xref: /freebsd/sys/kern/kern_fork.c (revision f856af0466c076beef4ea9b15d088e1119a945b8)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_mac.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysproto.h>
46 #include <sys/eventhandler.h>
47 #include <sys/filedesc.h>
48 #include <sys/kernel.h>
49 #include <sys/kthread.h>
50 #include <sys/sysctl.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/pioctl.h>
57 #include <sys/resourcevar.h>
58 #include <sys/sched.h>
59 #include <sys/syscall.h>
60 #include <sys/vmmeter.h>
61 #include <sys/vnode.h>
62 #include <sys/acct.h>
63 #include <sys/ktr.h>
64 #include <sys/ktrace.h>
65 #include <sys/unistd.h>
66 #include <sys/sx.h>
67 #include <sys/signalvar.h>
68 
69 #include <security/audit/audit.h>
70 #include <security/mac/mac_framework.h>
71 
72 #include <vm/vm.h>
73 #include <vm/pmap.h>
74 #include <vm/vm_map.h>
75 #include <vm/vm_extern.h>
76 #include <vm/uma.h>
77 
78 
79 #ifndef _SYS_SYSPROTO_H_
80 struct fork_args {
81 	int     dummy;
82 };
83 #endif
84 
85 static int forksleep; /* Place for fork1() to sleep on. */
86 
87 /*
88  * MPSAFE
89  */
90 /* ARGSUSED */
91 int
92 fork(td, uap)
93 	struct thread *td;
94 	struct fork_args *uap;
95 {
96 	int error;
97 	struct proc *p2;
98 
99 	error = fork1(td, RFFDG | RFPROC, 0, &p2);
100 	if (error == 0) {
101 		td->td_retval[0] = p2->p_pid;
102 		td->td_retval[1] = 0;
103 	}
104 	return (error);
105 }
106 
107 /*
108  * MPSAFE
109  */
110 /* ARGSUSED */
111 int
112 vfork(td, uap)
113 	struct thread *td;
114 	struct vfork_args *uap;
115 {
116 	int error;
117 	struct proc *p2;
118 
119 	error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, 0, &p2);
120 	if (error == 0) {
121 		td->td_retval[0] = p2->p_pid;
122 		td->td_retval[1] = 0;
123 	}
124 	return (error);
125 }
126 
127 /*
128  * MPSAFE
129  */
130 int
131 rfork(td, uap)
132 	struct thread *td;
133 	struct rfork_args *uap;
134 {
135 	struct proc *p2;
136 	int error;
137 
138 	/* Don't allow kernel-only flags. */
139 	if ((uap->flags & RFKERNELONLY) != 0)
140 		return (EINVAL);
141 
142 	AUDIT_ARG(fflags, uap->flags);
143 	error = fork1(td, uap->flags, 0, &p2);
144 	if (error == 0) {
145 		td->td_retval[0] = p2 ? p2->p_pid : 0;
146 		td->td_retval[1] = 0;
147 	}
148 	return (error);
149 }
150 
151 int	nprocs = 1;		/* process 0 */
152 int	lastpid = 0;
153 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
154     "Last used PID");
155 
156 /*
157  * Random component to lastpid generation.  We mix in a random factor to make
158  * it a little harder to predict.  We sanity check the modulus value to avoid
159  * doing it in critical paths.  Don't let it be too small or we pointlessly
160  * waste randomness entropy, and don't let it be impossibly large.  Using a
161  * modulus that is too big causes a LOT more process table scans and slows
162  * down fork processing as the pidchecked caching is defeated.
