xref: /freebsd/sys/kern/kern_fork.c (revision faef53711b12833053c3a430f78b4aa03684cf22)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_mac.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysproto.h>
46 #include <sys/eventhandler.h>
47 #include <sys/filedesc.h>
48 #include <sys/kernel.h>
49 #include <sys/kthread.h>
50 #include <sys/sysctl.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/pioctl.h>
57 #include <sys/resourcevar.h>
58 #include <sys/sched.h>
59 #include <sys/syscall.h>
60 #include <sys/vmmeter.h>
61 #include <sys/vnode.h>
62 #include <sys/acct.h>
63 #include <sys/ktr.h>
64 #include <sys/ktrace.h>
65 #include <sys/unistd.h>
66 #include <sys/sx.h>
67 #include <sys/signalvar.h>
68 
69 #include <security/audit/audit.h>
70 #include <security/mac/mac_framework.h>
71 
72 #include <vm/vm.h>
73 #include <vm/pmap.h>
74 #include <vm/vm_map.h>
75 #include <vm/vm_extern.h>
76 #include <vm/uma.h>
77 
78 
79 #ifndef _SYS_SYSPROTO_H_
80 struct fork_args {
81 	int     dummy;
82 };
83 #endif
84 
85 /* ARGSUSED */
86 int
87 fork(td, uap)
88 	struct thread *td;
89 	struct fork_args *uap;
90 {
91 	int error;
92 	struct proc *p2;
93 
94 	error = fork1(td, RFFDG | RFPROC, 0, &p2);
95 	if (error == 0) {
96 		td->td_retval[0] = p2->p_pid;
97 		td->td_retval[1] = 0;
98 	}
99 	return (error);
100 }
101 
102 /* ARGSUSED */
103 int
104 vfork(td, uap)
105 	struct thread *td;
106 	struct vfork_args *uap;
107 {
108 	int error;
109 	struct proc *p2;
110 
111 	error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, 0, &p2);
112 	if (error == 0) {
113 		td->td_retval[0] = p2->p_pid;
114 		td->td_retval[1] = 0;
115 	}
116 	return (error);
117 }
118 
119 int
120 rfork(td, uap)
121 	struct thread *td;
122 	struct rfork_args *uap;
123 {
124 	struct proc *p2;
125 	int error;
126 
127 	/* Don't allow kernel-only flags. */
128 	if ((uap->flags & RFKERNELONLY) != 0)
129 		return (EINVAL);
130 
131 	AUDIT_ARG(fflags, uap->flags);
132 	error = fork1(td, uap->flags, 0, &p2);
133 	if (error == 0) {
134 		td->td_retval[0] = p2 ? p2->p_pid : 0;
135 		td->td_retval[1] = 0;
136 	}
137 	return (error);
138 }
139 
140 int	nprocs = 1;		/* process 0 */
141 int	lastpid = 0;
142 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
143     "Last used PID");
144 
145 /*
146  * Random component to lastpid generation.  We mix in a random factor to make
147  * it a little harder to predict.  We sanity check the modulus value to avoid
148  * doing it in critical paths.  Don't let it be too small or we pointlessly
149  * waste randomness entropy, and don't let it be impossibly large.  Using a
150  * modulus that is too big causes a LOT more process table scans and slows
151  * down fork processing as the pidchecked caching is defeated.
152  */
153 static int randompid = 0;
154 
155 static int
156 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
157 {
158 	int error, pid;
159 
160 	error = sysctl_wire_old_buffer(req, sizeof(int));
161 	if (error != 0)
162 		return(error);
163 	sx_xlock(&allproc_lock);
164 	pid = randompid;
165 	error = sysctl_handle_int(oidp, &pid, 0, req);
166 	if (error == 0 && req->newptr != NULL) {
167 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
168 			pid = PID_MAX - 100;
169 		else if (pid < 2)			/* NOP */
170 			pid = 0;
171 		else if (pid < 100)			/* Make it reasonable */
172 			pid = 100;
173 		randompid = pid;
174 	}
175 	sx_xunlock(&allproc_lock);
176 	return (error);
177 }
178 
179 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
180     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
181 
182 int
183 fork1(td, flags, pages, procp)
184 	struct thread *td;
185 	int flags;
186 	int pages;
187 	struct proc **procp;
188 {
189 	struct proc *p1, *p2, *pptr;
190 	struct proc *newproc;
191 	int ok, trypid;
192 	static int curfail, pidchecked = 0;
193 	static struct timeval lastfail;
194 	struct filedesc *fd;
195 	struct filedesc_to_leader *fdtol;
196 	struct thread *td2;
197 	struct sigacts *newsigacts;
198 	int error;
199 
200 	/* Can't copy and clear. */
201 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
202 		return (EINVAL);
203 
204 	p1 = td->td_proc;
205 
206 	/*
207 	 * Here we don't create a new process, but we divorce
208 	 * certain parts of a process from itself.
