */
592 	ih = malloc(sizeof(struct intr_handler), M_ITHREAD, M_WAITOK | M_ZERO);
593 	ih->ih_filter = filter;
594 	ih->ih_handler = handler;
595 	ih->ih_argument = arg;
596 	strlcpy(ih->ih_name, name, sizeof(ih->ih_name));
597 	ih->ih_event = ie;
598 	ih->ih_pri = pri;
599 	if (flags & INTR_EXCL)
600 		ih->ih_flags = IH_EXCLUSIVE;
601 	if (flags & INTR_MPSAFE)
602 		ih->ih_flags |= IH_MPSAFE;
603 	if (flags & INTR_ENTROPY)
604 		ih->ih_flags |= IH_ENTROPY;
605 
606 	/* We can only have one exclusive handler in a event. */
607 	mtx_lock(&ie->ie_lock);
608 	if (!TAILQ_EMPTY(&ie->ie_handlers)) {
609 		if ((flags & INTR_EXCL) ||
610 		    (TAILQ_FIRST(&ie->ie_handlers)->ih_flags & IH_EXCLUSIVE)) {
611 			mtx_unlock(&ie->ie_lock);
612 			free(ih, M_ITHREAD);
613 			return (EINVAL);
614 		}
615 	}
616 
617 	/* Add the new handler to the event in priority order. */
618 	TAILQ_FOREACH(temp_ih, &ie->ie_handlers, ih_next) {
619 		if (temp_ih->ih_pri > ih->ih_pri)
620 			break;
621 	}
622 	if (temp_ih == NULL)
623 		TAILQ_INSERT_TAIL(&ie->ie_handlers, ih, ih_next);
624 	else
625 		TAILQ_INSERT_BEFORE(temp_ih, ih, ih_next);
626 	intr_event_update(ie);
627 
628 	/* For filtered handlers, create a private ithread to run on. */
629 	if (filter != NULL && handler != NULL) {
630 		mtx_unlock(&ie->ie_lock);
631 		it = ithread_create("intr: newborn", ih);
632 		mtx_lock(&ie->ie_lock);
633 		it->it_event = ie;
634 		ih->ih_thread = it;
635 		ithread_update(it); // XXX - do we really need this?!?!?
636 	} else { /* Create the global per-event thread if we need one. */
637 		while (ie->ie_thread == NULL && handler != NULL) {
638 			if (ie->ie_flags & IE_ADDING_THREAD)
639 				msleep(ie, &ie->ie_lock, 0, "ithread", 0);
640 			else {
641 				ie->ie_flags |= IE_ADDING_THREAD;
642 				mtx_unlock(&ie->ie_lock);
643 				it = ithread_create("intr: newborn", ih);
644 				mtx_lock(&ie->ie_lock);
645 				ie->ie_flags &= ~IE_ADDING_THREAD;
646 				ie->ie_thread = it;
647 				it->it_event = ie;
648 				ithread_update(it);
649 				wakeup(ie);
650 			}
651 		}
652 	}
653 	CTR3(KTR_INTR, "%s: added %s to %s", __func__, ih->ih_name,
654 	    ie->ie_name);
655 	mtx_unlock(&ie->ie_lock);
656 
657 	if (cookiep != NULL)
658 		*cookiep = ih;
659 	return (0);
660 }
661 #endif
662 
663 /*
664  * Append a description preceded by a ':' to the name of the specified
665  * interrupt handler.
666  */
667 int
668 intr_event_describe_handler(struct intr_event *ie, void *cookie,
669     const char *descr)
670 {
671 	struct intr_handler *ih;
672 	size_t space;
673 	char *start;
674 
675 	mtx_lock(&ie->ie_lock);
676 #ifdef INVARIANTS
677 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
678 		if (ih == cookie)
679 			break;
680 	}
681 	if (ih == NULL) {
682 		mtx_unlock(&ie->ie_lock);
683 		panic("handler %p not found in interrupt event %p", cookie, ie);
684 	}
685 #endif
686 	ih = cookie;
687 
688 	/*
689 	 * Look for an existing description by checking for an
690 	 * existing ":".  This assumes device names do not include
691 	 * colons.  If one is found, prepare to insert the new
692 	 * description at that point.  If one is not found, find the
693 	 * end of the name to use as the insertion point.
694 	 */
695 	start = index(ih->ih_name, ':');
696 	if (start == NULL)
697 		start = index(ih->ih_name, 0);
698 
699 	/*
700 	 * See if there is enough remaining room in the string for the
701 	 * description + ":".  The "- 1" leaves room for the trailing
702 	 * '\0'.  The "+ 1" accounts for the colon.
703 	 */
704 	space = sizeof(ih->ih_name) - (start - ih->ih_name) - 1;
705 	if (strlen(descr) + 1 > space) {
706 		mtx_unlock(&ie->ie_lock);
707 		return (ENOSPC);
708 	}
709 
710 	/* Append a colon followed by the description. */
711 	*start = ':';
712 	strcpy(start + 1, descr);
713 	intr_event_update(ie);
714 	mtx_unlock(&ie->ie_lock);
715 	return (0);
716 }
717 
718 /*
719  * Return the ie_source field from the intr_event an intr_handler is
720  * associated with.