163  */
164 static int randompid = 0;
165 
166 static int
167 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
168 {
169 	int error, pid;
170 
171 	error = sysctl_wire_old_buffer(req, sizeof(int));
172 	if (error != 0)
173 		return(error);
174 	sx_xlock(&allproc_lock);
175 	pid = randompid;
176 	error = sysctl_handle_int(oidp, &pid, 0, req);
177 	if (error == 0 && req->newptr != NULL) {
178 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
179 			pid = PID_MAX - 100;
180 		else if (pid < 2)			/* NOP */
181 			pid = 0;
182 		else if (pid < 100)			/* Make it reasonable */
183 			pid = 100;
184 		randompid = pid;
185 	}
186 	sx_xunlock(&allproc_lock);
187 	return (error);
188 }
189 
190 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
191     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
192 
193 int
194 fork1(td, flags, pages, procp)
195 	struct thread *td;
196 	int flags;
197 	int pages;
198 	struct proc **procp;
199 {
200 	struct proc *p1, *p2, *pptr;
201 	struct proc *newproc;
202 	int ok, trypid;
203 	static int curfail, pidchecked = 0;
204 	static struct timeval lastfail;
205 	struct filedesc *fd;
206 	struct filedesc_to_leader *fdtol;
207 	struct thread *td2;
208 	struct sigacts *newsigacts;
209 	int error;
210 
211 	/* Can't copy and clear. */
212 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
213 		return (EINVAL);
214 
215 	p1 = td->td_proc;
216 
217 	/*
218 	 * Here we don't create a new process, but we divorce
219 	 * certain parts of a process from itself.
220 	 */
221 	if ((flags & RFPROC) == 0) {
222 		if ((p1->p_flag & P_HADTHREADS) &&
223 		    (flags & (RFCFDG | RFFDG))) {
224 			PROC_LOCK(p1);
225 			if (thread_single(SINGLE_BOUNDARY)) {
226 				PROC_UNLOCK(p1);
227 				return (ERESTART);
228 			}
229 			PROC_UNLOCK(p1);
230 		}
231 
232 		vm_forkproc(td, NULL, NULL, flags);
233 
234 		/*
235 		 * Close all file descriptors.
236 		 */
237 		if (flags & RFCFDG) {
238 			struct filedesc *fdtmp;
239 			fdtmp = fdinit(td->td_proc->p_fd);
240 			fdfree(td);
241 			p1->p_fd = fdtmp;
242 		}
243 
244 		/*
245 		 * Unshare file descriptors (from parent).
246 		 */
247 		if (flags & RFFDG)
248 			fdunshare(p1, td);
249 
250 		if ((p1->p_flag & P_HADTHREADS) &&
251 		    (flags & (RFCFDG | RFFDG))) {
252 			PROC_LOCK(p1);
253 			thread_single_end();
254 			PROC_UNLOCK(p1);
255 		}
256 		*procp = NULL;
257 		return (0);
258 	}
259 
260 	/*
261 	 * Note 1:1 allows for forking with one thread coming out on the
262 	 * other side with the expectation that the process is about to
263 	 * exec.
264 	 */
265 	if (p1->p_flag & P_HADTHREADS) {
266 		/*
267 		 * Idle the other threads for a second.
268 		 * Since the user space is copied, it must remain stable.
269 		 * In addition, all threads (from the user perspective)
270 		 * need to either be suspended or in the kernel,
271 		 * where they will try restart in the parent and will
272 		 * be aborted in the child.
273 		 */
274 		PROC_LOCK(p1);
275 		if (thread_single(SINGLE_NO_EXIT)) {
276 			/* Abort. Someone else is single threading before us. */
277 			PROC_UNLOCK(p1);
278 			return (ERESTART);
279 		}
280 		PROC_UNLOCK(p1);
281 		/*
282 		 * All other activity in this process
283 		 * is now suspended at the user boundary,
284 		 * (or other safe places if we think of any).
285 		 */
286 	}
287 
288 	/* Allocate new proc. */
289 	newproc = uma_zalloc(proc_zone, M_WAITOK);
290 #ifdef MAC
291 	mac_init_proc(newproc);
292 #endif
293 #ifdef AUDIT
294 	audit_proc_alloc(newproc);
295 #endif
296 	knlist_init(&newproc->p_klist, &newproc->p_mtx, NULL, NULL, NULL);
297 	STAILQ_INIT(&newproc->p_ktr);
298 
299 	/* We have to lock the process tree while we look for a pid. */
300 	sx_slock(&proctree_lock);
301 
302 	/*
303 	 * Although process entries are dynamically created, we still keep
304 	 * a global limit on the maximum number we will create.  Don't allow
305 	 * a nonprivileged user to use the last ten processes; don't let root
306 	 * exceed the limit. The variable nprocs is the current number of
307 	 * processes, maxproc is the limit.