209 	 */
210 	if ((flags & RFPROC) == 0) {
211 		if ((p1->p_flag & P_HADTHREADS) &&
212 		    (flags & (RFCFDG | RFFDG))) {
213 			PROC_LOCK(p1);
214 			if (thread_single(SINGLE_BOUNDARY)) {
215 				PROC_UNLOCK(p1);
216 				return (ERESTART);
217 			}
218 			PROC_UNLOCK(p1);
219 		}
220 
221 		vm_forkproc(td, NULL, NULL, flags);
222 
223 		/*
224 		 * Close all file descriptors.
225 		 */
226 		if (flags & RFCFDG) {
227 			struct filedesc *fdtmp;
228 			fdtmp = fdinit(td->td_proc->p_fd);
229 			fdfree(td);
230 			p1->p_fd = fdtmp;
231 		}
232 
233 		/*
234 		 * Unshare file descriptors (from parent).
235 		 */
236 		if (flags & RFFDG)
237 			fdunshare(p1, td);
238 
239 		if ((p1->p_flag & P_HADTHREADS) &&
240 		    (flags & (RFCFDG | RFFDG))) {
241 			PROC_LOCK(p1);
242 			thread_single_end();
243 			PROC_UNLOCK(p1);
244 		}
245 		*procp = NULL;
246 		return (0);
247 	}
248 
249 	/*
250 	 * Note 1:1 allows for forking with one thread coming out on the
251 	 * other side with the expectation that the process is about to
252 	 * exec.
253 	 */
254 	if (p1->p_flag & P_HADTHREADS) {
255 		/*
256 		 * Idle the other threads for a second.
257 		 * Since the user space is copied, it must remain stable.
258 		 * In addition, all threads (from the user perspective)
259 		 * need to either be suspended or in the kernel,
260 		 * where they will try restart in the parent and will
261 		 * be aborted in the child.
262 		 */
263 		PROC_LOCK(p1);
264 		if (thread_single(SINGLE_NO_EXIT)) {
265 			/* Abort. Someone else is single threading before us. */
266 			PROC_UNLOCK(p1);
267 			return (ERESTART);
268 		}
269 		PROC_UNLOCK(p1);
270 		/*
271 		 * All other activity in this process
272 		 * is now suspended at the user boundary,
273 		 * (or other safe places if we think of any).
274 		 */
275 	}
276 
277 	/* Allocate new proc. */
278 	newproc = uma_zalloc(proc_zone, M_WAITOK);
279 #ifdef MAC
280 	mac_init_proc(newproc);
281 #endif
282 	knlist_init(&newproc->p_klist, &newproc->p_mtx, NULL, NULL, NULL);
283 	STAILQ_INIT(&newproc->p_ktr);
284 
285 	/* We have to lock the process tree while we look for a pid. */
286 	sx_slock(&proctree_lock);
287 
288 	/*
289 	 * Although process entries are dynamically created, we still keep
290 	 * a global limit on the maximum number we will create.  Don't allow
291 	 * a nonprivileged user to use the last ten processes; don't let root
292 	 * exceed the limit. The variable nprocs is the current number of
293 	 * processes, maxproc is the limit.
294 	 */
295 	sx_xlock(&allproc_lock);
296 	if ((nprocs >= maxproc - 10 &&
297 	    priv_check_cred(td->td_ucred, PRIV_MAXPROC, SUSER_RUID) != 0) ||
298 	    nprocs >= maxproc) {
299 		error = EAGAIN;
300 		goto fail;
301 	}
302 
303 	/*
304 	 * Increment the count of procs running with this uid. Don't allow
305 	 * a nonprivileged user to exceed their current limit.
306 	 *
307 	 * XXXRW: Can we avoid privilege here if it's not needed?
308 	 */
309 	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, SUSER_RUID |
310 	    SUSER_ALLOWJAIL);
311 	if (error == 0)
312 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
313 	else {
314 		PROC_LOCK(p1);
315 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
316 		    lim_cur(p1, RLIMIT_NPROC));
317 		PROC_UNLOCK(p1);
318 	}
319 	if (!ok) {
320 		error = EAGAIN;
321 		goto fail;
322 	}
323 
324 	/*
325 	 * Increment the nprocs resource before blocking can occur.  There
326 	 * are hard-limits as to the number of processes that can run.
