xref: /freebsd/sys/kern/kern_fork.c (revision f2530c80db7b29b95368fce956b3a778f096b368)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 #include "opt_kstack_pages.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/bitstring.h>
48 #include <sys/sysproto.h>
49 #include <sys/eventhandler.h>
50 #include <sys/fcntl.h>
51 #include <sys/filedesc.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/sysctl.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/mutex.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/procdesc.h>
62 #include <sys/pioctl.h>
63 #include <sys/ptrace.h>
64 #include <sys/racct.h>
65 #include <sys/resourcevar.h>
66 #include <sys/sched.h>
67 #include <sys/syscall.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 #include <sys/acct.h>
71 #include <sys/ktr.h>
72 #include <sys/ktrace.h>
73 #include <sys/unistd.h>
74 #include <sys/sdt.h>
75 #include <sys/sx.h>
76 #include <sys/sysent.h>
77 #include <sys/signalvar.h>
78 
79 #include <security/audit/audit.h>
80 #include <security/mac/mac_framework.h>
81 
82 #include <vm/vm.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_extern.h>
86 #include <vm/uma.h>
87 
88 #ifdef KDTRACE_HOOKS
89 #include <sys/dtrace_bsd.h>
90 dtrace_fork_func_t	dtrace_fasttrap_fork;
91 #endif
92 
93 SDT_PROVIDER_DECLARE(proc);
94 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
95 
96 #ifndef _SYS_SYSPROTO_H_
97 struct fork_args {
98 	int     dummy;
99 };
100 #endif
101 
102 /* ARGSUSED */
103 int
104 sys_fork(struct thread *td, struct fork_args *uap)
105 {
106 	struct fork_req fr;
107 	int error, pid;
108 
109 	bzero(&fr, sizeof(fr));
110 	fr.fr_flags = RFFDG | RFPROC;
111 	fr.fr_pidp = &pid;
112 	error = fork1(td, &fr);
113 	if (error == 0) {
114 		td->td_retval[0] = pid;
115 		td->td_retval[1] = 0;
116 	}
117 	return (error);
118 }
119 
120 /* ARGUSED */
121 int
122 sys_pdfork(struct thread *td, struct pdfork_args *uap)
123 {
124 	struct fork_req fr;
125 	int error, fd, pid;
126 
127 	bzero(&fr, sizeof(fr));
128 	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
129 	fr.fr_pidp = &pid;
130 	fr.fr_pd_fd = &fd;
131 	fr.fr_pd_flags = uap->flags;
132 	/*
133 	 * It is necessary to return fd by reference because 0 is a valid file
134 	 * descriptor number, and the child needs to be able to distinguish
135 	 * itself from the parent using the return value.
136 	 */
137 	error = fork1(td, &fr);
138 	if (error == 0) {
139 		td->td_retval[0] = pid;
140 		td->td_retval[1] = 0;
141 		error = copyout(&fd, uap->fdp, sizeof(fd));
142 	}
143 	return (error);
144 }
145 
146 /* ARGSUSED */
147 int
148 sys_vfork(struct thread *td, struct vfork_args *uap)
149 {
150 	struct fork_req fr;
151 	int error, pid;
152 
153 	bzero(&fr, sizeof(fr));
154 	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
155 	fr.fr_pidp = &pid;
156 	error = fork1(td, &fr);
157 	if (error == 0) {
158 		td->td_retval[0] = pid;
159 		td->td_retval[1] = 0;
160 	}
161 	return (error);
162 }
163 
164 int
165 sys_rfork(struct thread *td, struct rfork_args *uap)
166 {
167 	struct fork_req fr;
168 	int error, pid;
169 
170 	/* Don't allow kernel-only flags. */
171 	if ((uap->flags & RFKERNELONLY) != 0)
172 		return (EINVAL);
173 	/* RFSPAWN must not appear with others */
174 	if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN)
175 		return (EINVAL);
176 
177 	AUDIT_ARG_FFLAGS(uap->flags);
178 	bzero(&fr, sizeof(fr));
179 	if ((uap->flags & RFSPAWN) != 0) {
180 		fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
181 		fr.fr_flags2 = FR2_DROPSIG_CAUGHT;
182 	} else {
183 		fr.fr_flags = uap->flags;
184 	}
185 	fr.fr_pidp = &pid;
186 	error = fork1(td, &fr);
187 	if (error == 0) {
188 		td->td_retval[0] = pid;
189 		td->td_retval[1] = 0;
190 	}
191 	return (error);
192 }
193 
194 int __exclusive_cache_line	nprocs = 1;		/* process 0 */
195 int	lastpid = 0;
196 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
197     "Last used PID");
198 
199 /*
200  * Random component to lastpid generation.  We mix in a random factor to make
201  * it a little harder to predict.  We sanity check the modulus value to avoid
202  * doing it in critical paths.  Don't let it be too small or we pointlessly
203  * waste randomness entropy, and don't let it be impossibly large.  Using a
204  * modulus that is too big causes a LOT more process table scans and slows
205  * down fork processing as the pidchecked caching is defeated.
