xref: /freebsd/sys/kern/kern_fork.c (revision f5b7695d2d5abd735064870ad43f4b9c723940c1)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 #include "opt_kstack_pages.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/bitstring.h>
48 #include <sys/sysproto.h>
49 #include <sys/eventhandler.h>
50 #include <sys/fcntl.h>
51 #include <sys/filedesc.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/sysctl.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/mutex.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/procdesc.h>
62 #include <sys/ptrace.h>
63 #include <sys/racct.h>
64 #include <sys/resourcevar.h>
65 #include <sys/sched.h>
66 #include <sys/syscall.h>
67 #include <sys/vmmeter.h>
68 #include <sys/vnode.h>
69 #include <sys/acct.h>
70 #include <sys/ktr.h>
71 #include <sys/ktrace.h>
72 #include <sys/unistd.h>
73 #include <sys/sdt.h>
74 #include <sys/sx.h>
75 #include <sys/sysent.h>
76 #include <sys/signalvar.h>
77 
78 #include <security/audit/audit.h>
79 #include <security/mac/mac_framework.h>
80 
81 #include <vm/vm.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_extern.h>
85 #include <vm/uma.h>
86 
87 #ifdef KDTRACE_HOOKS
88 #include <sys/dtrace_bsd.h>
89 dtrace_fork_func_t	dtrace_fasttrap_fork;
90 #endif
91 
92 SDT_PROVIDER_DECLARE(proc);
93 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
94 
95 #ifndef _SYS_SYSPROTO_H_
96 struct fork_args {
97 	int     dummy;
98 };
99 #endif
100 
101 /* ARGSUSED */
102 int
103 sys_fork(struct thread *td, struct fork_args *uap)
104 {
105 	struct fork_req fr;
106 	int error, pid;
107 
108 	bzero(&fr, sizeof(fr));
109 	fr.fr_flags = RFFDG | RFPROC;
110 	fr.fr_pidp = &pid;
111 	error = fork1(td, &fr);
112 	if (error == 0) {
113 		td->td_retval[0] = pid;
114 		td->td_retval[1] = 0;
115 	}
116 	return (error);
117 }
118 
119 /* ARGUSED */
120 int
121 sys_pdfork(struct thread *td, struct pdfork_args *uap)
122 {
123 	struct fork_req fr;
124 	int error, fd, pid;
125 
126 	bzero(&fr, sizeof(fr));
127 	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
128 	fr.fr_pidp = &pid;
129 	fr.fr_pd_fd = &fd;
130 	fr.fr_pd_flags = uap->flags;
131 	/*
132 	 * It is necessary to return fd by reference because 0 is a valid file
133 	 * descriptor number, and the child needs to be able to distinguish
134 	 * itself from the parent using the return value.
135 	 */
136 	error = fork1(td, &fr);
137 	if (error == 0) {
138 		td->td_retval[0] = pid;
139 		td->td_retval[1] = 0;
140 		error = copyout(&fd, uap->fdp, sizeof(fd));
141 	}
142 	return (error);
143 }
144 
145 /* ARGSUSED */
146 int
147 sys_vfork(struct thread *td, struct vfork_args *uap)
148 {
149 	struct fork_req fr;
150 	int error, pid;
151 
152 	bzero(&fr, sizeof(fr));
153 	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
154 	fr.fr_pidp = &pid;
155 	error = fork1(td, &fr);
156 	if (error == 0) {
157 		td->td_retval[0] = pid;
158 		td->td_retval[1] = 0;
159 	}
160 	return (error);
161 }
162 
163 int
164 sys_rfork(struct thread *td, struct rfork_args *uap)
165 {
166 	struct fork_req fr;
167 	int error, pid;
168 
169 	/* Don't allow kernel-only flags. */
170 	if ((uap->flags & RFKERNELONLY) != 0)
171 		return (EINVAL);
172 	/* RFSPAWN must not appear with others */
173 	if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN)
174 		return (EINVAL);
175 
176 	AUDIT_ARG_FFLAGS(uap->flags);
177 	bzero(&fr, sizeof(fr));
178 	if ((uap->flags & RFSPAWN) != 0) {
179 		fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
180 		fr.fr_flags2 = FR2_DROPSIG_CAUGHT;
181 	} else {
182 		fr.fr_flags = uap->flags;
183 	}
184 	fr.fr_pidp = &pid;
185 	error = fork1(td, &fr);
186 	if (error == 0) {
187 		td->td_retval[0] = pid;
188 		td->td_retval[1] = 0;
189 	}
190 	return (error);
191 }
192 
193 int __exclusive_cache_line	nprocs = 1;		/* process 0 */
194 int	lastpid = 0;
195 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
196     "Last used PID");
197 
198 /*
199  * Random component to lastpid generation.  We mix in a random factor to make
200  * it a little harder to predict.  We sanity check the modulus value to avoid
201  * doing it in critical paths.  Don't let it be too small or we pointlessly
202  * waste randomness entropy, and don't let it be impossibly large.  Using a
203  * modulus that is too big causes a LOT more process table scans and slows
204  * down fork processing as the pidchecked caching is defeated.
