1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ktrace.h" 43 #include "opt_kstack_pages.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/bitstring.h> 48 #include <sys/sysproto.h> 49 #include <sys/eventhandler.h> 50 #include <sys/fcntl.h> 51 #include <sys/filedesc.h> 52 #include <sys/jail.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/sysctl.h> 56 #include <sys/lock.h> 57 #include <sys/malloc.h> 58 #include <sys/mutex.h> 59 #include <sys/priv.h> 60 #include <sys/proc.h> 61 #include <sys/procdesc.h> 62 #include <sys/ptrace.h> 63 #include <sys/racct.h> 64 #include <sys/resourcevar.h> 65 #include <sys/sched.h> 66 #include <sys/syscall.h> 67 #include <sys/vmmeter.h> 68 #include <sys/vnode.h> 69 #include <sys/acct.h> 70 #include <sys/ktr.h> 71 #include <sys/ktrace.h> 72 #include <sys/unistd.h> 73 #include <sys/sdt.h> 74 #include <sys/sx.h> 75 #include <sys/sysent.h> 76 #include <sys/signalvar.h> 77 78 #include <security/audit/audit.h> 79 #include <security/mac/mac_framework.h> 80 81 #include <vm/vm.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_extern.h> 85 #include <vm/uma.h> 86 87 #ifdef KDTRACE_HOOKS 88 #include <sys/dtrace_bsd.h> 89 dtrace_fork_func_t dtrace_fasttrap_fork; 90 #endif 91 92 SDT_PROVIDER_DECLARE(proc); 93 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int"); 94 95 #ifndef _SYS_SYSPROTO_H_ 96 struct fork_args { 97 int dummy; 98 }; 99 #endif 100 101 /* ARGSUSED */ 102 int 103 sys_fork(struct thread *td, struct fork_args *uap) 104 { 105 struct fork_req fr; 106 int error, pid; 107 108 bzero(&fr, sizeof(fr)); 109 fr.fr_flags = RFFDG | RFPROC; 110 fr.fr_pidp = &pid; 111 error = fork1(td, &fr); 112 if (error == 0) { 113 td->td_retval[0] = pid; 114 td->td_retval[1] = 0; 115 } 116 return (error); 117 } 118 119 /* ARGUSED */ 120 int 121 sys_pdfork(struct thread *td, struct pdfork_args *uap) 122 { 123 struct fork_req fr; 124 int error, fd, pid; 125 126 bzero(&fr, sizeof(fr)); 127 fr.fr_flags = RFFDG | RFPROC | RFPROCDESC; 128 fr.fr_pidp = &pid; 129 fr.fr_pd_fd = &fd; 130 fr.fr_pd_flags = uap->flags; 131 /* 132 * It is necessary to return fd by reference because 0 is a valid file 133 * descriptor number, and the child needs to be able to distinguish 134 * itself from the parent using the return value. 135 */ 136 error = fork1(td, &fr); 137 if (error == 0) { 138 td->td_retval[0] = pid; 139 td->td_retval[1] = 0; 140 error = copyout(&fd, uap->fdp, sizeof(fd)); 141 } 142 return (error); 143 } 144 145 /* ARGSUSED */ 146 int 147 sys_vfork(struct thread *td, struct vfork_args *uap) 148 { 149 struct fork_req fr; 150 int error, pid; 151 152 bzero(&fr, sizeof(fr)); 153 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; 154 fr.fr_pidp = &pid; 155 error = fork1(td, &fr); 156 if (error == 0) { 157 td->td_retval[0] = pid; 158 td->td_retval[1] = 0; 159 } 160 return (error); 161 } 162 163 int 164 sys_rfork(struct thread *td, struct rfork_args *uap) 165 { 166 struct fork_req fr; 167 int error, pid; 168 169 /* Don't allow kernel-only flags. */ 170 if ((uap->flags & RFKERNELONLY) != 0) 171 return (EINVAL); 172 /* RFSPAWN must not appear with others */ 173 if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN) 174 return (EINVAL); 175 176 AUDIT_ARG_FFLAGS(uap->flags); 177 bzero(&fr, sizeof(fr)); 178 if ((uap->flags & RFSPAWN) != 0) { 179 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; 180 fr.fr_flags2 = FR2_DROPSIG_CAUGHT; 181 } else { 182 fr.fr_flags = uap->flags; 183 } 184 fr.fr_pidp = &pid; 185 error = fork1(td, &fr); 186 if (error == 0) { 187 td->td_retval[0] = pid; 188 td->td_retval[1] = 0; 189 } 190 return (error); 191 } 192 193 int __exclusive_cache_line nprocs = 1; /* process 0 */ 194 int lastpid = 0; 195 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 196 "Last used PID"); 197 198 /* 199 * Random component to lastpid generation. We mix in a random factor to make 200 * it a little harder to predict. We sanity check the modulus value to avoid 201 * doing it in critical paths. Don't let it be too small or we pointlessly 202 * waste randomness entropy, and don't let it be impossibly large. Using a 203 * modulus that is too big causes a LOT more process table scans and slows 204 * down fork processing as the pidchecked caching is defeated. 205 */ 206 static int randompid = 0; 207 208 static int 209 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 210 { 211 int error, pid; 212 213 error = sysctl_wire_old_buffer(req, sizeof(int)); 214 if (error != 0) 215 return(error); 216 sx_xlock(&allproc_lock); 217 pid = randompid; 218 error = sysctl_handle_int(oidp, &pid, 0, req); 219 if (error == 0 && req->newptr != NULL) { 220 if (pid == 0) 221 randompid = 0; 222 else if (pid == 1) 223 /* generate a random PID modulus between 100 and 1123 */ 224 randompid = 100 + arc4random() % 1024; 225 else if (pid < 0 || pid > pid_max - 100) 226 /* out of range */ 227 randompid = pid_max - 100; 228 else if (pid < 100) 229 /* Make it reasonable */ 230 randompid = 100; 231 else 232 randompid = pid; 233 } 234 sx_xunlock(&allproc_lock); 235 return (error); 236 } 237 238 SYSCTL_PROC(_kern, OID_AUTO, randompid, 239 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, 240 sysctl_kern_randompid, "I", 241 "Random PID modulus. Special values: 0: disable, 1: choose random value"); 242 243 extern bitstr_t proc_id_pidmap; 244 extern bitstr_t proc_id_grpidmap; 245 extern bitstr_t proc_id_sessidmap; 246 extern bitstr_t proc_id_reapmap; 247 248 /* 249 * Find an unused process ID 250 * 251 * If RFHIGHPID is set (used during system boot), do not allocate 252 * low-numbered pids. 253 */ 254 static int 255 fork_findpid(int flags) 256 { 257 pid_t result; 258 int trypid, random; 259 260 /* 261 * Avoid calling arc4random with procid_lock held. 262 */ 263 random = 0; 264 if (__predict_false(randompid)) 265 random = arc4random() % randompid; 266 267 mtx_lock(&procid_lock); 268 269 trypid = lastpid + 1; 270 if (flags & RFHIGHPID) { 271 if (trypid < 10) 272 trypid = 10; 273 } else { 274 trypid += random; 275 } 276 retry: 277 if (trypid >= pid_max) 278 trypid = 2; 279 280 bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result); 281 if (result == -1) { 282 KASSERT(trypid != 2, ("unexpectedly ran out of IDs")); 283 trypid = 2; 284 goto retry; 285 } 286 if (bit_test(&proc_id_grpidmap, result) || 287 bit_test(&proc_id_sessidmap, result) || 288 bit_test(&proc_id_reapmap, result)) { 289 trypid = result + 1; 290 goto retry; 291 } 292 293 /* 294 * RFHIGHPID does not mess with the lastpid counter during boot. 295 */ 296 if ((flags & RFHIGHPID) == 0) 297 lastpid = result; 298 299 bit_set(&proc_id_pidmap, result); 300 mtx_unlock(&procid_lock); 301 302 return (result); 303 } 304 305 static int 306 fork_norfproc(struct thread *td, int flags) 307 { 308 int error; 309 struct proc *p1; 310 311 KASSERT((flags & RFPROC) == 0, 312 ("fork_norfproc called with RFPROC set")); 313 p1 = td->td_proc; 314 315 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 316 (flags & (RFCFDG | RFFDG))) { 317 PROC_LOCK(p1); 318 if (thread_single(p1, SINGLE_BOUNDARY)) { 319 PROC_UNLOCK(p1); 320 return (ERESTART); 321 } 322 PROC_UNLOCK(p1); 323 } 324 325 error = vm_forkproc(td, NULL, NULL, NULL, flags); 326 if (error) 327 goto fail; 328 329 /* 330 * Close all file descriptors. 