327 	 */
328 	nprocs++;
329 
330 	/*
331 	 * Find an unused process ID.  We remember a range of unused IDs
332 	 * ready to use (from lastpid+1 through pidchecked-1).
333 	 *
334 	 * If RFHIGHPID is set (used during system boot), do not allocate
335 	 * low-numbered pids.
336 	 */
337 	trypid = lastpid + 1;
338 	if (flags & RFHIGHPID) {
339 		if (trypid < 10)
340 			trypid = 10;
341 	} else {
342 		if (randompid)
343 			trypid += arc4random() % randompid;
344 	}
345 retry:
346 	/*
347 	 * If the process ID prototype has wrapped around,
348 	 * restart somewhat above 0, as the low-numbered procs
349 	 * tend to include daemons that don't exit.
350 	 */
351 	if (trypid >= PID_MAX) {
352 		trypid = trypid % PID_MAX;
353 		if (trypid < 100)
354 			trypid += 100;
355 		pidchecked = 0;
356 	}
357 	if (trypid >= pidchecked) {
358 		int doingzomb = 0;
359 
360 		pidchecked = PID_MAX;
361 		/*
362 		 * Scan the active and zombie procs to check whether this pid
363 		 * is in use.  Remember the lowest pid that's greater
364 		 * than trypid, so we can avoid checking for a while.
365 		 */
366 		p2 = LIST_FIRST(&allproc);
367 again:
368 		for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
369 			while (p2->p_pid == trypid ||
370 			    (p2->p_pgrp != NULL &&
371 			    (p2->p_pgrp->pg_id == trypid ||
372 			    (p2->p_session != NULL &&
373 			    p2->p_session->s_sid == trypid)))) {
374 				trypid++;
375 				if (trypid >= pidchecked)
376 					goto retry;
377 			}
378 			if (p2->p_pid > trypid && pidchecked > p2->p_pid)
379 				pidchecked = p2->p_pid;
380 			if (p2->p_pgrp != NULL) {
381 				if (p2->p_pgrp->pg_id > trypid &&
382 				    pidchecked > p2->p_pgrp->pg_id)
383 					pidchecked = p2->p_pgrp->pg_id;
384 				if (p2->p_session != NULL &&
385 				    p2->p_session->s_sid > trypid &&
386 				    pidchecked > p2->p_session->s_sid)
387 					pidchecked = p2->p_session->s_sid;
388 			}
389 		}
390 		if (!doingzomb) {
391 			doingzomb = 1;
392 			p2 = LIST_FIRST(&zombproc);
393 			goto again;
394 		}
395 	}
396 	sx_sunlock(&proctree_lock);
397 
398 	/*
399 	 * RFHIGHPID does not mess with the lastpid counter during boot.
400 	 */
401 	if (flags & RFHIGHPID)
402 		pidchecked = 0;
403 	else
404 		lastpid = trypid;
405 
406 	p2 = newproc;
407 	td2 = FIRST_THREAD_IN_PROC(newproc);
408 	p2->p_state = PRS_NEW;		/* protect against others */
409 	p2->p_pid = trypid;
410 	/*
411 	 * Allow the scheduler to initialize the child.
412 	 */
413 	thread_lock(td);
414 	sched_fork(td, td2);
415 	thread_unlock(td);
416 	AUDIT_ARG(pid, p2->p_pid);
417 	LIST_INSERT_HEAD(&allproc, p2, p_list);
418 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
419 
420 	PROC_LOCK(p2);
421 	PROC_LOCK(p1);
422 
423 	sx_xunlock(&allproc_lock);
424 
425 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
426 	    __rangeof(struct proc, p_startcopy, p_endcopy));
427 	PROC_UNLOCK(p1);
428 
429 	bzero(&p2->p_startzero,
430 	    __rangeof(struct proc, p_startzero, p_endzero));
431 
432 	p2->p_ucred = crhold(td->td_ucred);
433 	PROC_UNLOCK(p2);
434 
435 	/*
436 	 * Malloc things while we don't hold any locks.
437 	 */
438 	if (flags & RFSIGSHARE)
439 		newsigacts = NULL;
440 	else
441 		newsigacts = sigacts_alloc();
442 
443 	/*
444 	 * Copy filedesc.