308 	 */
309 	sx_xlock(&allproc_lock);
310 	if ((nprocs >= maxproc - 10 &&
311 	    priv_check_cred(td->td_ucred, PRIV_MAXPROC, SUSER_RUID) != 0) ||
312 	    nprocs >= maxproc) {
313 		error = EAGAIN;
314 		goto fail;
315 	}
316 
317 	/*
318 	 * Increment the count of procs running with this uid. Don't allow
319 	 * a nonprivileged user to exceed their current limit.
320 	 *
321 	 * XXXRW: Can we avoid privilege here if it's not needed?
322 	 */
323 	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, SUSER_RUID |
324 	    SUSER_ALLOWJAIL);
325 	if (error == 0)
326 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
327 	else {
328 		PROC_LOCK(p1);
329 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
330 		    lim_cur(p1, RLIMIT_NPROC));
331 		PROC_UNLOCK(p1);
332 	}
333 	if (!ok) {
334 		error = EAGAIN;
335 		goto fail;
336 	}
337 
338 	/*
339 	 * Increment the nprocs resource before blocking can occur.  There
340 	 * are hard-limits as to the number of processes that can run.
341 	 */
342 	nprocs++;
343 
344 	/*
345 	 * Find an unused process ID.  We remember a range of unused IDs
346 	 * ready to use (from lastpid+1 through pidchecked-1).
347 	 *
348 	 * If RFHIGHPID is set (used during system boot), do not allocate
349 	 * low-numbered pids.
350 	 */
351 	trypid = lastpid + 1;
352 	if (flags & RFHIGHPID) {
353 		if (trypid < 10)
354 			trypid = 10;
355 	} else {
356 		if (randompid)
357 			trypid += arc4random() % randompid;
358 	}
359 retry:
360 	/*
361 	 * If the process ID prototype has wrapped around,
362 	 * restart somewhat above 0, as the low-numbered procs
363 	 * tend to include daemons that don't exit.
364 	 */
365 	if (trypid >= PID_MAX) {
366 		trypid = trypid % PID_MAX;
367 		if (trypid < 100)
368 			trypid += 100;
369 		pidchecked = 0;
370 	}
371 	if (trypid >= pidchecked) {
372 		int doingzomb = 0;
373 
374 		pidchecked = PID_MAX;
375 		/*
376 		 * Scan the active and zombie procs to check whether this pid
377 		 * is in use.  Remember the lowest pid that's greater
378 		 * than trypid, so we can avoid checking for a while.
379 		 */
380 		p2 = LIST_FIRST(&allproc);
381 again:
382 		for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
383 			while (p2->p_pid == trypid ||
384 			    (p2->p_pgrp != NULL &&
385 			    (p2->p_pgrp->pg_id == trypid ||
386 			    (p2->p_session != NULL &&
387 			    p2->p_session->s_sid == trypid)))) {
388 				trypid++;
389 				if (trypid >= pidchecked)
390 					goto retry;
391 			}
392 			if (p2->p_pid > trypid && pidchecked > p2->p_pid)
393 				pidchecked = p2->p_pid;
394 			if (p2->p_pgrp != NULL) {
395 				if (p2->p_pgrp->pg_id > trypid &&
396 				    pidchecked > p2->p_pgrp->pg_id)
397 					pidchecked = p2->p_pgrp->pg_id;
398 				if (p2->p_session != NULL &&
399 				    p2->p_session->s_sid > trypid &&
400 				    pidchecked > p2->p_session->s_sid)
401 					pidchecked = p2->p_session->s_sid;
402 			}
403 		}
404 		if (!doingzomb) {
405 			doingzomb = 1;
406 			p2 = LIST_FIRST(&zombproc);
407 			goto again;
408 		}
409 	}
410 	sx_sunlock(&proctree_lock);
411 
412 	/*
413 	 * RFHIGHPID does not mess with the lastpid counter during boot.