331 */ 332 if (flags & RFCFDG) { 333 struct filedesc *fdtmp; 334 fdtmp = fdinit(td->td_proc->p_fd, false); 335 fdescfree(td); 336 p1->p_fd = fdtmp; 337 } 338 339 /* 340 * Unshare file descriptors (from parent). 341 */ 342 if (flags & RFFDG) 343 fdunshare(td); 344 345 fail: 346 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 347 (flags & (RFCFDG | RFFDG))) { 348 PROC_LOCK(p1); 349 thread_single_end(p1, SINGLE_BOUNDARY); 350 PROC_UNLOCK(p1); 351 } 352 return (error); 353 } 354 355 static void 356 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2, 357 struct vmspace *vm2, struct file *fp_procdesc) 358 { 359 struct proc *p1, *pptr; 360 struct filedesc *fd; 361 struct filedesc_to_leader *fdtol; 362 struct sigacts *newsigacts; 363 364 p1 = td->td_proc; 365 366 PROC_LOCK(p1); 367 bcopy(&p1->p_startcopy, &p2->p_startcopy, 368 __rangeof(struct proc, p_startcopy, p_endcopy)); 369 pargs_hold(p2->p_args); 370 PROC_UNLOCK(p1); 371 372 bzero(&p2->p_startzero, 373 __rangeof(struct proc, p_startzero, p_endzero)); 374 375 /* Tell the prison that we exist. */ 376 prison_proc_hold(p2->p_ucred->cr_prison); 377 378 p2->p_state = PRS_NEW; /* protect against others */ 379 p2->p_pid = fork_findpid(fr->fr_flags); 380 AUDIT_ARG_PID(p2->p_pid); 381 382 sx_xlock(&allproc_lock); 383 LIST_INSERT_HEAD(&allproc, p2, p_list); 384 allproc_gen++; 385 sx_xunlock(&allproc_lock); 386 387 sx_xlock(PIDHASHLOCK(p2->p_pid)); 388 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); 389 sx_xunlock(PIDHASHLOCK(p2->p_pid)); 390 391 tidhash_add(td2); 392 393 /* 394 * Malloc things while we don't hold any locks. 395 */ 396 if (fr->fr_flags & RFSIGSHARE) 397 newsigacts = NULL; 398 else 399 newsigacts = sigacts_alloc(); 400 401 /* 402 * Copy filedesc. 403 */ 404 if (fr->fr_flags & RFCFDG) { 405 fd = fdinit(p1->p_fd, false); 406 fdtol = NULL; 407 } else if (fr->fr_flags & RFFDG) { 408 fd = fdcopy(p1->p_fd); 409 fdtol = NULL; 410 } else { 411 fd = fdshare(p1->p_fd); 412 if (p1->p_fdtol == NULL) 413 p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL, 414 p1->p_leader); 415 if ((fr->fr_flags & RFTHREAD) != 0) { 416 /* 417 * Shared file descriptor table, and shared 418 * process leaders. 419 */ 420 fdtol = p1->p_fdtol; 421 FILEDESC_XLOCK(p1->p_fd); 422 fdtol->fdl_refcount++; 423 FILEDESC_XUNLOCK(p1->p_fd); 424 } else { 425 /* 426 * Shared file descriptor table, and different 427 * process leaders. 428 */ 429 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, 430 p1->p_fd, p2); 431 } 432 } 433 /* 434 * Make a proc table entry for the new process. 435 * Start by zeroing the section of proc that is zero-initialized, 436 * then copy the section that is copied directly from the parent. 437 */ 438 439 PROC_LOCK(p2); 440 PROC_LOCK(p1); 441 442 bzero(&td2->td_startzero, 443 __rangeof(struct thread, td_startzero, td_endzero)); 444 445 bcopy(&td->td_startcopy, &td2->td_startcopy, 446 __rangeof(struct thread, td_startcopy, td_endcopy)); 447 448 bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name)); 449 td2->td_sigstk = td->td_sigstk; 450 td2->td_flags = TDF_INMEM; 451 td2->td_lend_user_pri = PRI_MAX; 452 453 #ifdef VIMAGE 454 td2->td_vnet = NULL; 455 td2->td_vnet_lpush = NULL; 456 #endif 457 458 /* 459 * Allow the scheduler to initialize the child. 460 */ 461 thread_lock(td); 462 sched_fork(td, td2); 463 thread_unlock(td); 464 465 /* 466 * Duplicate sub-structures as needed. 467 * Increase reference counts on shared objects. 