721  */
722 void *
723 intr_handler_source(void *cookie)
724 {
725 	struct intr_handler *ih;
726 	struct intr_event *ie;
727 
728 	ih = (struct intr_handler *)cookie;
729 	if (ih == NULL)
730 		return (NULL);
731 	ie = ih->ih_event;
732 	KASSERT(ie != NULL,
733 	    ("interrupt handler \"%s\" has a NULL interrupt event",
734 	    ih->ih_name));
735 	return (ie->ie_source);
736 }
737 
738 #ifndef INTR_FILTER
739 int
740 intr_event_remove_handler(void *cookie)
741 {
742 	struct intr_handler *handler = (struct intr_handler *)cookie;
743 	struct intr_event *ie;
744 #ifdef INVARIANTS
745 	struct intr_handler *ih;
746 #endif
747 #ifdef notyet
748 	int dead;
749 #endif
750 
751 	if (handler == NULL)
752 		return (EINVAL);
753 	ie = handler->ih_event;
754 	KASSERT(ie != NULL,
755 	    ("interrupt handler \"%s\" has a NULL interrupt event",
756 	    handler->ih_name));
757 	mtx_lock(&ie->ie_lock);
758 	CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
759 	    ie->ie_name);
760 #ifdef INVARIANTS
761 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
762 		if (ih == handler)
763 			goto ok;
764 	mtx_unlock(&ie->ie_lock);
765 	panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
766 	    ih->ih_name, ie->ie_name);
767 ok:
768 #endif
769 	/*
770 	 * If there is no ithread, then just remove the handler and return.
771 	 * XXX: Note that an INTR_FAST handler might be running on another
772 	 * CPU!
773 	 */
774 	if (ie->ie_thread == NULL) {
775 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
776 		mtx_unlock(&ie->ie_lock);
777 		free(handler, M_ITHREAD);
778 		return (0);
779 	}
780 
781 	/*
782 	 * If the interrupt thread is already running, then just mark this
783 	 * handler as being dead and let the ithread do the actual removal.
784 	 *
785 	 * During a cold boot while cold is set, msleep() does not sleep,
786 	 * so we have to remove the handler here rather than letting the
787 	 * thread do it.
788 	 */
789 	thread_lock(ie->ie_thread->it_thread);
790 	if (!TD_AWAITING_INTR(ie->ie_thread->it_thread) && !cold) {
791 		handler->ih_flags |= IH_DEAD;
792 
793 		/*
794 		 * Ensure that the thread will process the handler list
795 		 * again and remove this handler if it has already passed
796 		 * it on the list.
797 		 */
798 		ie->ie_thread->it_need = 1;
799 	} else
800 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
801 	thread_unlock(ie->ie_thread->it_thread);
802 	while (handler->ih_flags & IH_DEAD)
803 		msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
804 	intr_event_update(ie);
805 #ifdef notyet
806 	/*
807 	 * XXX: This could be bad in the case of ppbus(8).  Also, I think
808 	 * this could lead to races of stale data when servicing an
809 	 * interrupt.
810 	 */
811 	dead = 1;
812 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
813 		if (!(ih->ih_flags & IH_FAST)) {
814 			dead = 0;
815 			break;
816 		}
817 	}
818 	if (dead) {
819 		ithread_destroy(ie->ie_thread);
820 		ie->ie_thread = NULL;
821 	}
822 #endif
823 	mtx_unlock(&ie->ie_lock);
824 	free(handler, M_ITHREAD);
825 	return (0);
826 }
827 
828 static int
829 intr_event_schedule_thread(struct intr_event *ie)
830 {
831 	struct intr_entropy entropy;
832 	struct intr_thread *it;
833 	struct thread *td;
834 	struct thread *ctd;
835 	struct proc *p;
836 
837 	/*
838 	 * If no ithread or no handlers, then we have a stray interrupt.
839 	 */
840 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) ||
841 	    ie->ie_thread == NULL)
842 		return (EINVAL);
843 
844 	ctd = curthread;
845 	it = ie->ie_thread;
846 	td = it->it_thread;
847 	p = td->td_proc;
848 
849 	/*
850 	 * If any of the handlers for this ithread claim to be good
851 	 * sources of entropy, then gather some.
852 	 */
853 	if (harvest.interrupt && ie->ie_flags & IE_ENTROPY) {
854 		CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", __func__,
855 		    p->p_pid, td->td_name);
856 		entropy.event = (uintptr_t)ie;
857 		entropy.td = ctd;
858 		random_harvest(&entropy, sizeof(entropy), 2, 0,
859 		    RANDOM_INTERRUPT);
860 	}
861 
862 	KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
863 
864 	/*
865 	 * Set it_need to tell the thread to keep running if it is already
866 	 * running.  Then, lock the thread and see if we actually need to
867 	 * put it on the runqueue.
868 	 */
869 	it->it_need = 1;
870 	thread_lock(td);
871 	if (TD_AWAITING_INTR(td)) {
872 		CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
873 		    td->td_name);
874 		TD_CLR_IWAIT(td);
875 		sched_add(td, SRQ_INTR);
876 	} else {
877 		CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
878 		    __func__, p->p_pid, td->td_name, it->it_need, td->td_state);
879 	}
880 	thread_unlock(td);
881 
882 	return (0);
883 }
884 #else
885 int
886 intr_event_remove_handler(void *cookie)
887 {
888 	struct intr_handler *handler = (struct intr_handler *)cookie;
889 	struct intr_event *ie;
890 	struct intr_thread *it;
891 #ifdef INVARIANTS
892 	struct intr_handler *ih;
893 #endif
894 #ifdef notyet
895 	int dead;
896 #endif
897 
898 	if (handler == NULL)
899 		return (EINVAL);
900 	ie = handler->ih_event;
901 	KASSERT(ie != NULL,
902 	    ("interrupt handler \"%s\" has a NULL interrupt event",
903 	    handler->ih_name));
904 	mtx_lock(&ie->ie_lock);
905 	CTR3(KTR_INTR, "%s: removing %s from %s", __func__, handler->ih_name,
906 	    ie->ie_name);
907 #ifdef INVARIANTS
908 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
909 		if (ih == handler)
910 			goto ok;
911 	mtx_unlock(&ie->ie_lock);
912 	panic("interrupt handler \"%s\" not found in interrupt event \"%s\"",
913 	    ih->ih_name, ie->ie_name);
914 ok:
915 #endif
916 	/*
917 	 * If there are no ithreads (per event and per handler), then
918 	 * just remove the handler and return.