205  */
206 static int randompid = 0;
207 
208 static int
209 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
210 {
211 	int error, pid;
212 
213 	error = sysctl_wire_old_buffer(req, sizeof(int));
214 	if (error != 0)
215 		return(error);
216 	sx_xlock(&allproc_lock);
217 	pid = randompid;
218 	error = sysctl_handle_int(oidp, &pid, 0, req);
219 	if (error == 0 && req->newptr != NULL) {
220 		if (pid == 0)
221 			randompid = 0;
222 		else if (pid == 1)
223 			/* generate a random PID modulus between 100 and 1123 */
224 			randompid = 100 + arc4random() % 1024;
225 		else if (pid < 0 || pid > pid_max - 100)
226 			/* out of range */
227 			randompid = pid_max - 100;
228 		else if (pid < 100)
229 			/* Make it reasonable */
230 			randompid = 100;
231 		else
232 			randompid = pid;
233 	}
234 	sx_xunlock(&allproc_lock);
235 	return (error);
236 }
237 
238 SYSCTL_PROC(_kern, OID_AUTO, randompid,
239     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
240     sysctl_kern_randompid, "I",
241     "Random PID modulus. Special values: 0: disable, 1: choose random value");
242 
243 extern bitstr_t proc_id_pidmap;
244 extern bitstr_t proc_id_grpidmap;
245 extern bitstr_t proc_id_sessidmap;
246 extern bitstr_t proc_id_reapmap;
247 
248 /*
249  * Find an unused process ID
250  *
251  * If RFHIGHPID is set (used during system boot), do not allocate
252  * low-numbered pids.
253  */
254 static int
255 fork_findpid(int flags)
256 {
257 	pid_t result;
258 	int trypid, random;
259 
260 	/*
261 	 * Avoid calling arc4random with procid_lock held.
262 	 */
263 	random = 0;
264 	if (__predict_false(randompid))
265 		random = arc4random() % randompid;
266 
267 	mtx_lock(&procid_lock);
268 
269 	trypid = lastpid + 1;
270 	if (flags & RFHIGHPID) {
271 		if (trypid < 10)
272 			trypid = 10;
273 	} else {
274 		trypid += random;
275 	}
276 retry:
277 	if (trypid >= pid_max)
278 		trypid = 2;
279 
280 	bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result);
281 	if (result == -1) {
282 		KASSERT(trypid != 2, ("unexpectedly ran out of IDs"));
283 		trypid = 2;
284 		goto retry;
285 	}
286 	if (bit_test(&proc_id_grpidmap, result) ||
287 	    bit_test(&proc_id_sessidmap, result) ||
288 	    bit_test(&proc_id_reapmap, result)) {
289 		trypid = result + 1;
290 		goto retry;
291 	}
292 
293 	/*
294 	 * RFHIGHPID does not mess with the lastpid counter during boot.
295 	 */
296 	if ((flags & RFHIGHPID) == 0)
297 		lastpid = result;
298 
299 	bit_set(&proc_id_pidmap, result);
300 	mtx_unlock(&procid_lock);
301 
302 	return (result);
303 }
304 
305 static int
306 fork_norfproc(struct thread *td, int flags)
307 {
308 	int error;
309 	struct proc *p1;
310 
311 	KASSERT((flags & RFPROC) == 0,
312 	    ("fork_norfproc called with RFPROC set"));
313 	p1 = td->td_proc;
314 
315 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
316 	    (flags & (RFCFDG | RFFDG))) {
317 		PROC_LOCK(p1);
318 		if (thread_single(p1, SINGLE_BOUNDARY)) {
319 			PROC_UNLOCK(p1);
320 			return (ERESTART);
321 		}
322 		PROC_UNLOCK(p1);
323 	}
324 
325 	error = vm_forkproc(td, NULL, NULL, NULL, flags);
326 	if (error)
327 		goto fail;
328 
329 	/*
330 	 * Close all file descriptors.