468 */ 469 p2->p_flag = P_INMEM; 470 p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE | 471 P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC | 472 P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP | 473 P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC); 474 p2->p_swtick = ticks; 475 if (p1->p_flag & P_PROFIL) 476 startprofclock(p2); 477 478 if (fr->fr_flags & RFSIGSHARE) { 479 p2->p_sigacts = sigacts_hold(p1->p_sigacts); 480 } else { 481 sigacts_copy(newsigacts, p1->p_sigacts); 482 p2->p_sigacts = newsigacts; 483 if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0) { 484 mtx_lock(&p2->p_sigacts->ps_mtx); 485 sig_drop_caught(p2); 486 mtx_unlock(&p2->p_sigacts->ps_mtx); 487 } 488 } 489 490 if (fr->fr_flags & RFTSIGZMB) 491 p2->p_sigparent = RFTSIGNUM(fr->fr_flags); 492 else if (fr->fr_flags & RFLINUXTHPN) 493 p2->p_sigparent = SIGUSR1; 494 else 495 p2->p_sigparent = SIGCHLD; 496 497 p2->p_textvp = p1->p_textvp; 498 p2->p_fd = fd; 499 p2->p_fdtol = fdtol; 500 501 if (p1->p_flag2 & P2_INHERIT_PROTECTED) { 502 p2->p_flag |= P_PROTECTED; 503 p2->p_flag2 |= P2_INHERIT_PROTECTED; 504 } 505 506 /* 507 * p_limit is copy-on-write. Bump its refcount. 508 */ 509 lim_fork(p1, p2); 510 511 thread_cow_get_proc(td2, p2); 512 513 pstats_fork(p1->p_stats, p2->p_stats); 514 515 PROC_UNLOCK(p1); 516 PROC_UNLOCK(p2); 517 518 /* Bump references to the text vnode (for procfs). */ 519 if (p2->p_textvp) 520 vrefact(p2->p_textvp); 521 522 /* 523 * Set up linkage for kernel based threading. 524 */ 525 if ((fr->fr_flags & RFTHREAD) != 0) { 526 mtx_lock(&ppeers_lock); 527 p2->p_peers = p1->p_peers; 528 p1->p_peers = p2; 529 p2->p_leader = p1->p_leader; 530 mtx_unlock(&ppeers_lock); 531 PROC_LOCK(p1->p_leader); 532 if ((p1->p_leader->p_flag & P_WEXIT) != 0) { 533 PROC_UNLOCK(p1->p_leader); 534 /* 535 * The task leader is exiting, so process p1 is 536 * going to be killed shortly. Since p1 obviously 537 * isn't dead yet, we know that the leader is either 538 * sending SIGKILL's to all the processes in this 539 * task or is sleeping waiting for all the peers to 540 * exit. We let p1 complete the fork, but we need 541 * to go ahead and kill the new process p2 since 542 * the task leader may not get a chance to send 543 * SIGKILL to it. We leave it on the list so that 544 * the task leader will wait for this new process 545 * to commit suicide. 546 */ 547 PROC_LOCK(p2); 548 kern_psignal(p2, SIGKILL); 549 PROC_UNLOCK(p2); 550 } else 551 PROC_UNLOCK(p1->p_leader); 552 } else { 553 p2->p_peers = NULL; 554 p2->p_leader = p2; 555 } 556 557 sx_xlock(&proctree_lock); 558 PGRP_LOCK(p1->p_pgrp); 559 PROC_LOCK(p2); 560 PROC_LOCK(p1); 561 562 /* 563 * Preserve some more flags in subprocess. P_PROFIL has already 564 * been preserved. 565 */ 566 p2->p_flag |= p1->p_flag & P_SUGID; 567 td2->td_pflags |= (td->td_pflags & (TDP_ALTSTACK | 568 TDP_SIGFASTBLOCK)) | TDP_FORKING; 569 SESS_LOCK(p1->p_session); 570 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) 571 p2->p_flag |= P_CONTROLT; 572 SESS_UNLOCK(p1->p_session); 573 if (fr->fr_flags & RFPPWAIT) 574 p2->p_flag |= P_PPWAIT; 575 576 p2->p_pgrp = p1->p_pgrp; 577 LIST_INSERT_AFTER(p1, p2, p_pglist); 578 PGRP_UNLOCK(p1->p_pgrp); 579 LIST_INIT(&p2->p_children); 580 LIST_INIT(&p2->p_orphans); 581 582 callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0); 583 584 /* 585 * This begins the section where we must prevent the parent 586 * from being swapped. 587 */ 588 _PHOLD(p1); 589 PROC_UNLOCK(p1); 590 591 /* 592 * Attach the new process to its parent. 593 * 594 * If RFNOWAIT is set, the newly created process becomes a child 595 * of init. This effectively disassociates the child from the 596 * parent. 597 */ 598 if ((fr->fr_flags & RFNOWAIT) != 0) { 599 pptr = p1->p_reaper; 600 p2->p_reaper = pptr; 601 } else { 602 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ? 