919 	 * XXX: Note that an INTR_FAST handler might be running on another CPU!
920 	 */
921 	if (ie->ie_thread == NULL && handler->ih_thread == NULL) {
922 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
923 		mtx_unlock(&ie->ie_lock);
924 		free(handler, M_ITHREAD);
925 		return (0);
926 	}
927 
928 	/* Private or global ithread? */
929 	it = (handler->ih_thread) ? handler->ih_thread : ie->ie_thread;
930 	/*
931 	 * If the interrupt thread is already running, then just mark this
932 	 * handler as being dead and let the ithread do the actual removal.
933 	 *
934 	 * During a cold boot while cold is set, msleep() does not sleep,
935 	 * so we have to remove the handler here rather than letting the
936 	 * thread do it.
937 	 */
938 	thread_lock(it->it_thread);
939 	if (!TD_AWAITING_INTR(it->it_thread) && !cold) {
940 		handler->ih_flags |= IH_DEAD;
941 
942 		/*
943 		 * Ensure that the thread will process the handler list
944 		 * again and remove this handler if it has already passed
945 		 * it on the list.
946 		 */
947 		it->it_need = 1;
948 	} else
949 		TAILQ_REMOVE(&ie->ie_handlers, handler, ih_next);
950 	thread_unlock(it->it_thread);
951 	while (handler->ih_flags & IH_DEAD)
952 		msleep(handler, &ie->ie_lock, 0, "iev_rmh", 0);
953 	/*
954 	 * At this point, the handler has been disconnected from the event,
955 	 * so we can kill the private ithread if any.
956 	 */
957 	if (handler->ih_thread) {
958 		ithread_destroy(handler->ih_thread);
959 		handler->ih_thread = NULL;
960 	}
961 	intr_event_update(ie);
962 #ifdef notyet
963 	/*
964 	 * XXX: This could be bad in the case of ppbus(8).  Also, I think
965 	 * this could lead to races of stale data when servicing an
966 	 * interrupt.
967 	 */
968 	dead = 1;
969 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
970 		if (handler != NULL) {
971 			dead = 0;
972 			break;
973 		}
974 	}
975 	if (dead) {
976 		ithread_destroy(ie->ie_thread);
977 		ie->ie_thread = NULL;
978 	}
979 #endif
980 	mtx_unlock(&ie->ie_lock);
981 	free(handler, M_ITHREAD);
982 	return (0);
983 }
984 
985 static int
986 intr_event_schedule_thread(struct intr_event *ie, struct intr_thread *it)
987 {
988 	struct intr_entropy entropy;
989 	struct thread *td;
990 	struct thread *ctd;
991 	struct proc *p;
992 
993 	/*
994 	 * If no ithread or no handlers, then we have a stray interrupt.
995 	 */
996 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers) || it == NULL)
997 		return (EINVAL);
998 
999 	ctd = curthread;
1000 	td = it->it_thread;
1001 	p = td->td_proc;
1002 
1003 	/*
1004 	 * If any of the handlers for this ithread claim to be good
1005 	 * sources of entropy, then gather some.
1006 	 */
1007 	if (harvest.interrupt && ie->ie_flags & IE_ENTROPY) {
1008 		CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", __func__,
1009 		    p->p_pid, td->td_name);
1010 		entropy.event = (uintptr_t)ie;
1011 		entropy.td = ctd;
1012 		random_harvest(&entropy, sizeof(entropy), 2, 0,
1013 		    RANDOM_INTERRUPT);
1014 	}
1015 
1016 	KASSERT(p != NULL, ("ithread %s has no process", ie->ie_name));
1017 
1018 	/*
1019 	 * Set it_need to tell the thread to keep running if it is already
1020 	 * running.  Then, lock the thread and see if we actually need to
1021 	 * put it on the runqueue.
1022 	 */
1023 	it->it_need = 1;
1024 	thread_lock(td);
1025 	if (TD_AWAITING_INTR(td)) {
1026 		CTR3(KTR_INTR, "%s: schedule pid %d (%s)", __func__, p->p_pid,
1027 		    td->td_name);
1028 		TD_CLR_IWAIT(td);
1029 		sched_add(td, SRQ_INTR);
1030 	} else {
1031 		CTR5(KTR_INTR, "%s: pid %d (%s): it_need %d, state %d",
1032 		    __func__, p->p_pid, td->td_name, it->it_need, td->td_state);
1033 	}
1034 	thread_unlock(td);
1035 
1036 	return (0);
1037 }
1038 #endif
1039 
1040 /*
1041  * Allow interrupt event binding for software interrupt handlers -- a no-op,
1042  * since interrupts are generated in software rather than being directed by
1043  * a PIC.
1044  */
1045 static int
1046 swi_assign_cpu(void *arg, u_char cpu)
1047 {
1048 
1049 	return (0);
1050 }
1051 
1052 /*
1053  * Add a software interrupt handler to a specified event.  If a given event
1054  * is not specified, then a new event is created.
1055  */
1056 int
1057 swi_add(struct intr_event **eventp, const char *name, driver_intr_t handler,
1058 	    void *arg, int pri, enum intr_type flags, void **cookiep)
1059 {
1060 	struct thread *td;
1061 	struct intr_event *ie;
1062 	int error;
1063 
1064 	if (flags & INTR_ENTROPY)
1065 		return (EINVAL);
1066 
1067 	ie = (eventp != NULL) ? *eventp : NULL;
1068 
1069 	if (ie != NULL) {
1070 		if (!(ie->ie_flags & IE_SOFT))
1071 			return (EINVAL);
1072 	} else {
1073 		error = intr_event_create(&ie, NULL, IE_SOFT, 0,
1074 		    NULL, NULL, NULL, swi_assign_cpu, "swi%d:", pri);
1075 		if (error)
1076 			return (error);
1077 		if (eventp != NULL)
1078 			*eventp = ie;
1079 	}
1080 	error = intr_event_add_handler(ie, name, NULL, handler, arg,
1081 	    PI_SWI(pri), flags, cookiep);
1082 	if (error)
1083 		return (error);
1084 	if (pri == SWI_CLOCK) {
1085 		td = ie->ie_thread->it_thread;
1086 		thread_lock(td);
1087 		td->td_flags |= TDF_NOLOAD;
1088 		thread_unlock(td);
1089 	}
1090 	return (0);
1091 }
1092 
1093 /*
1094  * Schedule a software interrupt thread.