206  */
207 static int randompid = 0;
208 
209 static int
210 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
211 {
212 	int error, pid;
213 
214 	error = sysctl_wire_old_buffer(req, sizeof(int));
215 	if (error != 0)
216 		return(error);
217 	sx_xlock(&allproc_lock);
218 	pid = randompid;
219 	error = sysctl_handle_int(oidp, &pid, 0, req);
220 	if (error == 0 && req->newptr != NULL) {
221 		if (pid == 0)
222 			randompid = 0;
223 		else if (pid == 1)
224 			/* generate a random PID modulus between 100 and 1123 */
225 			randompid = 100 + arc4random() % 1024;
226 		else if (pid < 0 || pid > pid_max - 100)
227 			/* out of range */
228 			randompid = pid_max - 100;
229 		else if (pid < 100)
230 			/* Make it reasonable */
231 			randompid = 100;
232 		else
233 			randompid = pid;
234 	}
235 	sx_xunlock(&allproc_lock);
236 	return (error);
237 }
238 
239 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
240     0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value");
241 
242 extern bitstr_t proc_id_pidmap;
243 extern bitstr_t proc_id_grpidmap;
244 extern bitstr_t proc_id_sessidmap;
245 extern bitstr_t proc_id_reapmap;
246 
247 /*
248  * Find an unused process ID
249  *
250  * If RFHIGHPID is set (used during system boot), do not allocate
251  * low-numbered pids.
252  */
253 static int
254 fork_findpid(int flags)
255 {
256 	pid_t result;
257 	int trypid, random;
258 
259 	/*
260 	 * Avoid calling arc4random with procid_lock held.
261 	 */
262 	random = 0;
263 	if (__predict_false(randompid))
264 		random = arc4random() % randompid;
265 
266 	mtx_lock(&procid_lock);
267 
268 	trypid = lastpid + 1;
269 	if (flags & RFHIGHPID) {
270 		if (trypid < 10)
271 			trypid = 10;
272 	} else {
273 		trypid += random;
274 	}
275 retry:
276 	if (trypid >= pid_max)
277 		trypid = 2;
278 
279 	bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result);
280 	if (result == -1) {
281 		KASSERT(trypid != 2, ("unexpectedly ran out of IDs"));
282 		trypid = 2;
283 		goto retry;
284 	}
285 	if (bit_test(&proc_id_grpidmap, result) ||
286 	    bit_test(&proc_id_sessidmap, result) ||
287 	    bit_test(&proc_id_reapmap, result)) {
288 		trypid = result + 1;
289 		goto retry;
290 	}
291 
292 	/*
293 	 * RFHIGHPID does not mess with the lastpid counter during boot.