603 p1 : p1->p_reaper; 604 pptr = p1; 605 } 606 p2->p_pptr = pptr; 607 p2->p_oppid = pptr->p_pid; 608 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); 609 LIST_INIT(&p2->p_reaplist); 610 LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling); 611 if (p2->p_reaper == p1 && p1 != initproc) { 612 p2->p_reapsubtree = p2->p_pid; 613 proc_id_set_cond(PROC_ID_REAP, p2->p_pid); 614 } 615 sx_xunlock(&proctree_lock); 616 617 /* Inform accounting that we have forked. */ 618 p2->p_acflag = AFORK; 619 PROC_UNLOCK(p2); 620 621 #ifdef KTRACE 622 ktrprocfork(p1, p2); 623 #endif 624 625 /* 626 * Finish creating the child process. It will return via a different 627 * execution path later. (ie: directly into user mode) 628 */ 629 vm_forkproc(td, p2, td2, vm2, fr->fr_flags); 630 631 if (fr->fr_flags == (RFFDG | RFPROC)) { 632 VM_CNT_INC(v_forks); 633 VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize + 634 p2->p_vmspace->vm_ssize); 635 } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { 636 VM_CNT_INC(v_vforks); 637 VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize + 638 p2->p_vmspace->vm_ssize); 639 } else if (p1 == &proc0) { 640 VM_CNT_INC(v_kthreads); 641 VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize + 642 p2->p_vmspace->vm_ssize); 643 } else { 644 VM_CNT_INC(v_rforks); 645 VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize + 646 p2->p_vmspace->vm_ssize); 647 } 648 649 /* 650 * Associate the process descriptor with the process before anything 651 * can happen that might cause that process to need the descriptor. 652 * However, don't do this until after fork(2) can no longer fail. 653 */ 654 if (fr->fr_flags & RFPROCDESC) 655 procdesc_new(p2, fr->fr_pd_flags); 656 657 /* 658 * Both processes are set up, now check if any loadable modules want 659 * to adjust anything. 660 */ 661 EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags); 662 663 /* 664 * Set the child start time and mark the process as being complete. 665 */ 666 PROC_LOCK(p2); 667 PROC_LOCK(p1); 668 microuptime(&p2->p_stats->p_start); 669 PROC_SLOCK(p2); 670 p2->p_state = PRS_NORMAL; 671 PROC_SUNLOCK(p2); 672 673 #ifdef KDTRACE_HOOKS 674 /* 675 * Tell the DTrace fasttrap provider about the new process so that any 676 * tracepoints inherited from the parent can be removed. We have to do 677 * this only after p_state is PRS_NORMAL since the fasttrap module will 678 * use pfind() later on. 679 */ 680 if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork) 681 dtrace_fasttrap_fork(p1, p2); 682 #endif 683 if (fr->fr_flags & RFPPWAIT) { 684 td->td_pflags |= TDP_RFPPWAIT; 685 td->td_rfppwait_p = p2; 686 td->td_dbgflags |= TDB_VFORK; 687 } 688 PROC_UNLOCK(p2); 689 690 /* 691 * Tell any interested parties about the new process. 692 */ 693 knote_fork(p1->p_klist, p2->p_pid); 694 695 /* 696 * Now can be swapped. 697 */ 698 _PRELE(p1); 699 PROC_UNLOCK(p1); 700 SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags); 701 702 if (fr->fr_flags & RFPROCDESC) { 703 procdesc_finit(p2->p_procdesc, fp_procdesc); 704 fdrop(fp_procdesc, td); 705 } 706 707 /* 708 * Speculative check for PTRACE_FORK. PTRACE_FORK is not 709 * synced with forks in progress so it is OK if we miss it 710 * if being set atm. 711 */ 712 if ((p1->p_ptevents & PTRACE_FORK) != 0) { 713 sx_xlock(&proctree_lock); 714 PROC_LOCK(p2); 715 716 /* 717 * p1->p_ptevents & p1->p_pptr are protected by both 718 * process and proctree locks for modifications, 719 * so owning proctree_lock allows the race-free read. 720 */ 721 if ((p1->p_ptevents & PTRACE_FORK) != 0) { 722 /* 723 * Arrange for debugger to receive the fork event. 