1095  */
1096 void
1097 swi_sched(void *cookie, int flags)
1098 {
1099 	struct intr_handler *ih = (struct intr_handler *)cookie;
1100 	struct intr_event *ie = ih->ih_event;
1101 	int error;
1102 
1103 	CTR3(KTR_INTR, "swi_sched: %s %s need=%d", ie->ie_name, ih->ih_name,
1104 	    ih->ih_need);
1105 
1106 	/*
1107 	 * Set ih_need for this handler so that if the ithread is already
1108 	 * running it will execute this handler on the next pass.  Otherwise,
1109 	 * it will execute it the next time it runs.
1110 	 */
1111 	atomic_store_rel_int(&ih->ih_need, 1);
1112 
1113 	if (!(flags & SWI_DELAY)) {
1114 		PCPU_INC(cnt.v_soft);
1115 #ifdef INTR_FILTER
1116 		error = intr_event_schedule_thread(ie, ie->ie_thread);
1117 #else
1118 		error = intr_event_schedule_thread(ie);
1119 #endif
1120 		KASSERT(error == 0, ("stray software interrupt"));
1121 	}
1122 }
1123 
1124 /*
1125  * Remove a software interrupt handler.  Currently this code does not
1126  * remove the associated interrupt event if it becomes empty.  Calling code
1127  * may do so manually via intr_event_destroy(), but that's not really
1128  * an optimal interface.
1129  */
1130 int
1131 swi_remove(void *cookie)
1132 {
1133 
1134 	return (intr_event_remove_handler(cookie));
1135 }
1136 
1137 #ifdef INTR_FILTER
1138 static void
1139 priv_ithread_execute_handler(struct proc *p, struct intr_handler *ih)
1140 {
1141 	struct intr_event *ie;
1142 
1143 	ie = ih->ih_event;
1144 	/*
1145 	 * If this handler is marked for death, remove it from
1146 	 * the list of handlers and wake up the sleeper.
1147 	 */
1148 	if (ih->ih_flags & IH_DEAD) {
1149 		mtx_lock(&ie->ie_lock);
1150 		TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
1151 		ih->ih_flags &= ~IH_DEAD;
1152 		wakeup(ih);
1153 		mtx_unlock(&ie->ie_lock);
1154 		return;
1155 	}
1156 
1157 	/* Execute this handler. */
1158 	CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
1159 	     __func__, p->p_pid, (void *)ih->ih_handler, ih->ih_argument,
1160 	     ih->ih_name, ih->ih_flags);
1161 
1162 	if (!(ih->ih_flags & IH_MPSAFE))
1163 		mtx_lock(&Giant);
1164 	ih->ih_handler(ih->ih_argument);
1165 	if (!(ih->ih_flags & IH_MPSAFE))
1166 		mtx_unlock(&Giant);
1167 }
1168 #endif
1169 
1170 /*
1171  * This is a public function for use by drivers that mux interrupt
1172  * handlers for child devices from their interrupt handler.
1173  */
1174 void
1175 intr_event_execute_handlers(struct proc *p, struct intr_event *ie)
1176 {
1177 	struct intr_handler *ih, *ihn;
1178 
1179 	TAILQ_FOREACH_SAFE(ih, &ie->ie_handlers, ih_next, ihn) {
1180 		/*
1181 		 * If this handler is marked for death, remove it from
1182 		 * the list of handlers and wake up the sleeper.
1183 		 */
1184 		if (ih->ih_flags & IH_DEAD) {
1185 			mtx_lock(&ie->ie_lock);
1186 			TAILQ_REMOVE(&ie->ie_handlers, ih, ih_next);
1187 			ih->ih_flags &= ~IH_DEAD;
1188 			wakeup(ih);
1189 			mtx_unlock(&ie->ie_lock);
1190 			continue;
1191 		}
1192 
1193 		/* Skip filter only handlers */
1194 		if (ih->ih_handler == NULL)
1195 			continue;
1196 
1197 		/*
1198 		 * For software interrupt threads, we only execute
1199 		 * handlers that have their need flag set.  Hardware
1200 		 * interrupt threads always invoke all of their handlers.
1201 		 */
1202 		if (ie->ie_flags & IE_SOFT) {
1203 			if (!ih->ih_need)
1204 				continue;
1205 			else
1206 				atomic_store_rel_int(&ih->ih_need, 0);
1207 		}
1208 
1209 		/* Execute this handler. */
1210 		CTR6(KTR_INTR, "%s: pid %d exec %p(%p) for %s flg=%x",
1211 		    __func__, p->p_pid, (void *)ih->ih_handler,
1212 		    ih->ih_argument, ih->ih_name, ih->ih_flags);
1213 
1214 		if (!(ih->ih_flags & IH_MPSAFE))
1215 			mtx_lock(&Giant);
1216 		ih->ih_handler(ih->ih_argument);
1217 		if (!(ih->ih_flags & IH_MPSAFE))
1218 			mtx_unlock(&Giant);
1219 	}
1220 }
1221 
1222 static void
1223 ithread_execute_handlers(struct proc *p, struct intr_event *ie)
1224 {
1225 
1226 	/* Interrupt handlers should not sleep. */
1227 	if (!(ie->ie_flags & IE_SOFT))
1228 		THREAD_NO_SLEEPING();
1229 	intr_event_execute_handlers(p, ie);
1230 	if (!(ie->ie_flags & IE_SOFT))
1231 		THREAD_SLEEPING_OK();
1232 
1233 	/*
1234 	 * Interrupt storm handling:
1235 	 *
1236 	 * If this interrupt source is currently storming, then throttle
1237 	 * it to only fire the handler once  per clock tick.