414 	 */
415 	if (flags & RFHIGHPID)
416 		pidchecked = 0;
417 	else
418 		lastpid = trypid;
419 
420 	p2 = newproc;
421 	p2->p_state = PRS_NEW;		/* protect against others */
422 	p2->p_pid = trypid;
423 	AUDIT_ARG(pid, p2->p_pid);
424 	LIST_INSERT_HEAD(&allproc, p2, p_list);
425 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
426 	sx_xunlock(&allproc_lock);
427 
428 	/*
429 	 * Malloc things while we don't hold any locks.
430 	 */
431 	if (flags & RFSIGSHARE)
432 		newsigacts = NULL;
433 	else
434 		newsigacts = sigacts_alloc();
435 
436 	/*
437 	 * Copy filedesc.
438 	 */
439 	if (flags & RFCFDG) {
440 		fd = fdinit(p1->p_fd);
441 		fdtol = NULL;
442 	} else if (flags & RFFDG) {
443 		fd = fdcopy(p1->p_fd);
444 		fdtol = NULL;
445 	} else {
446 		fd = fdshare(p1->p_fd);
447 		if (p1->p_fdtol == NULL)
448 			p1->p_fdtol =
449 				filedesc_to_leader_alloc(NULL,
450 							 NULL,
451 							 p1->p_leader);
452 		if ((flags & RFTHREAD) != 0) {
453 			/*
454 			 * Shared file descriptor table and
455 			 * shared process leaders.
456 			 */
457 			fdtol = p1->p_fdtol;
458 			FILEDESC_LOCK_FAST(p1->p_fd);
459 			fdtol->fdl_refcount++;
460 			FILEDESC_UNLOCK_FAST(p1->p_fd);
461 		} else {
462 			/*
463 			 * Shared file descriptor table, and
464 			 * different process leaders
465 			 */
466 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
467 							 p1->p_fd,
468 							 p2);
469 		}
470 	}
471 	/*
472 	 * Make a proc table entry for the new process.
473 	 * Start by zeroing the section of proc that is zero-initialized,
474 	 * then copy the section that is copied directly from the parent.
475 	 */
476 	td2 = FIRST_THREAD_IN_PROC(p2);
477 
478 	/* Allocate and switch to an alternate kstack if specified. */
479 	if (pages != 0)
480 		vm_thread_new_altkstack(td2, pages);
481 
482 	PROC_LOCK(p2);
483 	PROC_LOCK(p1);
484 
485 	bzero(&p2->p_startzero,
486 	    __rangeof(struct proc, p_startzero, p_endzero));
487 	bzero(&td2->td_startzero,
488 	    __rangeof(struct thread, td_startzero, td_endzero));
489 
490 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
491 	    __rangeof(struct proc, p_startcopy, p_endcopy));
492 	bcopy(&td->td_startcopy, &td2->td_startcopy,
493 	    __rangeof(struct thread, td_startcopy, td_endcopy));
494 
495 	td2->td_sigstk = td->td_sigstk;
496 	td2->td_sigmask = td->td_sigmask;
497 
498 	/*
499 	 * Duplicate sub-structures as needed.
500 	 * Increase reference counts on shared objects.
501 	 */
502 	p2->p_flag = 0;
503 	if (p1->p_flag & P_PROFIL)
504 		startprofclock(p2);
505 	mtx_lock_spin(&sched_lock);
506 	p2->p_sflag = PS_INMEM;
507 	/*
508 	 * Allow the scheduler to adjust the priority of the child and
509 	 * parent while we hold the sched_lock.