724 * 725 * We can report PL_FLAG_FORKED regardless of 726 * P_FOLLOWFORK settings, but it does not make a sense 727 * for runaway child. 728 */ 729 td->td_dbgflags |= TDB_FORK; 730 td->td_dbg_forked = p2->p_pid; 731 td2->td_dbgflags |= TDB_STOPATFORK; 732 proc_set_traced(p2, true); 733 CTR2(KTR_PTRACE, 734 "do_fork: attaching to new child pid %d: oppid %d", 735 p2->p_pid, p2->p_oppid); 736 proc_reparent(p2, p1->p_pptr, false); 737 } 738 PROC_UNLOCK(p2); 739 sx_xunlock(&proctree_lock); 740 } 741 742 racct_proc_fork_done(p2); 743 744 if ((fr->fr_flags & RFSTOPPED) == 0) { 745 if (fr->fr_pidp != NULL) 746 *fr->fr_pidp = p2->p_pid; 747 /* 748 * If RFSTOPPED not requested, make child runnable and 749 * add to run queue. 750 */ 751 thread_lock(td2); 752 TD_SET_CAN_RUN(td2); 753 sched_add(td2, SRQ_BORING); 754 } else { 755 *fr->fr_procp = p2; 756 } 757 } 758 759 void 760 fork_rfppwait(struct thread *td) 761 { 762 struct proc *p, *p2; 763 764 MPASS(td->td_pflags & TDP_RFPPWAIT); 765 766 p = td->td_proc; 767 /* 768 * Preserve synchronization semantics of vfork. If 769 * waiting for child to exec or exit, fork set 770 * P_PPWAIT on child, and there we sleep on our proc 771 * (in case of exit). 772 * 773 * Do it after the ptracestop() above is finished, to 774 * not block our debugger until child execs or exits 775 * to finish vfork wait. 776 */ 777 td->td_pflags &= ~TDP_RFPPWAIT; 778 p2 = td->td_rfppwait_p; 779 again: 780 PROC_LOCK(p2); 781 while (p2->p_flag & P_PPWAIT) { 782 PROC_LOCK(p); 783 if (thread_suspend_check_needed()) { 784 PROC_UNLOCK(p2); 785 thread_suspend_check(0); 786 PROC_UNLOCK(p); 787 goto again; 788 } else { 789 PROC_UNLOCK(p); 790 } 791 cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz); 792 } 793 PROC_UNLOCK(p2); 794 795 if (td->td_dbgflags & TDB_VFORK) { 796 PROC_LOCK(p); 797 if (p->p_ptevents & PTRACE_VFORK) 798 ptracestop(td, SIGTRAP, NULL); 799 td->td_dbgflags &= ~TDB_VFORK; 800 PROC_UNLOCK(p); 801 } 802 } 803 804 int 805 fork1(struct thread *td, struct fork_req *fr) 806 { 807 struct proc *p1, *newproc; 808 struct thread *td2; 809 struct vmspace *vm2; 810 struct ucred *cred; 811 struct file *fp_procdesc; 812 vm_ooffset_t mem_charged; 813 int error, nprocs_new; 814 static int curfail; 815 static struct timeval lastfail; 816 int flags, pages; 817 818 flags = fr->fr_flags; 819 pages = fr->fr_pages; 820 821 if ((flags & RFSTOPPED) != 0) 822 MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL); 823 else 824 MPASS(fr->fr_procp == NULL); 825 826 /* Check for the undefined or unimplemented flags. */ 827 if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0) 828 return (EINVAL); 829 830 /* Signal value requires RFTSIGZMB. */ 831 if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0) 832 return (EINVAL); 833 834 /* Can't copy and clear. */ 835 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) 836 return (EINVAL); 837 838 /* Check the validity of the signal number. */ 839 if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG) 840 return (EINVAL); 841 842 if ((flags & RFPROCDESC) != 0) { 843 /* Can't not create a process yet get a process descriptor. */ 844 if ((flags & RFPROC) == 0) 845 return (EINVAL); 846 847 /* Must provide a place to put a procdesc if creating one. */ 848 if (fr->fr_pd_fd == NULL) 849 return (EINVAL); 850 851 /* Check if we are using supported flags. */ 852 if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0) 853 return (EINVAL); 854 } 855 856 p1 = td->td_proc; 857 858 /* 859 * Here we don't create a new process, but we divorce 860 * certain parts of a process from itself. 