331 	 */
332 	if (flags & RFCFDG) {
333 		struct filedesc *fdtmp;
334 		fdtmp = fdinit(td->td_proc->p_fd, false);
335 		fdescfree(td);
336 		p1->p_fd = fdtmp;
337 	}
338 
339 	/*
340 	 * Unshare file descriptors (from parent).
341 	 */
342 	if (flags & RFFDG)
343 		fdunshare(td);
344 
345 fail:
346 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
347 	    (flags & (RFCFDG | RFFDG))) {
348 		PROC_LOCK(p1);
349 		thread_single_end(p1, SINGLE_BOUNDARY);
350 		PROC_UNLOCK(p1);
351 	}
352 	return (error);
353 }
354 
355 static void
356 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
357     struct vmspace *vm2, struct file *fp_procdesc)
358 {
359 	struct proc *p1, *pptr;
360 	struct filedesc *fd;
361 	struct filedesc_to_leader *fdtol;
362 	struct sigacts *newsigacts;
363 
364 	p1 = td->td_proc;
365 
366 	PROC_LOCK(p1);
367 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
368 	    __rangeof(struct proc, p_startcopy, p_endcopy));
369 	pargs_hold(p2->p_args);
370 	PROC_UNLOCK(p1);
371 
372 	bzero(&p2->p_startzero,
373 	    __rangeof(struct proc, p_startzero, p_endzero));
374 
375 	/* Tell the prison that we exist. */
376 	prison_proc_hold(p2->p_ucred->cr_prison);
377 
378 	p2->p_state = PRS_NEW;		/* protect against others */
379 	p2->p_pid = fork_findpid(fr->fr_flags);
380 	AUDIT_ARG_PID(p2->p_pid);
381 
382 	sx_xlock(&allproc_lock);
383 	LIST_INSERT_HEAD(&allproc, p2, p_list);
384 	allproc_gen++;
385 	sx_xunlock(&allproc_lock);
386 
387 	sx_xlock(PIDHASHLOCK(p2->p_pid));
388 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
389 	sx_xunlock(PIDHASHLOCK(p2->p_pid));
390 
391 	tidhash_add(td2);
392 
393 	/*
394 	 * Malloc things while we don't hold any locks.
395 	 */
396 	if (fr->fr_flags & RFSIGSHARE)
397 		newsigacts = NULL;
398 	else
399 		newsigacts = sigacts_alloc();
400 
401 	/*
402 	 * Copy filedesc.
403 	 */
404 	if (fr->fr_flags & RFCFDG) {
405 		fd = fdinit(p1->p_fd, false);
406 		fdtol = NULL;
407 	} else if (fr->fr_flags & RFFDG) {
408 		fd = fdcopy(p1->p_fd);
409 		fdtol = NULL;
410 	} else {
411 		fd = fdshare(p1->p_fd);
412 		if (p1->p_fdtol == NULL)
413 			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
414 			    p1->p_leader);
415 		if ((fr->fr_flags & RFTHREAD) != 0) {
416 			/*
417 			 * Shared file descriptor table, and shared
418 			 * process leaders.
419 			 */
420 			fdtol = p1->p_fdtol;
421 			FILEDESC_XLOCK(p1->p_fd);
422 			fdtol->fdl_refcount++;
423 			FILEDESC_XUNLOCK(p1->p_fd);
424 		} else {
425 			/*
426 			 * Shared file descriptor table, and different
427 			 * process leaders.
428 			 */
429 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
430 			    p1->p_fd, p2);
431 		}
432 	}
433 	/*
434 	 * Make a proc table entry for the new process.
435 	 * Start by zeroing the section of proc that is zero-initialized,
436 	 * then copy the section that is copied directly from the parent.
437 	 */
438 
439 	PROC_LOCK(p2);
440 	PROC_LOCK(p1);
441 
442 	bzero(&td2->td_startzero,
443 	    __rangeof(struct thread, td_startzero, td_endzero));
444 
445 	bcopy(&td->td_startcopy, &td2->td_startcopy,
446 	    __rangeof(struct thread, td_startcopy, td_endcopy));
447 
448 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
449 	td2->td_sigstk = td->td_sigstk;
450 	td2->td_flags = TDF_INMEM;
451 	td2->td_lend_user_pri = PRI_MAX;
452 
453 #ifdef VIMAGE
454 	td2->td_vnet = NULL;
455 	td2->td_vnet_lpush = NULL;
456 #endif
457 
458 	/*
459 	 * Allow the scheduler to initialize the child.
460 	 */
461 	thread_lock(td);
462 	sched_fork(td, td2);
463 	thread_unlock(td);
464 
465 	/*
466 	 * Duplicate sub-structures as needed.