510 	 */
511 	sched_fork(td, td2);
512 
513 	mtx_unlock_spin(&sched_lock);
514 	p2->p_ucred = crhold(td->td_ucred);
515 	td2->td_ucred = crhold(p2->p_ucred);
516 #ifdef AUDIT
517 	audit_proc_fork(p1, p2);
518 #endif
519 	pargs_hold(p2->p_args);
520 
521 	if (flags & RFSIGSHARE) {
522 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
523 	} else {
524 		sigacts_copy(newsigacts, p1->p_sigacts);
525 		p2->p_sigacts = newsigacts;
526 	}
527 	if (flags & RFLINUXTHPN)
528 	        p2->p_sigparent = SIGUSR1;
529 	else
530 	        p2->p_sigparent = SIGCHLD;
531 
532 	p2->p_textvp = p1->p_textvp;
533 	p2->p_fd = fd;
534 	p2->p_fdtol = fdtol;
535 
536 	/*
537 	 * p_limit is copy-on-write.  Bump its refcount.
538 	 */
539 	p2->p_limit = lim_hold(p1->p_limit);
540 
541 	pstats_fork(p1->p_stats, p2->p_stats);
542 
543 	PROC_UNLOCK(p1);
544 	PROC_UNLOCK(p2);
545 
546 	/* Bump references to the text vnode (for procfs) */
547 	if (p2->p_textvp)
548 		vref(p2->p_textvp);
549 
550 	/*
551 	 * Set up linkage for kernel based threading.
552 	 */
553 	if ((flags & RFTHREAD) != 0) {
554 		mtx_lock(&ppeers_lock);
555 		p2->p_peers = p1->p_peers;
556 		p1->p_peers = p2;
557 		p2->p_leader = p1->p_leader;
558 		mtx_unlock(&ppeers_lock);
559 		PROC_LOCK(p1->p_leader);
560 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
561 			PROC_UNLOCK(p1->p_leader);
562 			/*
563 			 * The task leader is exiting, so process p1 is
564 			 * going to be killed shortly.  Since p1 obviously
565 			 * isn't dead yet, we know that the leader is either
566 			 * sending SIGKILL's to all the processes in this
567 			 * task or is sleeping waiting for all the peers to
568 			 * exit.  We let p1 complete the fork, but we need
569 			 * to go ahead and kill the new process p2 since
570 			 * the task leader may not get a chance to send
571 			 * SIGKILL to it.  We leave it on the list so that
572 			 * the task leader will wait for this new process
573 			 * to commit suicide.
574 			 */
575 			PROC_LOCK(p2);
576 			psignal(p2, SIGKILL);
577 			PROC_UNLOCK(p2);
578 		} else
579 			PROC_UNLOCK(p1->p_leader);
580 	} else {
581 		p2->p_peers = NULL;
582 		p2->p_leader = p2;
583 	}
584 
585 	sx_xlock(&proctree_lock);
586 	PGRP_LOCK(p1->p_pgrp);
587 	PROC_LOCK(p2);
588 	PROC_LOCK(p1);
589 
590 	/*
591 	 * Preserve some more flags in subprocess.  P_PROFIL has already
592 	 * been preserved.
593 	 */
594 	p2->p_flag |= p1->p_flag & P_SUGID;
595 	td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
596 	SESS_LOCK(p1->p_session);
597 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
598 		p2->p_flag |= P_CONTROLT;
599 	SESS_UNLOCK(p1->p_session);
600 	if (flags & RFPPWAIT)
601 		p2->p_flag |= P_PPWAIT;
602 
603 	p2->p_pgrp = p1->p_pgrp;
604 	LIST_INSERT_AFTER(p1, p2, p_pglist);
605 	PGRP_UNLOCK(p1->p_pgrp);
606 	LIST_INIT(&p2->p_children);
607 
608 	callout_init(&p2->p_itcallout, CALLOUT_MPSAFE);
609 
610 #ifdef KTRACE
611 	/*
612 	 * Copy traceflag and tracefile if enabled.