445 	 */
446 	if (flags & RFCFDG) {
447 		fd = fdinit(p1->p_fd);
448 		fdtol = NULL;
449 	} else if (flags & RFFDG) {
450 		fd = fdcopy(p1->p_fd);
451 		fdtol = NULL;
452 	} else {
453 		fd = fdshare(p1->p_fd);
454 		if (p1->p_fdtol == NULL)
455 			p1->p_fdtol =
456 				filedesc_to_leader_alloc(NULL,
457 							 NULL,
458 							 p1->p_leader);
459 		if ((flags & RFTHREAD) != 0) {
460 			/*
461 			 * Shared file descriptor table and
462 			 * shared process leaders.
463 			 */
464 			fdtol = p1->p_fdtol;
465 			FILEDESC_XLOCK(p1->p_fd);
466 			fdtol->fdl_refcount++;
467 			FILEDESC_XUNLOCK(p1->p_fd);
468 		} else {
469 			/*
470 			 * Shared file descriptor table, and
471 			 * different process leaders
472 			 */
473 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
474 							 p1->p_fd,
475 							 p2);
476 		}
477 	}
478 	/*
479 	 * Make a proc table entry for the new process.
480 	 * Start by zeroing the section of proc that is zero-initialized,
481 	 * then copy the section that is copied directly from the parent.
482 	 */
483 	/* Allocate and switch to an alternate kstack if specified. */
484 	if (pages != 0)
485 		vm_thread_new_altkstack(td2, pages);
486 
487 	PROC_LOCK(p2);
488 	PROC_LOCK(p1);
489 
490 	bzero(&td2->td_startzero,
491 	    __rangeof(struct thread, td_startzero, td_endzero));
492 
493 	bcopy(&td->td_startcopy, &td2->td_startcopy,
494 	    __rangeof(struct thread, td_startcopy, td_endcopy));
495 
496 	td2->td_sigstk = td->td_sigstk;
497 	td2->td_sigmask = td->td_sigmask;
498 
499 	/*
500 	 * Duplicate sub-structures as needed.
501 	 * Increase reference counts on shared objects.
502 	 */
503 	p2->p_flag = 0;
504 	if (p1->p_flag & P_PROFIL)
505 		startprofclock(p2);
506 	PROC_SLOCK(p2);
507 	p2->p_sflag = PS_INMEM;
508 	PROC_SUNLOCK(p2);
509 	td2->td_ucred = crhold(p2->p_ucred);
510 	pargs_hold(p2->p_args);
511 
512 	if (flags & RFSIGSHARE) {
513 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
514 	} else {
515 		sigacts_copy(newsigacts, p1->p_sigacts);
516 		p2->p_sigacts = newsigacts;
517 	}
518 	if (flags & RFLINUXTHPN)
519 	        p2->p_sigparent = SIGUSR1;
520 	else
521 	        p2->p_sigparent = SIGCHLD;
522 
523 	p2->p_textvp = p1->p_textvp;
524 	p2->p_fd = fd;
525 	p2->p_fdtol = fdtol;
526 
527 	/*
528 	 * p_limit is copy-on-write.  Bump its refcount.
529 	 */
530 	lim_fork(p1, p2);
531 
532 	pstats_fork(p1->p_stats, p2->p_stats);
533 
534 	PROC_UNLOCK(p1);
535 	PROC_UNLOCK(p2);
536 
537 	/* Bump references to the text vnode (for procfs) */
538 	if (p2->p_textvp)
539 		vref(p2->p_textvp);
540 
541 	/*
542 	 * Set up linkage for kernel based threading.
543 	 */
544 	if ((flags & RFTHREAD) != 0) {
545 		mtx_lock(&ppeers_lock);
546 		p2->p_peers = p1->p_peers;
547 		p1->p_peers = p2;
548 		p2->p_leader = p1->p_leader;
549 		mtx_unlock(&ppeers_lock);
550 		PROC_LOCK(p1->p_leader);
551 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
552 			PROC_UNLOCK(p1->p_leader);
553 			/*
554 			 * The task leader is exiting, so process p1 is
555 			 * going to be killed shortly.  Since p1 obviously
556 			 * isn't dead yet, we know that the leader is either
557 			 * sending SIGKILL's to all the processes in this
558 			 * task or is sleeping waiting for all the peers to
559 			 * exit.  We let p1 complete the fork, but we need
560 			 * to go ahead and kill the new process p2 since
561 			 * the task leader may not get a chance to send
562 			 * SIGKILL to it.  We leave it on the list so that
563 			 * the task leader will wait for this new process
564 			 * to commit suicide.