1238 	 *
1239 	 * If this interrupt source is not currently storming, but the
1240 	 * number of back to back interrupts exceeds the storm threshold,
1241 	 * then enter storming mode.
1242 	 */
1243 	if (intr_storm_threshold != 0 && ie->ie_count >= intr_storm_threshold &&
1244 	    !(ie->ie_flags & IE_SOFT)) {
1245 		/* Report the message only once every second. */
1246 		if (ppsratecheck(&ie->ie_warntm, &ie->ie_warncnt, 1)) {
1247 			printf(
1248 	"interrupt storm detected on \"%s\"; throttling interrupt source\n",
1249 			    ie->ie_name);
1250 		}
1251 		pause("istorm", 1);
1252 	} else
1253 		ie->ie_count++;
1254 
1255 	/*
1256 	 * Now that all the handlers have had a chance to run, reenable
1257 	 * the interrupt source.
1258 	 */
1259 	if (ie->ie_post_ithread != NULL)
1260 		ie->ie_post_ithread(ie->ie_source);
1261 }
1262 
1263 #ifndef INTR_FILTER
1264 /*
1265  * This is the main code for interrupt threads.
1266  */
1267 static void
1268 ithread_loop(void *arg)
1269 {
1270 	struct intr_thread *ithd;
1271 	struct intr_event *ie;
1272 	struct thread *td;
1273 	struct proc *p;
1274 
1275 	td = curthread;
1276 	p = td->td_proc;
1277 	ithd = (struct intr_thread *)arg;
1278 	KASSERT(ithd->it_thread == td,
1279 	    ("%s: ithread and proc linkage out of sync", __func__));
1280 	ie = ithd->it_event;
1281 	ie->ie_count = 0;
1282 
1283 	/*
1284 	 * As long as we have interrupts outstanding, go through the
1285 	 * list of handlers, giving each one a go at it.
1286 	 */
1287 	for (;;) {
1288 		/*
1289 		 * If we are an orphaned thread, then just die.
1290 		 */
1291 		if (ithd->it_flags & IT_DEAD) {
1292 			CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
1293 			    p->p_pid, td->td_name);
1294 			free(ithd, M_ITHREAD);
1295 			kthread_exit();
1296 		}
1297 
1298 		/*
1299 		 * Service interrupts.  If another interrupt arrives while
1300 		 * we are running, it will set it_need to note that we
1301 		 * should make another pass.
1302 		 */
1303 		while (ithd->it_need) {
1304 			/*
1305 			 * This might need a full read and write barrier
1306 			 * to make sure that this write posts before any
1307 			 * of the memory or device accesses in the
1308 			 * handlers.
1309 			 */
1310 			atomic_store_rel_int(&ithd->it_need, 0);
1311 			ithread_execute_handlers(p, ie);
1312 		}
1313 		WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
1314 		mtx_assert(&Giant, MA_NOTOWNED);
1315 
1316 		/*
1317 		 * Processed all our interrupts.  Now get the sched
1318 		 * lock.  This may take a while and it_need may get
1319 		 * set again, so we have to check it again.
1320 		 */
1321 		thread_lock(td);
1322 		if (!ithd->it_need && !(ithd->it_flags & IT_DEAD)) {
1323 			TD_SET_IWAIT(td);
1324 			ie->ie_count = 0;
1325 			mi_switch(SW_VOL | SWT_IWAIT, NULL);
1326 		}
1327 		thread_unlock(td);
1328 	}
1329 }
1330 
1331 /*
1332  * Main interrupt handling body.
1333  *
1334  * Input:
1335  * o ie:                        the event connected to this interrupt.
1336  * o frame:                     some archs (i.e. i386) pass a frame to some.
1337  *                              handlers as their main argument.
1338  * Return value:
1339  * o 0:                         everything ok.
1340  * o EINVAL:                    stray interrupt.
1341  */
1342 int
1343 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
1344 {
1345 	struct intr_handler *ih;
1346 	struct trapframe *oldframe;
1347 	struct thread *td;
1348 	int error, ret, thread;
1349 
1350 	td = curthread;
1351 
1352 	/* An interrupt with no event or handlers is a stray interrupt. */
1353 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
1354 		return (EINVAL);
1355 
1356 	/*
1357 	 * Execute fast interrupt handlers directly.
1358 	 * To support clock handlers, if a handler registers
1359 	 * with a NULL argument, then we pass it a pointer to
1360 	 * a trapframe as its argument.
1361 	 */
1362 	td->td_intr_nesting_level++;
1363 	thread = 0;
1364 	ret = 0;
1365 	critical_enter();
1366 	oldframe = td->td_intr_frame;
1367 	td->td_intr_frame = frame;
1368 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1369 		if (ih->ih_filter == NULL) {
1370 			thread = 1;
1371 			continue;
1372 		}
1373 		CTR4(KTR_INTR, "%s: exec %p(%p) for %s", __func__,
1374 		    ih->ih_filter, ih->ih_argument == NULL ? frame :
1375 		    ih->ih_argument, ih->ih_name);
1376 		if (ih->ih_argument == NULL)
1377 			ret = ih->ih_filter(frame);
1378 		else
1379 			ret = ih->ih_filter(ih->ih_argument);
1380 		KASSERT(ret == FILTER_STRAY ||
1381 		    ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 &&
1382 		    (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0),
1383 		    ("%s: incorrect return value %#x from %s", __func__, ret,
1384 		    ih->ih_name));
1385 
1386 		/*
1387 		 * Wrapper handler special handling:
1388 		 *
1389 		 * in some particular cases (like pccard and pccbb),
1390 		 * the _real_ device handler is wrapped in a couple of
1391 		 * functions - a filter wrapper and an ithread wrapper.