613 	 */
614 	mtx_lock(&ktrace_mtx);
615 	KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
616 	if (p1->p_traceflag & KTRFAC_INHERIT) {
617 		p2->p_traceflag = p1->p_traceflag;
618 		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
619 			VREF(p2->p_tracevp);
620 			KASSERT(p1->p_tracecred != NULL,
621 			    ("ktrace vnode with no cred"));
622 			p2->p_tracecred = crhold(p1->p_tracecred);
623 		}
624 	}
625 	mtx_unlock(&ktrace_mtx);
626 #endif
627 
628 	/*
629 	 * If PF_FORK is set, the child process inherits the
630 	 * procfs ioctl flags from its parent.
631 	 */
632 	if (p1->p_pfsflags & PF_FORK) {
633 		p2->p_stops = p1->p_stops;
634 		p2->p_pfsflags = p1->p_pfsflags;
635 	}
636 
637 	/*
638 	 * This begins the section where we must prevent the parent
639 	 * from being swapped.
640 	 */
641 	_PHOLD(p1);
642 	PROC_UNLOCK(p1);
643 
644 	/*
645 	 * Attach the new process to its parent.
646 	 *
647 	 * If RFNOWAIT is set, the newly created process becomes a child
648 	 * of init.  This effectively disassociates the child from the
649 	 * parent.
650 	 */
651 	if (flags & RFNOWAIT)
652 		pptr = initproc;
653 	else
654 		pptr = p1;
655 	p2->p_pptr = pptr;
656 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
657 	sx_xunlock(&proctree_lock);
658 
659 	/* Inform accounting that we have forked. */
660 	p2->p_acflag = AFORK;
661 	PROC_UNLOCK(p2);
662 
663 	/*
664 	 * Finish creating the child process.  It will return via a different
665 	 * execution path later.  (ie: directly into user mode)
666 	 */
667 	vm_forkproc(td, p2, td2, flags);
668 
669 	if (flags == (RFFDG | RFPROC)) {
670 		atomic_add_int(&cnt.v_forks, 1);
671 		atomic_add_int(&cnt.v_forkpages, p2->p_vmspace->vm_dsize +
672 		    p2->p_vmspace->vm_ssize);
673 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
674 		atomic_add_int(&cnt.v_vforks, 1);
675 		atomic_add_int(&cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
676 		    p2->p_vmspace->vm_ssize);
677 	} else if (p1 == &proc0) {
678 		atomic_add_int(&cnt.v_kthreads, 1);
679 		atomic_add_int(&cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
680 		    p2->p_vmspace->vm_ssize);
681 	} else {
682 		atomic_add_int(&cnt.v_rforks, 1);
683 		atomic_add_int(&cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
684 		    p2->p_vmspace->vm_ssize);
685 	}
686 
687 	/*
688 	 * Both processes are set up, now check if any loadable modules want
689 	 * to adjust anything.
690 	 *   What if they have an error? XXX
691 	 */
692 	EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
693 
694 	/*
695 	 * Set the child start time and mark the process as being complete.
696 	 */
697 	microuptime(&p2->p_stats->p_start);
698 	mtx_lock_spin(&sched_lock);
699 	p2->p_state = PRS_NORMAL;
700 
701 	/*
702 	 * If RFSTOPPED not requested, make child runnable and add to
703 	 * run queue.
704 	 */
705 	if ((flags & RFSTOPPED) == 0) {
706 		TD_SET_CAN_RUN(td2);
707 		setrunqueue(td2, SRQ_BORING);
708 	}
709 	mtx_unlock_spin(&sched_lock);
710 
711 	/*
712 	 * Now can be swapped.
713 	 */
714 	PROC_LOCK(p1);
715 	_PRELE(p1);
716 
717 	/*
718 	 * Tell any interested parties about the new process.
719 	 */
720 	KNOTE_LOCKED(&p1->p_klist, NOTE_FORK | p2->p_pid);
721 
722 	PROC_UNLOCK(p1);
723 
724 	/*
725 	 * Preserve synchronization semantics of vfork.  If waiting for
726 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
727 	 * proc (in case of exit).
728 	 */
729 	PROC_LOCK(p2);
730 	while (p2->p_flag & P_PPWAIT)
731 		msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
732 	PROC_UNLOCK(p2);
733 
734 	/*
735 	 * If other threads are waiting, let them continue now.