565 			 */
566 			PROC_LOCK(p2);
567 			psignal(p2, SIGKILL);
568 			PROC_UNLOCK(p2);
569 		} else
570 			PROC_UNLOCK(p1->p_leader);
571 	} else {
572 		p2->p_peers = NULL;
573 		p2->p_leader = p2;
574 	}
575 
576 	sx_xlock(&proctree_lock);
577 	PGRP_LOCK(p1->p_pgrp);
578 	PROC_LOCK(p2);
579 	PROC_LOCK(p1);
580 
581 	/*
582 	 * Preserve some more flags in subprocess.  P_PROFIL has already
583 	 * been preserved.
584 	 */
585 	p2->p_flag |= p1->p_flag & P_SUGID;
586 	td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
587 	SESS_LOCK(p1->p_session);
588 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
589 		p2->p_flag |= P_CONTROLT;
590 	SESS_UNLOCK(p1->p_session);
591 	if (flags & RFPPWAIT)
592 		p2->p_flag |= P_PPWAIT;
593 
594 	p2->p_pgrp = p1->p_pgrp;
595 	LIST_INSERT_AFTER(p1, p2, p_pglist);
596 	PGRP_UNLOCK(p1->p_pgrp);
597 	LIST_INIT(&p2->p_children);
598 
599 	callout_init(&p2->p_itcallout, CALLOUT_MPSAFE);
600 
601 #ifdef KTRACE
602 	/*
603 	 * Copy traceflag and tracefile if enabled.
604 	 */
605 	mtx_lock(&ktrace_mtx);
606 	KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
607 	if (p1->p_traceflag & KTRFAC_INHERIT) {
608 		p2->p_traceflag = p1->p_traceflag;
609 		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
610 			VREF(p2->p_tracevp);
611 			KASSERT(p1->p_tracecred != NULL,
612 			    ("ktrace vnode with no cred"));
613 			p2->p_tracecred = crhold(p1->p_tracecred);
614 		}
615 	}
616 	mtx_unlock(&ktrace_mtx);
617 #endif
618 
619 	/*
620 	 * If PF_FORK is set, the child process inherits the
621 	 * procfs ioctl flags from its parent.
622 	 */
623 	if (p1->p_pfsflags & PF_FORK) {
624 		p2->p_stops = p1->p_stops;
625 		p2->p_pfsflags = p1->p_pfsflags;
626 	}
627 
628 	/*
629 	 * This begins the section where we must prevent the parent
630 	 * from being swapped.
631 	 */
632 	_PHOLD(p1);
633 	PROC_UNLOCK(p1);
634 
635 	/*
636 	 * Attach the new process to its parent.
637 	 *
638 	 * If RFNOWAIT is set, the newly created process becomes a child
639 	 * of init.  This effectively disassociates the child from the
640 	 * parent.
641 	 */
642 	if (flags & RFNOWAIT)
643 		pptr = initproc;
644 	else
645 		pptr = p1;
646 	p2->p_pptr = pptr;
647 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
648 	sx_xunlock(&proctree_lock);
649 
650 	/* Inform accounting that we have forked. */
651 	p2->p_acflag = AFORK;
652 	PROC_UNLOCK(p2);
653 
654 	/*
655 	 * Finish creating the child process.  It will return via a different
656 	 * execution path later.  (ie: directly into user mode)
657 	 */
658 	vm_forkproc(td, p2, td2, flags);
659 
660 	if (flags == (RFFDG | RFPROC)) {
661 		atomic_add_int(&cnt.v_forks, 1);
662 		atomic_add_int(&cnt.v_forkpages, p2->p_vmspace->vm_dsize +
663 		    p2->p_vmspace->vm_ssize);
664 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
665 		atomic_add_int(&cnt.v_vforks, 1);
666 		atomic_add_int(&cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
667 		    p2->p_vmspace->vm_ssize);
668 	} else if (p1 == &proc0) {
669 		atomic_add_int(&cnt.v_kthreads, 1);
670 		atomic_add_int(&cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
671 		    p2->p_vmspace->vm_ssize);
672 	} else {
673 		atomic_add_int(&cnt.v_rforks, 1);
674 		atomic_add_int(&cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
675 		    p2->p_vmspace->vm_ssize);
676 	}
677 
678 	/*
679 	 * Both processes are set up, now check if any loadable modules want
680 	 * to adjust anything.