294 	 */
295 	if ((flags & RFHIGHPID) == 0)
296 		lastpid = result;
297 
298 	bit_set(&proc_id_pidmap, result);
299 	mtx_unlock(&procid_lock);
300 
301 	return (result);
302 }
303 
304 static int
305 fork_norfproc(struct thread *td, int flags)
306 {
307 	int error;
308 	struct proc *p1;
309 
310 	KASSERT((flags & RFPROC) == 0,
311 	    ("fork_norfproc called with RFPROC set"));
312 	p1 = td->td_proc;
313 
314 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
315 	    (flags & (RFCFDG | RFFDG))) {
316 		PROC_LOCK(p1);
317 		if (thread_single(p1, SINGLE_BOUNDARY)) {
318 			PROC_UNLOCK(p1);
319 			return (ERESTART);
320 		}
321 		PROC_UNLOCK(p1);
322 	}
323 
324 	error = vm_forkproc(td, NULL, NULL, NULL, flags);
325 	if (error)
326 		goto fail;
327 
328 	/*
329 	 * Close all file descriptors.
330 	 */
331 	if (flags & RFCFDG) {
332 		struct filedesc *fdtmp;
333 		fdtmp = fdinit(td->td_proc->p_fd, false);
334 		fdescfree(td);
335 		p1->p_fd = fdtmp;
336 	}
337 
338 	/*
339 	 * Unshare file descriptors (from parent).
340 	 */
341 	if (flags & RFFDG)
342 		fdunshare(td);
343 
344 fail:
345 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
346 	    (flags & (RFCFDG | RFFDG))) {
347 		PROC_LOCK(p1);
348 		thread_single_end(p1, SINGLE_BOUNDARY);
349 		PROC_UNLOCK(p1);
350 	}
351 	return (error);
352 }
353 
354 static void
355 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
356     struct vmspace *vm2, struct file *fp_procdesc)
357 {
358 	struct proc *p1, *pptr;
359 	struct filedesc *fd;
360 	struct filedesc_to_leader *fdtol;
361 	struct sigacts *newsigacts;
362 
363 	p1 = td->td_proc;
364 
365 	PROC_LOCK(p1);
366 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
367 	    __rangeof(struct proc, p_startcopy, p_endcopy));
368 	pargs_hold(p2->p_args);
369 	PROC_UNLOCK(p1);
370 
371 	bzero(&p2->p_startzero,
372 	    __rangeof(struct proc, p_startzero, p_endzero));
373 
374 	/* Tell the prison that we exist. */
375 	prison_proc_hold(p2->p_ucred->cr_prison);
376 
377 	p2->p_state = PRS_NEW;		/* protect against others */
378 	p2->p_pid = fork_findpid(fr->fr_flags);
379 	AUDIT_ARG_PID(p2->p_pid);
380 
381 	sx_xlock(&allproc_lock);
382 	LIST_INSERT_HEAD(&allproc, p2, p_list);
383 	allproc_gen++;
384 	sx_xunlock(&allproc_lock);
385 
386 	sx_xlock(PIDHASHLOCK(p2->p_pid));
387 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
388 	sx_xunlock(PIDHASHLOCK(p2->p_pid));
389 
390 	tidhash_add(td2);
391 
392 	/*
393 	 * Malloc things while we don't hold any locks.
394 	 */
395 	if (fr->fr_flags & RFSIGSHARE)
396 		newsigacts = NULL;
397 	else
398 		newsigacts = sigacts_alloc();
399 
400 	/*
401 	 * Copy filedesc.
402 	 */
403 	if (fr->fr_flags & RFCFDG) {
404 		fd = fdinit(p1->p_fd, false);
405 		fdtol = NULL;
406 	} else if (fr->fr_flags & RFFDG) {
407 		fd = fdcopy(p1->p_fd);
408 		fdtol = NULL;
409 	} else {
410 		fd = fdshare(p1->p_fd);
411 		if (p1->p_fdtol == NULL)
412 			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
413 			    p1->p_leader);
414 		if ((fr->fr_flags & RFTHREAD) != 0) {
415 			/*
416 			 * Shared file descriptor table, and shared
417 			 * process leaders.