1392 		 * In this case (and just in this case), the filter wrapper
1393 		 * could ask the system to schedule the ithread and mask
1394 		 * the interrupt source if the wrapped handler is composed
1395 		 * of just an ithread handler.
1396 		 *
1397 		 * TODO: write a generic wrapper to avoid people rolling
1398 		 * their own
1399 		 */
1400 		if (!thread) {
1401 			if (ret == FILTER_SCHEDULE_THREAD)
1402 				thread = 1;
1403 		}
1404 	}
1405 	td->td_intr_frame = oldframe;
1406 
1407 	if (thread) {
1408 		if (ie->ie_pre_ithread != NULL)
1409 			ie->ie_pre_ithread(ie->ie_source);
1410 	} else {
1411 		if (ie->ie_post_filter != NULL)
1412 			ie->ie_post_filter(ie->ie_source);
1413 	}
1414 
1415 	/* Schedule the ithread if needed. */
1416 	if (thread) {
1417 		error = intr_event_schedule_thread(ie);
1418 #ifndef XEN
1419 		KASSERT(error == 0, ("bad stray interrupt"));
1420 #else
1421 		if (error != 0)
1422 			log(LOG_WARNING, "bad stray interrupt");
1423 #endif
1424 	}
1425 	critical_exit();
1426 	td->td_intr_nesting_level--;
1427 	return (0);
1428 }
1429 #else
1430 /*
1431  * This is the main code for interrupt threads.
1432  */
1433 static void
1434 ithread_loop(void *arg)
1435 {
1436 	struct intr_thread *ithd;
1437 	struct intr_handler *ih;
1438 	struct intr_event *ie;
1439 	struct thread *td;
1440 	struct proc *p;
1441 	int priv;
1442 
1443 	td = curthread;
1444 	p = td->td_proc;
1445 	ih = (struct intr_handler *)arg;
1446 	priv = (ih->ih_thread != NULL) ? 1 : 0;
1447 	ithd = (priv) ? ih->ih_thread : ih->ih_event->ie_thread;
1448 	KASSERT(ithd->it_thread == td,
1449 	    ("%s: ithread and proc linkage out of sync", __func__));
1450 	ie = ithd->it_event;
1451 	ie->ie_count = 0;
1452 
1453 	/*
1454 	 * As long as we have interrupts outstanding, go through the
1455 	 * list of handlers, giving each one a go at it.
1456 	 */
1457 	for (;;) {
1458 		/*
1459 		 * If we are an orphaned thread, then just die.
1460 		 */
1461 		if (ithd->it_flags & IT_DEAD) {
1462 			CTR3(KTR_INTR, "%s: pid %d (%s) exiting", __func__,
1463 			    p->p_pid, td->td_name);
1464 			free(ithd, M_ITHREAD);
1465 			kthread_exit();
1466 		}
1467 
1468 		/*
1469 		 * Service interrupts.  If another interrupt arrives while
1470 		 * we are running, it will set it_need to note that we
1471 		 * should make another pass.
1472 		 */
1473 		while (ithd->it_need) {
1474 			/*
1475 			 * This might need a full read and write barrier
1476 			 * to make sure that this write posts before any
1477 			 * of the memory or device accesses in the
1478 			 * handlers.
1479 			 */
1480 			atomic_store_rel_int(&ithd->it_need, 0);
1481 			if (priv)
1482 				priv_ithread_execute_handler(p, ih);
1483 			else
1484 				ithread_execute_handlers(p, ie);
1485 		}
1486 		WITNESS_WARN(WARN_PANIC, NULL, "suspending ithread");
1487 		mtx_assert(&Giant, MA_NOTOWNED);
1488 
1489 		/*
1490 		 * Processed all our interrupts.  Now get the sched
1491 		 * lock.  This may take a while and it_need may get
1492 		 * set again, so we have to check it again.
1493 		 */
1494 		thread_lock(td);
1495 		if (!ithd->it_need && !(ithd->it_flags & IT_DEAD)) {
1496 			TD_SET_IWAIT(td);
1497 			ie->ie_count = 0;
1498 			mi_switch(SW_VOL | SWT_IWAIT, NULL);
1499 		}
1500 		thread_unlock(td);
1501 	}
1502 }
1503 
1504 /*
1505  * Main loop for interrupt filter.
1506  *
1507  * Some architectures (i386, amd64 and arm) require the optional frame
1508  * parameter, and use it as the main argument for fast handler execution
1509  * when ih_argument == NULL.
1510  *
1511  * Return value:
1512  * o FILTER_STRAY:              No filter recognized the event, and no
1513  *                              filter-less handler is registered on this
1514  *                              line.
1515  * o FILTER_HANDLED:            A filter claimed the event and served it.
1516  * o FILTER_SCHEDULE_THREAD:    No filter claimed the event, but there's at
1517  *                              least one filter-less handler on this line.
1518  * o FILTER_HANDLED |
1519  *   FILTER_SCHEDULE_THREAD:    A filter claimed the event, and asked for
1520  *                              scheduling the per-handler ithread.
1521  *
1522  * In case an ithread has to be scheduled, in *ithd there will be a
1523  * pointer to a struct intr_thread containing the thread to be
1524  * scheduled.