681 	 *   What if they have an error? XXX
682 	 */
683 	EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
684 
685 	/*
686 	 * Set the child start time and mark the process as being complete.
687 	 */
688 	microuptime(&p2->p_stats->p_start);
689 	PROC_SLOCK(p2);
690 	p2->p_state = PRS_NORMAL;
691 	PROC_SUNLOCK(p2);
692 
693 	/*
694 	 * If RFSTOPPED not requested, make child runnable and add to
695 	 * run queue.
696 	 */
697 	if ((flags & RFSTOPPED) == 0) {
698 		thread_lock(td2);
699 		TD_SET_CAN_RUN(td2);
700 		sched_add(td2, SRQ_BORING);
701 		thread_unlock(td2);
702 	}
703 
704 	/*
705 	 * Now can be swapped.
706 	 */
707 	PROC_LOCK(p1);
708 	_PRELE(p1);
709 
710 	/*
711 	 * Tell any interested parties about the new process.
712 	 */
713 	KNOTE_LOCKED(&p1->p_klist, NOTE_FORK | p2->p_pid);
714 
715 	PROC_UNLOCK(p1);
716 
717 	/*
718 	 * Preserve synchronization semantics of vfork.  If waiting for
719 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
720 	 * proc (in case of exit).
721 	 */
722 	PROC_LOCK(p2);
723 	while (p2->p_flag & P_PPWAIT)
724 		msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
725 	PROC_UNLOCK(p2);
726 
727 	/*
728 	 * If other threads are waiting, let them continue now.
729 	 */
730 	if (p1->p_flag & P_HADTHREADS) {
731 		PROC_LOCK(p1);
732 		thread_single_end();
733 		PROC_UNLOCK(p1);
734 	}
735 
736 	/*
737 	 * Return child proc pointer to parent.
738 	 */
739 	*procp = p2;
740 	return (0);
741 fail:
742 	sx_sunlock(&proctree_lock);
743 	if (ppsratecheck(&lastfail, &curfail, 1))
744 		printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n",
745 		    td->td_ucred->cr_ruid);
746 	sx_xunlock(&allproc_lock);
747 #ifdef MAC
748 	mac_destroy_proc(newproc);
749 #endif
750 	uma_zfree(proc_zone, newproc);
751 	if (p1->p_flag & P_HADTHREADS) {
752 		PROC_LOCK(p1);
753 		thread_single_end();
754 		PROC_UNLOCK(p1);
755 	}
756 	pause("fork", hz / 2);
757 	return (error);
758 }
759 
760 /*
761  * Handle the return of a child process from fork1().  This function
762  * is called from the MD fork_trampoline() entry point.
763  */
764 void
765 fork_exit(callout, arg, frame)
766 	void (*callout)(void *, struct trapframe *);
767 	void *arg;
768 	struct trapframe *frame;
769 {
770 	struct proc *p;
771 	struct thread *td;
772 
773 	td = curthread;
774 	p = td->td_proc;
775 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
776 
777 	CTR4(KTR_PROC, "fork_exit: new thread %p (kse %p, pid %d, %s)",
778 		td, td->td_sched, p->p_pid, p->p_comm);
779 
780 	sched_fork_exit(td);
781 	/*
782 	 * cpu_set_fork_handler intercepts this function call to
783 	 * have this call a non-return function to stay in kernel mode.
784 	 * initproc has its own fork handler, but it does return.
785 	 */
786 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
787 	callout(arg, frame);
788 
789 	/*
790 	 * Check if a kernel thread misbehaved and returned from its main
791 	 * function.
792 	 */
793 	if (p->p_flag & P_KTHREAD) {
794 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
795 		    p->p_comm, p->p_pid);
796 		kthread_exit(0);
797 	}
798 	mtx_assert(&Giant, MA_NOTOWNED);
799 
800 	EVENTHANDLER_INVOKE(schedtail, p);
801 }
802 
803 /*
804  * Simplified back end of syscall(), used when returning from fork()
805  * directly into user mode.  Giant is not held on entry, and must not
806  * be held on return.  This function is passed in to fork_exit() as the
807  * first parameter and is called when returning to a new userland process.
808  */
809 void
810 fork_return(td, frame)
811 	struct thread *td;
812 	struct trapframe *frame;
813 {
814 
815 	userret(td, frame);
816 #ifdef KTRACE
817 	if (KTRPOINT(td, KTR_SYSRET))
818 		ktrsysret(SYS_fork, 0, 0);
819 #endif
820 	mtx_assert(&Giant, MA_NOTOWNED);
821 }
822