736 	 */
737 	if (p1->p_flag & P_HADTHREADS) {
738 		PROC_LOCK(p1);
739 		thread_single_end();
740 		PROC_UNLOCK(p1);
741 	}
742 
743 	/*
744 	 * Return child proc pointer to parent.
745 	 */
746 	*procp = p2;
747 	return (0);
748 fail:
749 	sx_sunlock(&proctree_lock);
750 	if (ppsratecheck(&lastfail, &curfail, 1))
751 		printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n",
752 		    td->td_ucred->cr_ruid);
753 	sx_xunlock(&allproc_lock);
754 #ifdef MAC
755 	mac_destroy_proc(newproc);
756 #endif
757 #ifdef AUDIT
758 	audit_proc_free(newproc);
759 #endif
760 	uma_zfree(proc_zone, newproc);
761 	if (p1->p_flag & P_HADTHREADS) {
762 		PROC_LOCK(p1);
763 		thread_single_end();
764 		PROC_UNLOCK(p1);
765 	}
766 	tsleep(&forksleep, PUSER, "fork", hz / 2);
767 	return (error);
768 }
769 
770 /*
771  * Handle the return of a child process from fork1().  This function
772  * is called from the MD fork_trampoline() entry point.
773  */
774 void
775 fork_exit(callout, arg, frame)
776 	void (*callout)(void *, struct trapframe *);
777 	void *arg;
778 	struct trapframe *frame;
779 {
780 	struct proc *p;
781 	struct thread *td;
782 
783 	/*
784 	 * Finish setting up thread glue so that it begins execution in a
785 	 * non-nested critical section with sched_lock held but not recursed.
786 	 */
787 	td = curthread;
788 	p = td->td_proc;
789 	td->td_oncpu = PCPU_GET(cpuid);
790 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
791 
792 	sched_lock.mtx_lock = (uintptr_t)td;
793 	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
794 	CTR4(KTR_PROC, "fork_exit: new thread %p (kse %p, pid %d, %s)",
795 		td, td->td_sched, p->p_pid, p->p_comm);
796 
797 	/*
798 	 * Processes normally resume in mi_switch() after being
799 	 * cpu_switch()'ed to, but when children start up they arrive here
800 	 * instead, so we must do much the same things as mi_switch() would.
801 	 */
802 
803 	if ((td = PCPU_GET(deadthread))) {
804 		PCPU_SET(deadthread, NULL);
805 		thread_stash(td);
806 	}
807 	td = curthread;
808 	mtx_unlock_spin(&sched_lock);
809 
810 	/*
811 	 * cpu_set_fork_handler intercepts this function call to
812 	 * have this call a non-return function to stay in kernel mode.
813 	 * initproc has its own fork handler, but it does return.
814 	 */
815 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
816 	callout(arg, frame);
817 
818 	/*
819 	 * Check if a kernel thread misbehaved and returned from its main
820 	 * function.
821 	 */
822 	if (p->p_flag & P_KTHREAD) {
823 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
824 		    p->p_comm, p->p_pid);
825 		kthread_exit(0);
826 	}
827 	mtx_assert(&Giant, MA_NOTOWNED);
828 
829 	EVENTHANDLER_INVOKE(schedtail, p);
830 }
831 
832 /*
833  * Simplified back end of syscall(), used when returning from fork()
834  * directly into user mode.  Giant is not held on entry, and must not
835  * be held on return.  This function is passed in to fork_exit() as the
836  * first parameter and is called when returning to a new userland process.
837  */
838 void
839 fork_return(td, frame)
840 	struct thread *td;
841 	struct trapframe *frame;
842 {
843 
844 	userret(td, frame);
845 #ifdef KTRACE
846 	if (KTRPOINT(td, KTR_SYSRET))
847 		ktrsysret(SYS_fork, 0, 0);
848 #endif
849 	mtx_assert(&Giant, MA_NOTOWNED);
850 }
851