1525  */
1526 
1527 static int
1528 intr_filter_loop(struct intr_event *ie, struct trapframe *frame,
1529 		 struct intr_thread **ithd)
1530 {
1531 	struct intr_handler *ih;
1532 	void *arg;
1533 	int ret, thread_only;
1534 
1535 	ret = 0;
1536 	thread_only = 0;
1537 	TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next) {
1538 		/*
1539 		 * Execute fast interrupt handlers directly.
1540 		 * To support clock handlers, if a handler registers
1541 		 * with a NULL argument, then we pass it a pointer to
1542 		 * a trapframe as its argument.
1543 		 */
1544 		arg = ((ih->ih_argument == NULL) ? frame : ih->ih_argument);
1545 
1546 		CTR5(KTR_INTR, "%s: exec %p/%p(%p) for %s", __func__,
1547 		     ih->ih_filter, ih->ih_handler, arg, ih->ih_name);
1548 
1549 		if (ih->ih_filter != NULL)
1550 			ret = ih->ih_filter(arg);
1551 		else {
1552 			thread_only = 1;
1553 			continue;
1554 		}
1555 		KASSERT(ret == FILTER_STRAY ||
1556 		    ((ret & (FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) != 0 &&
1557 		    (ret & ~(FILTER_SCHEDULE_THREAD | FILTER_HANDLED)) == 0),
1558 		    ("%s: incorrect return value %#x from %s", __func__, ret,
1559 		    ih->ih_name));
1560 		if (ret & FILTER_STRAY)
1561 			continue;
1562 		else {
1563 			*ithd = ih->ih_thread;
1564 			return (ret);
1565 		}
1566 	}
1567 
1568 	/*
1569 	 * No filters handled the interrupt and we have at least
1570 	 * one handler without a filter.  In this case, we schedule
1571 	 * all of the filter-less handlers to run in the ithread.
1572 	 */
1573 	if (thread_only) {
1574 		*ithd = ie->ie_thread;
1575 		return (FILTER_SCHEDULE_THREAD);
1576 	}
1577 	return (FILTER_STRAY);
1578 }
1579 
1580 /*
1581  * Main interrupt handling body.
1582  *
1583  * Input:
1584  * o ie:                        the event connected to this interrupt.
1585  * o frame:                     some archs (i.e. i386) pass a frame to some.
1586  *                              handlers as their main argument.
1587  * Return value:
1588  * o 0:                         everything ok.
1589  * o EINVAL:                    stray interrupt.
1590  */
1591 int
1592 intr_event_handle(struct intr_event *ie, struct trapframe *frame)
1593 {
1594 	struct intr_thread *ithd;
1595 	struct trapframe *oldframe;
1596 	struct thread *td;
1597 	int thread;
1598 
1599 	ithd = NULL;
1600 	td = curthread;
1601 
1602 	if (ie == NULL || TAILQ_EMPTY(&ie->ie_handlers))
1603 		return (EINVAL);
1604 
1605 	td->td_intr_nesting_level++;
1606 	thread = 0;
1607 	critical_enter();
1608 	oldframe = td->td_intr_frame;
1609 	td->td_intr_frame = frame;
1610 	thread = intr_filter_loop(ie, frame, &ithd);
1611 	if (thread & FILTER_HANDLED) {
1612 		if (ie->ie_post_filter != NULL)
1613 			ie->ie_post_filter(ie->ie_source);
1614 	} else {
1615 		if (ie->ie_pre_ithread != NULL)
1616 			ie->ie_pre_ithread(ie->ie_source);
1617 	}
1618 	td->td_intr_frame = oldframe;
1619 	critical_exit();
1620 
1621 	/* Interrupt storm logic */
1622 	if (thread & FILTER_STRAY) {
1623 		ie->ie_count++;
1624 		if (ie->ie_count < intr_storm_threshold)
1625 			printf("Interrupt stray detection not present\n");
1626 	}
1627 
1628 	/* Schedule an ithread if needed. */
1629 	if (thread & FILTER_SCHEDULE_THREAD) {
1630 		if (intr_event_schedule_thread(ie, ithd) != 0)
1631 			panic("%s: impossible stray interrupt", __func__);
1632 	}
1633 	td->td_intr_nesting_level--;
1634 	return (0);
1635 }
1636 #endif
1637 
1638 #ifdef DDB
1639 /*
1640  * Dump details about an interrupt handler
1641  */
1642 static void
1643 db_dump_intrhand(struct intr_handler *ih)
1644 {
1645 	int comma;
1646 
1647 	db_printf("\t%-10s ", ih->ih_name);
1648 	switch (ih->ih_pri) {
1649 	case PI_REALTIME:
1650 		db_printf("CLK ");
1651 		break;
1652 	case PI_AV:
1653 		db_printf("AV  ");
1654 		break;
1655 	case PI_TTY:
1656 		db_printf("TTY ");
1657 		break;
1658 	case PI_NET:
1659 		db_printf("NET ");
1660 		break;
1661 	case PI_DISK:
1662 		db_printf("DISK");
1663 		break;
1664 	case PI_DULL:
1665 		db_printf("DULL");
1666 		break;
1667 	default:
1668 		if (ih->ih_pri >= PI_SOFT)
1669 			db_printf("SWI ");
1670 		else
1671 			db_printf("%4u", ih->ih_pri);
1672 		break;
1673 	}
1674 	db_printf(" ");
1675 	db_printsym((uintptr_t)ih->ih_handler, DB_STGY_PROC);
1676 	db_printf("(%p)", ih->ih_argument);
1677 	if (ih->ih_need ||
1678 	    (ih->ih_flags & (IH_EXCLUSIVE | IH_ENTROPY | IH_DEAD |
1679 	    IH_MPSAFE)) != 0) {
1680 		db_printf(" {");
1681 		comma = 0;
1682 		if (ih->ih_flags & IH_EXCLUSIVE) {
1683 			if (comma)
1684 				db_printf(", ");
1685 			db_printf("EXCL");
1686 			comma = 1;
1687 		}
1688 		if (ih->ih_flags & IH_ENTROPY) {
1689 			if (comma)
1690 				db_printf(", ");
1691 			db_printf("ENTROPY");
1692 			comma = 1;
1693 		}
1694 		if (ih->ih_flags & IH_DEAD) {
1695 			if (comma)
1696 				db_printf(", ");
1697 			db_printf("DEAD");
1698 			comma = 1;
1699 		}
1700 		if (ih->ih_flags & IH_MPSAFE) {
1701 			if (comma)
1702 				db_printf(", ");
1703 			db_printf("MPSAFE");
1704 			comma = 1;
1705 		}
1706 		if (ih->ih_need) {
1707 			if (comma)
1708 				db_printf(", ");
1709 			db_printf("NEED");
1710 		}
1711 		db_printf("}");
1712 	}
1713 	db_printf("\n");
1714 }
1715 
1716 /*
1717  * Dump details about a event.