467 	 * Increase reference counts on shared objects.
468 	 */
469 	p2->p_flag = P_INMEM;
470 	p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE |
471 	    P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC |
472 	    P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP |
473 	    P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC);
474 	p2->p_swtick = ticks;
475 	if (p1->p_flag & P_PROFIL)
476 		startprofclock(p2);
477 
478 	if (fr->fr_flags & RFSIGSHARE) {
479 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
480 	} else {
481 		sigacts_copy(newsigacts, p1->p_sigacts);
482 		p2->p_sigacts = newsigacts;
483 		if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0) {
484 			mtx_lock(&p2->p_sigacts->ps_mtx);
485 			sig_drop_caught(p2);
486 			mtx_unlock(&p2->p_sigacts->ps_mtx);
487 		}
488 	}
489 
490 	if (fr->fr_flags & RFTSIGZMB)
491 	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
492 	else if (fr->fr_flags & RFLINUXTHPN)
493 	        p2->p_sigparent = SIGUSR1;
494 	else
495 	        p2->p_sigparent = SIGCHLD;
496 
497 	p2->p_textvp = p1->p_textvp;
498 	p2->p_fd = fd;
499 	p2->p_fdtol = fdtol;
500 
501 	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
502 		p2->p_flag |= P_PROTECTED;
503 		p2->p_flag2 |= P2_INHERIT_PROTECTED;
504 	}
505 
506 	/*
507 	 * p_limit is copy-on-write.  Bump its refcount.
508 	 */
509 	lim_fork(p1, p2);
510 
511 	thread_cow_get_proc(td2, p2);
512 
513 	pstats_fork(p1->p_stats, p2->p_stats);
514 
515 	PROC_UNLOCK(p1);
516 	PROC_UNLOCK(p2);
517 
518 	/* Bump references to the text vnode (for procfs). */
519 	if (p2->p_textvp)
520 		vrefact(p2->p_textvp);
521 
522 	/*
523 	 * Set up linkage for kernel based threading.
524 	 */
525 	if ((fr->fr_flags & RFTHREAD) != 0) {
526 		mtx_lock(&ppeers_lock);
527 		p2->p_peers = p1->p_peers;
528 		p1->p_peers = p2;
529 		p2->p_leader = p1->p_leader;
530 		mtx_unlock(&ppeers_lock);
531 		PROC_LOCK(p1->p_leader);
532 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
533 			PROC_UNLOCK(p1->p_leader);
534 			/*
535 			 * The task leader is exiting, so process p1 is
536 			 * going to be killed shortly.  Since p1 obviously
537 			 * isn't dead yet, we know that the leader is either
538 			 * sending SIGKILL's to all the processes in this
539 			 * task or is sleeping waiting for all the peers to
540 			 * exit.  We let p1 complete the fork, but we need
541 			 * to go ahead and kill the new process p2 since
542 			 * the task leader may not get a chance to send
543 			 * SIGKILL to it.  We leave it on the list so that
544 			 * the task leader will wait for this new process
545 			 * to commit suicide.
546 			 */
547 			PROC_LOCK(p2);
548 			kern_psignal(p2, SIGKILL);
549 			PROC_UNLOCK(p2);
550 		} else
551 			PROC_UNLOCK(p1->p_leader);
552 	} else {
553 		p2->p_peers = NULL;
554 		p2->p_leader = p2;
555 	}
556 
557 	sx_xlock(&proctree_lock);
558 	PGRP_LOCK(p1->p_pgrp);
559 	PROC_LOCK(p2);
560 	PROC_LOCK(p1);
561 
562 	/*
563 	 * Preserve some more flags in subprocess.  P_PROFIL has already
564 	 * been preserved.
565 	 */
566 	p2->p_flag |= p1->p_flag & P_SUGID;
567 	td2->td_pflags |= (td->td_pflags & (TDP_ALTSTACK |
568 	    TDP_SIGFASTBLOCK)) | TDP_FORKING;
569 	SESS_LOCK(p1->p_session);
570 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
571 		p2->p_flag |= P_CONTROLT;
572 	SESS_UNLOCK(p1->p_session);
573 	if (fr->fr_flags & RFPPWAIT)
574 		p2->p_flag |= P_PPWAIT;
575 
576 	p2->p_pgrp = p1->p_pgrp;
577 	LIST_INSERT_AFTER(p1, p2, p_pglist);
578 	PGRP_UNLOCK(p1->p_pgrp);
579 	LIST_INIT(&p2->p_children);
580 	LIST_INIT(&p2->p_orphans);
581 
582 	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
583 
584 	/*
585 	 * This begins the section where we must prevent the parent
586 	 * from being swapped.