861 */ 862 if ((flags & RFPROC) == 0) { 863 if (fr->fr_procp != NULL) 864 *fr->fr_procp = NULL; 865 else if (fr->fr_pidp != NULL) 866 *fr->fr_pidp = 0; 867 return (fork_norfproc(td, flags)); 868 } 869 870 fp_procdesc = NULL; 871 newproc = NULL; 872 vm2 = NULL; 873 874 /* 875 * Increment the nprocs resource before allocations occur. 876 * Although process entries are dynamically created, we still 877 * keep a global limit on the maximum number we will 878 * create. There are hard-limits as to the number of processes 879 * that can run, established by the KVA and memory usage for 880 * the process data. 881 * 882 * Don't allow a nonprivileged user to use the last ten 883 * processes; don't let root exceed the limit. 884 */ 885 nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1; 886 if (nprocs_new >= maxproc - 10) { 887 if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 || 888 nprocs_new >= maxproc) { 889 error = EAGAIN; 890 sx_xlock(&allproc_lock); 891 if (ppsratecheck(&lastfail, &curfail, 1)) { 892 printf("maxproc limit exceeded by uid %u " 893 "(pid %d); see tuning(7) and " 894 "login.conf(5)\n", 895 td->td_ucred->cr_ruid, p1->p_pid); 896 } 897 sx_xunlock(&allproc_lock); 898 goto fail2; 899 } 900 } 901 902 /* 903 * If required, create a process descriptor in the parent first; we 904 * will abandon it if something goes wrong. We don't finit() until 905 * later. 906 */ 907 if (flags & RFPROCDESC) { 908 error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd, 909 fr->fr_pd_flags, fr->fr_pd_fcaps); 910 if (error != 0) 911 goto fail2; 912 } 913 914 mem_charged = 0; 915 if (pages == 0) 916 pages = kstack_pages; 917 /* Allocate new proc. */ 918 newproc = uma_zalloc(proc_zone, M_WAITOK); 919 td2 = FIRST_THREAD_IN_PROC(newproc); 920 if (td2 == NULL) { 921 td2 = thread_alloc(pages); 922 if (td2 == NULL) { 923 error = ENOMEM; 924 goto fail2; 925 } 926 proc_linkup(newproc, td2); 927 } else { 928 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) { 929 if (td2->td_kstack != 0) 930 vm_thread_dispose(td2); 931 if (!thread_alloc_stack(td2, pages)) { 932 error = ENOMEM; 933 goto fail2; 934 } 935 } 936 } 937 938 if ((flags & RFMEM) == 0) { 939 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged); 940 if (vm2 == NULL) { 941 error = ENOMEM; 942 goto fail2; 943 } 944 if (!swap_reserve(mem_charged)) { 945 /* 946 * The swap reservation failed. The accounting 947 * from the entries of the copied vm2 will be 948 * subtracted in vmspace_free(), so force the 949 * reservation there. 950 */ 951 swap_reserve_force(mem_charged); 952 error = ENOMEM; 953 goto fail2; 954 } 955 } else 956 vm2 = NULL; 957 958 /* 959 * XXX: This is ugly; when we copy resource usage, we need to bump 960 * per-cred resource counters. 961 */ 962 proc_set_cred_init(newproc, crhold(td->td_ucred)); 963 964 /* 965 * Initialize resource accounting for the child process. 966 */ 967 error = racct_proc_fork(p1, newproc); 968 if (error != 0) { 969 error = EAGAIN; 970 goto fail1; 971 } 972 973 #ifdef MAC 974 mac_proc_init(newproc); 975 #endif 976 newproc->p_klist = knlist_alloc(&newproc->p_mtx); 977 STAILQ_INIT(&newproc->p_ktr); 978 979 /* 980 * Increment the count of procs running with this uid. Don't allow 981 * a nonprivileged user to exceed their current limit. 