1718  */
1719 void
1720 db_dump_intr_event(struct intr_event *ie, int handlers)
1721 {
1722 	struct intr_handler *ih;
1723 	struct intr_thread *it;
1724 	int comma;
1725 
1726 	db_printf("%s ", ie->ie_fullname);
1727 	it = ie->ie_thread;
1728 	if (it != NULL)
1729 		db_printf("(pid %d)", it->it_thread->td_proc->p_pid);
1730 	else
1731 		db_printf("(no thread)");
1732 	if ((ie->ie_flags & (IE_SOFT | IE_ENTROPY | IE_ADDING_THREAD)) != 0 ||
1733 	    (it != NULL && it->it_need)) {
1734 		db_printf(" {");
1735 		comma = 0;
1736 		if (ie->ie_flags & IE_SOFT) {
1737 			db_printf("SOFT");
1738 			comma = 1;
1739 		}
1740 		if (ie->ie_flags & IE_ENTROPY) {
1741 			if (comma)
1742 				db_printf(", ");
1743 			db_printf("ENTROPY");
1744 			comma = 1;
1745 		}
1746 		if (ie->ie_flags & IE_ADDING_THREAD) {
1747 			if (comma)
1748 				db_printf(", ");
1749 			db_printf("ADDING_THREAD");
1750 			comma = 1;
1751 		}
1752 		if (it != NULL && it->it_need) {
1753 			if (comma)
1754 				db_printf(", ");
1755 			db_printf("NEED");
1756 		}
1757 		db_printf("}");
1758 	}
1759 	db_printf("\n");
1760 
1761 	if (handlers)
1762 		TAILQ_FOREACH(ih, &ie->ie_handlers, ih_next)
1763 		    db_dump_intrhand(ih);
1764 }
1765 
1766 /*
1767  * Dump data about interrupt handlers
1768  */
1769 DB_SHOW_COMMAND(intr, db_show_intr)
1770 {
1771 	struct intr_event *ie;
1772 	int all, verbose;
1773 
1774 	verbose = index(modif, 'v') != NULL;
1775 	all = index(modif, 'a') != NULL;
1776 	TAILQ_FOREACH(ie, &event_list, ie_list) {
1777 		if (!all && TAILQ_EMPTY(&ie->ie_handlers))
1778 			continue;
1779 		db_dump_intr_event(ie, verbose);
1780 		if (db_pager_quit)
1781 			break;
1782 	}
1783 }
1784 #endif /* DDB */
1785 
1786 /*
1787  * Start standard software interrupt threads
1788  */
1789 static void
1790 start_softintr(void *dummy)
1791 {
1792 
1793 	if (swi_add(NULL, "vm", swi_vm, NULL, SWI_VM, INTR_MPSAFE, &vm_ih))
1794 		panic("died while creating vm swi ithread");
1795 }
1796 SYSINIT(start_softintr, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softintr,
1797     NULL);
1798 
1799 /*
1800  * Sysctls used by systat and others: hw.intrnames and hw.intrcnt.
1801  * The data for this machine dependent, and the declarations are in machine
1802  * dependent code.  The layout of intrnames and intrcnt however is machine
1803  * independent.
1804  *
1805  * We do not know the length of intrcnt and intrnames at compile time, so
1806  * calculate things at run time.
1807  */
1808 static int
1809 sysctl_intrnames(SYSCTL_HANDLER_ARGS)
1810 {
1811 	return (sysctl_handle_opaque(oidp, intrnames, eintrnames - intrnames,
1812 	   req));
1813 }
1814 
1815 SYSCTL_PROC(_hw, OID_AUTO, intrnames, CTLTYPE_OPAQUE | CTLFLAG_RD,
1816     NULL, 0, sysctl_intrnames, "", "Interrupt Names");
1817 
1818 static int
1819 sysctl_intrcnt(SYSCTL_HANDLER_ARGS)
1820 {
1821 	return (sysctl_handle_opaque(oidp, intrcnt,
1822 	    (char *)eintrcnt - (char *)intrcnt, req));
1823 }
1824 
1825 SYSCTL_PROC(_hw, OID_AUTO, intrcnt, CTLTYPE_OPAQUE | CTLFLAG_RD,
1826     NULL, 0, sysctl_intrcnt, "", "Interrupt Counts");
1827 
1828 #ifdef DDB
1829 /*
1830  * DDB command to dump the interrupt statistics.
1831  */
1832 DB_SHOW_COMMAND(intrcnt, db_show_intrcnt)
1833 {
1834 	u_long *i;
1835 	char *cp;
1836 
1837 	cp = intrnames;
1838 	for (i = intrcnt; i != eintrcnt && !db_pager_quit; i++) {
1839 		if (*cp == '\0')
1840 			break;
1841 		if (*i != 0)
1842 			db_printf("%s\t%lu\n", cp, *i);
1843 		cp += strlen(cp) + 1;
1844 	}
1845 }
1846 #endif
1847