587 	 */
588 	_PHOLD(p1);
589 	PROC_UNLOCK(p1);
590 
591 	/*
592 	 * Attach the new process to its parent.
593 	 *
594 	 * If RFNOWAIT is set, the newly created process becomes a child
595 	 * of init.  This effectively disassociates the child from the
596 	 * parent.
597 	 */
598 	if ((fr->fr_flags & RFNOWAIT) != 0) {
599 		pptr = p1->p_reaper;
600 		p2->p_reaper = pptr;
601 	} else {
602 		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
603 		    p1 : p1->p_reaper;
604 		pptr = p1;
605 	}
606 	p2->p_pptr = pptr;
607 	p2->p_oppid = pptr->p_pid;
608 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
609 	LIST_INIT(&p2->p_reaplist);
610 	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
611 	if (p2->p_reaper == p1 && p1 != initproc) {
612 		p2->p_reapsubtree = p2->p_pid;
613 		proc_id_set_cond(PROC_ID_REAP, p2->p_pid);
614 	}
615 	sx_xunlock(&proctree_lock);
616 
617 	/* Inform accounting that we have forked. */
618 	p2->p_acflag = AFORK;
619 	PROC_UNLOCK(p2);
620 
621 #ifdef KTRACE
622 	ktrprocfork(p1, p2);
623 #endif
624 
625 	/*
626 	 * Finish creating the child process.  It will return via a different
627 	 * execution path later.  (ie: directly into user mode)
628 	 */
629 	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
630 
631 	if (fr->fr_flags == (RFFDG | RFPROC)) {
632 		VM_CNT_INC(v_forks);
633 		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
634 		    p2->p_vmspace->vm_ssize);
635 	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
636 		VM_CNT_INC(v_vforks);
637 		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
638 		    p2->p_vmspace->vm_ssize);
639 	} else if (p1 == &proc0) {
640 		VM_CNT_INC(v_kthreads);
641 		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
642 		    p2->p_vmspace->vm_ssize);
643 	} else {
644 		VM_CNT_INC(v_rforks);
645 		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
646 		    p2->p_vmspace->vm_ssize);
647 	}
648 
649 	/*
650 	 * Associate the process descriptor with the process before anything
651 	 * can happen that might cause that process to need the descriptor.
652 	 * However, don't do this until after fork(2) can no longer fail.
653 	 */
654 	if (fr->fr_flags & RFPROCDESC)
655 		procdesc_new(p2, fr->fr_pd_flags);
656 
657 	/*
658 	 * Both processes are set up, now check if any loadable modules want
659 	 * to adjust anything.
660 	 */
661 	EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
662 
663 	/*
664 	 * Set the child start time and mark the process as being complete.
665 	 */
666 	PROC_LOCK(p2);
667 	PROC_LOCK(p1);
668 	microuptime(&p2->p_stats->p_start);
669 	PROC_SLOCK(p2);
670 	p2->p_state = PRS_NORMAL;
671 	PROC_SUNLOCK(p2);
672 
673 #ifdef KDTRACE_HOOKS
674 	/*
675 	 * Tell the DTrace fasttrap provider about the new process so that any
676 	 * tracepoints inherited from the parent can be removed. We have to do
677 	 * this only after p_state is PRS_NORMAL since the fasttrap module will
678 	 * use pfind() later on.
679 	 */
680 	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
681 		dtrace_fasttrap_fork(p1, p2);
682 #endif
683 	if (fr->fr_flags & RFPPWAIT) {
684 		td->td_pflags |= TDP_RFPPWAIT;
685 		td->td_rfppwait_p = p2;
686 		td->td_dbgflags |= TDB_VFORK;
687 	}
688 	PROC_UNLOCK(p2);
689 
690 	/*
691 	 * Tell any interested parties about the new process.
692 	 */
693 	knote_fork(p1->p_klist, p2->p_pid);
694 
695 	/*
696 	 * Now can be swapped.
697 	 */
698 	_PRELE(p1);
699 	PROC_UNLOCK(p1);
700 	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
701 
702 	if (fr->fr_flags & RFPROCDESC) {
703 		procdesc_finit(p2->p_procdesc, fp_procdesc);
704 		fdrop(fp_procdesc, td);
705 	}
706 
707 	/*
708 	 * Speculative check for PTRACE_FORK. PTRACE_FORK is not
709 	 * synced with forks in progress so it is OK if we miss it
710 	 * if being set atm.