982 */ 983 cred = td->td_ucred; 984 if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) { 985 if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0) 986 goto fail0; 987 chgproccnt(cred->cr_ruidinfo, 1, 0); 988 } 989 990 do_fork(td, fr, newproc, td2, vm2, fp_procdesc); 991 return (0); 992 fail0: 993 error = EAGAIN; 994 #ifdef MAC 995 mac_proc_destroy(newproc); 996 #endif 997 racct_proc_exit(newproc); 998 fail1: 999 crfree(newproc->p_ucred); 1000 newproc->p_ucred = NULL; 1001 fail2: 1002 if (vm2 != NULL) 1003 vmspace_free(vm2); 1004 uma_zfree(proc_zone, newproc); 1005 if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) { 1006 fdclose(td, fp_procdesc, *fr->fr_pd_fd); 1007 fdrop(fp_procdesc, td); 1008 } 1009 atomic_add_int(&nprocs, -1); 1010 pause("fork", hz / 2); 1011 return (error); 1012 } 1013 1014 /* 1015 * Handle the return of a child process from fork1(). This function 1016 * is called from the MD fork_trampoline() entry point. 1017 */ 1018 void 1019 fork_exit(void (*callout)(void *, struct trapframe *), void *arg, 1020 struct trapframe *frame) 1021 { 1022 struct proc *p; 1023 struct thread *td; 1024 struct thread *dtd; 1025 1026 td = curthread; 1027 p = td->td_proc; 1028 KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new")); 1029 1030 CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)", 1031 td, td_get_sched(td), p->p_pid, td->td_name); 1032 1033 sched_fork_exit(td); 1034 /* 1035 * Processes normally resume in mi_switch() after being 1036 * cpu_switch()'ed to, but when children start up they arrive here 1037 * instead, so we must do much the same things as mi_switch() would. 1038 */ 1039 if ((dtd = PCPU_GET(deadthread))) { 1040 PCPU_SET(deadthread, NULL); 1041 thread_stash(dtd); 1042 } 1043 thread_unlock(td); 1044 1045 /* 1046 * cpu_fork_kthread_handler intercepts this function call to 1047 * have this call a non-return function to stay in kernel mode. 1048 * initproc has its own fork handler, but it does return. 1049 */ 1050 KASSERT(callout != NULL, ("NULL callout in fork_exit")); 1051 callout(arg, frame); 1052 1053 /* 1054 * Check if a kernel thread misbehaved and returned from its main 1055 * function. 1056 */ 1057 if (p->p_flag & P_KPROC) { 1058 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n", 1059 td->td_name, p->p_pid); 1060 kthread_exit(); 1061 } 1062 mtx_assert(&Giant, MA_NOTOWNED); 1063 1064 if (p->p_sysent->sv_schedtail != NULL) 1065 (p->p_sysent->sv_schedtail)(td); 1066 td->td_pflags &= ~TDP_FORKING; 1067 } 1068 1069 /* 1070 * Simplified back end of syscall(), used when returning from fork() 1071 * directly into user mode. This function is passed in to fork_exit() 1072 * as the first parameter and is called when returning to a new 1073 * userland process. 1074 */ 1075 void 1076 fork_return(struct thread *td, struct trapframe *frame) 1077 { 1078 struct proc *p; 1079 1080 p = td->td_proc; 1081 if (td->td_dbgflags & TDB_STOPATFORK) { 1082 PROC_LOCK(p); 1083 if ((p->p_flag & P_TRACED) != 0) { 1084 /* 1085 * Inform the debugger if one is still present. 1086 */ 1087 td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP; 1088 ptracestop(td, SIGSTOP, NULL); 1089 td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX); 1090 } else { 1091 /* 1092 * ... otherwise clear the request. 1093 */ 1094 td->td_dbgflags &= ~TDB_STOPATFORK; 1095 } 1096 PROC_UNLOCK(p); 1097 } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) { 1098 /* 1099 * This is the start of a new thread in a traced 1100 * process. Report a system call exit event. 1101 */ 1102 PROC_LOCK(p); 1103 td->td_dbgflags |= TDB_SCX; 1104 if ((p->p_ptevents & PTRACE_SCX) != 0 || 1105 (td->td_dbgflags & TDB_BORN) != 0) 1106 ptracestop(td, SIGTRAP, NULL); 1107 td->td_dbgflags &= ~(TDB_SCX | TDB_BORN); 1108 PROC_UNLOCK(p); 1109 } 1110 1111 userret(td, frame); 1112 1113 #ifdef KTRACE 1114 if (KTRPOINT(td, KTR_SYSRET)) 1115 ktrsysret(SYS_fork, 0, 0); 1116 #endif 1117 } 1118