711 	 */
712 	if ((p1->p_ptevents & PTRACE_FORK) != 0) {
713 		sx_xlock(&proctree_lock);
714 		PROC_LOCK(p2);
715 
716 		/*
717 		 * p1->p_ptevents & p1->p_pptr are protected by both
718 		 * process and proctree locks for modifications,
719 		 * so owning proctree_lock allows the race-free read.
720 		 */
721 		if ((p1->p_ptevents & PTRACE_FORK) != 0) {
722 			/*
723 			 * Arrange for debugger to receive the fork event.
724 			 *
725 			 * We can report PL_FLAG_FORKED regardless of
726 			 * P_FOLLOWFORK settings, but it does not make a sense
727 			 * for runaway child.
728 			 */
729 			td->td_dbgflags |= TDB_FORK;
730 			td->td_dbg_forked = p2->p_pid;
731 			td2->td_dbgflags |= TDB_STOPATFORK;
732 			proc_set_traced(p2, true);
733 			CTR2(KTR_PTRACE,
734 			    "do_fork: attaching to new child pid %d: oppid %d",
735 			    p2->p_pid, p2->p_oppid);
736 			proc_reparent(p2, p1->p_pptr, false);
737 		}
738 		PROC_UNLOCK(p2);
739 		sx_xunlock(&proctree_lock);
740 	}
741 
742 	racct_proc_fork_done(p2);
743 
744 	if ((fr->fr_flags & RFSTOPPED) == 0) {
745 		if (fr->fr_pidp != NULL)
746 			*fr->fr_pidp = p2->p_pid;
747 		/*
748 		 * If RFSTOPPED not requested, make child runnable and
749 		 * add to run queue.
750 		 */
751 		thread_lock(td2);
752 		TD_SET_CAN_RUN(td2);
753 		sched_add(td2, SRQ_BORING);
754 	} else {
755 		*fr->fr_procp = p2;
756 	}
757 }
758 
759 void
760 fork_rfppwait(struct thread *td)
761 {
762 	struct proc *p, *p2;
763 
764 	MPASS(td->td_pflags & TDP_RFPPWAIT);
765 
766 	p = td->td_proc;
767 	/*
768 	 * Preserve synchronization semantics of vfork.  If
769 	 * waiting for child to exec or exit, fork set
770 	 * P_PPWAIT on child, and there we sleep on our proc
771 	 * (in case of exit).
772 	 *
773 	 * Do it after the ptracestop() above is finished, to
774 	 * not block our debugger until child execs or exits
775 	 * to finish vfork wait.
776 	 */
777 	td->td_pflags &= ~TDP_RFPPWAIT;
778 	p2 = td->td_rfppwait_p;
779 again:
780 	PROC_LOCK(p2);
781 	while (p2->p_flag & P_PPWAIT) {
782 		PROC_LOCK(p);
783 		if (thread_suspend_check_needed()) {
784 			PROC_UNLOCK(p2);
785 			thread_suspend_check(0);
786 			PROC_UNLOCK(p);
787 			goto again;
788 		} else {
789 			PROC_UNLOCK(p);
790 		}
791 		cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz);
792 	}
793 	PROC_UNLOCK(p2);
794 
795 	if (td->td_dbgflags & TDB_VFORK) {
796 		PROC_LOCK(p);
797 		if (p->p_ptevents & PTRACE_VFORK)
798 			ptracestop(td, SIGTRAP, NULL);
799 		td->td_dbgflags &= ~TDB_VFORK;
800 		PROC_UNLOCK(p);
801 	}
802 }
803 
804 int
805 fork1(struct thread *td, struct fork_req *fr)
806 {
807 	struct proc *p1, *newproc;
808 	struct thread *td2;
809 	struct vmspace *vm2;
810 	struct ucred *cred;
811 	struct file *fp_procdesc;
812 	vm_ooffset_t mem_charged;
813 	int error, nprocs_new;
814 	static int curfail;
815 	static struct timeval lastfail;
816 	int flags, pages;
817 
818 	flags = fr->fr_flags;
819 	pages = fr->fr_pages;
820 
821 	if ((flags & RFSTOPPED) != 0)
822 		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
823 	else
824 		MPASS(fr->fr_procp == NULL);
825 
826 	/* Check for the undefined or unimplemented flags. */
827 	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
828 		return (EINVAL);
829 
830 	/* Signal value requires RFTSIGZMB. */
831 	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
832 		return (EINVAL);
833 
834 	/* Can't copy and clear. */
835 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
836 		return (EINVAL);
837 
838 	/* Check the validity of the signal number. */
839 	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
840 		return (EINVAL);
841 
842 	if ((flags & RFPROCDESC) != 0) {
843 		/* Can't not create a process yet get a process descriptor. */
844 		if ((flags & RFPROC) == 0)
845 			return (EINVAL);
846 
847 		/* Must provide a place to put a procdesc if creating one. */
848 		if (fr->fr_pd_fd == NULL)
849 			return (EINVAL);
850 
851 		/* Check if we are using supported flags. */
852 		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
853 			return (EINVAL);
854 	}
855 
856 	p1 = td->td_proc;
857 
858 	/*
859 	 * Here we don't create a new process, but we divorce
860 	 * certain parts of a process from itself.
861 	 */
862 	if ((flags & RFPROC) == 0) {
863 		if (fr->fr_procp != NULL)
864 			*fr->fr_procp = NULL;
865 		else if (fr->fr_pidp != NULL)
866 			*fr->fr_pidp = 0;
867 		return (fork_norfproc(td, flags));
868 	}
869 
870 	fp_procdesc = NULL;
871 	newproc = NULL;
872 	vm2 = NULL;
873 
874 	/*
875 	 * Increment the nprocs resource before allocations occur.
876 	 * Although process entries are dynamically created, we still
877 	 * keep a global limit on the maximum number we will
878 	 * create. There are hard-limits as to the number of processes
879 	 * that can run, established by the KVA and memory usage for
880 	 * the process data.
881 	 *
882 	 * Don't allow a nonprivileged user to use the last ten
883 	 * processes; don't let root exceed the limit.
884 	 */
885 	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
886 	if (nprocs_new >= maxproc - 10) {
887 		if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 ||
888 		    nprocs_new >= maxproc) {
889 			error = EAGAIN;
890 			sx_xlock(&allproc_lock);
891 			if (ppsratecheck(&lastfail, &curfail, 1)) {
892 				printf("maxproc limit exceeded by uid %u "
893 				    "(pid %d); see tuning(7) and "
894 				    "login.conf(5)\n",
895 				    td->td_ucred->cr_ruid, p1->p_pid);
896 			}
897 			sx_xunlock(&allproc_lock);
898 			goto fail2;
899 		}
900 	}
901 
902 	/*
903 	 * If required, create a process descriptor in the parent first; we
904 	 * will abandon it if something goes wrong. We don't finit() until
905 	 * later.
906 	 */
907 	if (flags & RFPROCDESC) {
908 		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
909 		    fr->fr_pd_flags, fr->fr_pd_fcaps);
910 		if (error != 0)
911 			goto fail2;
912 	}
913 
914 	mem_charged = 0;
915 	if (pages == 0)
916 		pages = kstack_pages;
917 	/* Allocate new proc. */
918 	newproc = uma_zalloc(proc_zone, M_WAITOK);
919 	td2 = FIRST_THREAD_IN_PROC(newproc);
920 	if (td2 == NULL) {
921 		td2 = thread_alloc(pages);
922 		if (td2 == NULL) {
923 			error = ENOMEM;
924 			goto fail2;
925 		}
926 		proc_linkup(newproc, td2);
927 	} else {
928 		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
929 			if (td2->td_kstack != 0)
930 				vm_thread_dispose(td2);
931 			if (!thread_alloc_stack(td2, pages)) {
932 				error = ENOMEM;
933 				goto fail2;
934 			}
935 		}
936 	}
937 
938 	if ((flags & RFMEM) == 0) {
939 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
940 		if (vm2 == NULL) {
941 			error = ENOMEM;
942 			goto fail2;
943 		}
944 		if (!swap_reserve(mem_charged)) {
945 			/*
946 			 * The swap reservation failed. The accounting
947 			 * from the entries of the copied vm2 will be
948 			 * subtracted in vmspace_free(), so force the
949 			 * reservation there.
950 			 */
951 			swap_reserve_force(mem_charged);
952 			error = ENOMEM;
953 			goto fail2;
954 		}
955 	} else
956 		vm2 = NULL;
957 
958 	/*
959 	 * XXX: This is ugly; when we copy resource usage, we need to bump
960 	 *      per-cred resource counters.
961 	 */
962 	proc_set_cred_init(newproc, crhold(td->td_ucred));
963 
964 	/*
965 	 * Initialize resource accounting for the child process.
966 	 */
967 	error = racct_proc_fork(p1, newproc);
968 	if (error != 0) {
969 		error = EAGAIN;
970 		goto fail1;
971 	}
972 
973 #ifdef MAC
974 	mac_proc_init(newproc);
975 #endif
976 	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
977 	STAILQ_INIT(&newproc->p_ktr);
978 
979 	/*
980 	 * Increment the count of procs running with this uid. Don't allow
981 	 * a nonprivileged user to exceed their current limit.
982 	 */
983 	cred = td->td_ucred;
984 	if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) {
985 		if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0)
986 			goto fail0;
987 		chgproccnt(cred->cr_ruidinfo, 1, 0);
988 	}
989 
990 	do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
991 	return (0);
992 fail0:
993 	error = EAGAIN;
994 #ifdef MAC
995 	mac_proc_destroy(newproc);
996 #endif
997 	racct_proc_exit(newproc);
998 fail1:
999 	crfree(newproc->p_ucred);
1000 	newproc->p_ucred = NULL;
1001 fail2:
1002 	if (vm2 != NULL)
1003 		vmspace_free(vm2);
1004 	uma_zfree(proc_zone, newproc);
1005 	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
1006 		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1007 		fdrop(fp_procdesc, td);
1008 	}
1009 	atomic_add_int(&nprocs, -1);
1010 	pause("fork", hz / 2);
1011 	return (error);
1012 }
1013 
1014 /*
1015  * Handle the return of a child process from fork1().  This function
1016  * is called from the MD fork_trampoline() entry point.
1017  */
1018 void
1019 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1020     struct trapframe *frame)
1021 {
1022 	struct proc *p;
1023 	struct thread *td;
1024 	struct thread *dtd;
1025 
1026 	td = curthread;
1027 	p = td->td_proc;
1028 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1029 
1030 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1031 	    td, td_get_sched(td), p->p_pid, td->td_name);
1032 
1033 	sched_fork_exit(td);
1034 	/*
1035 	* Processes normally resume in mi_switch() after being
1036 	* cpu_switch()'ed to, but when children start up they arrive here
1037 	* instead, so we must do much the same things as mi_switch() would.
1038 	*/
1039 	if ((dtd = PCPU_GET(deadthread))) {
1040 		PCPU_SET(deadthread, NULL);
1041 		thread_stash(dtd);
1042 	}
1043 	thread_unlock(td);
1044 
1045 	/*
1046 	 * cpu_fork_kthread_handler intercepts this function call to
1047 	 * have this call a non-return function to stay in kernel mode.
1048 	 * initproc has its own fork handler, but it does return.
1049 	 */
1050 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1051 	callout(arg, frame);
1052 
1053 	/*
1054 	 * Check if a kernel thread misbehaved and returned from its main
1055 	 * function.
1056 	 */
1057 	if (p->p_flag & P_KPROC) {
1058 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1059 		    td->td_name, p->p_pid);
1060 		kthread_exit();
1061 	}
1062 	mtx_assert(&Giant, MA_NOTOWNED);
1063 
1064 	if (p->p_sysent->sv_schedtail != NULL)
1065 		(p->p_sysent->sv_schedtail)(td);
1066 	td->td_pflags &= ~TDP_FORKING;
1067 }
1068 
1069 /*
1070  * Simplified back end of syscall(), used when returning from fork()
1071  * directly into user mode.  This function is passed in to fork_exit()
1072  * as the first parameter and is called when returning to a new
1073  * userland process.
1074  */
1075 void
1076 fork_return(struct thread *td, struct trapframe *frame)
1077 {
1078 	struct proc *p;
1079 
1080 	p = td->td_proc;
1081 	if (td->td_dbgflags & TDB_STOPATFORK) {
1082 		PROC_LOCK(p);
1083 		if ((p->p_flag & P_TRACED) != 0) {
1084 			/*
1085 			 * Inform the debugger if one is still present.
1086 			 */
1087 			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1088 			ptracestop(td, SIGSTOP, NULL);
1089 			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1090 		} else {
1091 			/*
1092 			 * ... otherwise clear the request.
1093 			 */
1094 			td->td_dbgflags &= ~TDB_STOPATFORK;
1095 		}
1096 		PROC_UNLOCK(p);
1097 	} else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
1098  		/*
1099 		 * This is the start of a new thread in a traced
1100 		 * process.  Report a system call exit event.
1101 		 */
1102 		PROC_LOCK(p);
1103 		td->td_dbgflags |= TDB_SCX;
1104 		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1105 		    (td->td_dbgflags & TDB_BORN) != 0)
1106 			ptracestop(td, SIGTRAP, NULL);
1107 		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1108 		PROC_UNLOCK(p);
1109 	}
1110 
1111 	userret(td, frame);
1112 
1113 #ifdef KTRACE
1114 	if (KTRPOINT(td, KTR_SYSRET))
1115 		ktrsysret(SYS_fork, 0, 0);
1116 #endif
1117 }
1118