418 			 */
419 			fdtol = p1->p_fdtol;
420 			FILEDESC_XLOCK(p1->p_fd);
421 			fdtol->fdl_refcount++;
422 			FILEDESC_XUNLOCK(p1->p_fd);
423 		} else {
424 			/*
425 			 * Shared file descriptor table, and different
426 			 * process leaders.
427 			 */
428 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
429 			    p1->p_fd, p2);
430 		}
431 	}
432 	/*
433 	 * Make a proc table entry for the new process.
434 	 * Start by zeroing the section of proc that is zero-initialized,
435 	 * then copy the section that is copied directly from the parent.
436 	 */
437 
438 	PROC_LOCK(p2);
439 	PROC_LOCK(p1);
440 
441 	bzero(&td2->td_startzero,
442 	    __rangeof(struct thread, td_startzero, td_endzero));
443 
444 	bcopy(&td->td_startcopy, &td2->td_startcopy,
445 	    __rangeof(struct thread, td_startcopy, td_endcopy));
446 
447 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
448 	td2->td_sigstk = td->td_sigstk;
449 	td2->td_flags = TDF_INMEM;
450 	td2->td_lend_user_pri = PRI_MAX;
451 
452 #ifdef VIMAGE
453 	td2->td_vnet = NULL;
454 	td2->td_vnet_lpush = NULL;
455 #endif
456 
457 	/*
458 	 * Allow the scheduler to initialize the child.
459 	 */
460 	thread_lock(td);
461 	sched_fork(td, td2);
462 	thread_unlock(td);
463 
464 	/*
465 	 * Duplicate sub-structures as needed.
466 	 * Increase reference counts on shared objects.
467 	 */
468 	p2->p_flag = P_INMEM;
469 	p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE |
470 	    P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC |
471 	    P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP |
472 	    P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC);
473 	p2->p_swtick = ticks;
474 	if (p1->p_flag & P_PROFIL)
475 		startprofclock(p2);
476 
477 	if (fr->fr_flags & RFSIGSHARE) {
478 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
479 	} else {
480 		sigacts_copy(newsigacts, p1->p_sigacts);
481 		p2->p_sigacts = newsigacts;
482 		if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0) {
483 			mtx_lock(&p2->p_sigacts->ps_mtx);
484 			sig_drop_caught(p2);
485 			mtx_unlock(&p2->p_sigacts->ps_mtx);
486 		}
487 	}
488 
489 	if (fr->fr_flags & RFTSIGZMB)
490 	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
491 	else if (fr->fr_flags & RFLINUXTHPN)
492 	        p2->p_sigparent = SIGUSR1;
493 	else
494 	        p2->p_sigparent = SIGCHLD;
495 
496 	p2->p_textvp = p1->p_textvp;
497 	p2->p_fd = fd;
498 	p2->p_fdtol = fdtol;
499 
500 	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
501 		p2->p_flag |= P_PROTECTED;
502 		p2->p_flag2 |= P2_INHERIT_PROTECTED;
503 	}
504 
505 	/*
506 	 * p_limit is copy-on-write.  Bump its refcount.
507 	 */
508 	lim_fork(p1, p2);
509 
510 	thread_cow_get_proc(td2, p2);
511 
512 	pstats_fork(p1->p_stats, p2->p_stats);
513 
514 	PROC_UNLOCK(p1);
515 	PROC_UNLOCK(p2);
516 
517 	/* Bump references to the text vnode (for procfs). */
518 	if (p2->p_textvp)
519 		vrefact(p2->p_textvp);
520 
521 	/*
522 	 * Set up linkage for kernel based threading.
523 	 */
524 	if ((fr->fr_flags & RFTHREAD) != 0) {
525 		mtx_lock(&ppeers_lock);
526 		p2->p_peers = p1->p_peers;
527 		p1->p_peers = p2;
528 		p2->p_leader = p1->p_leader;
529 		mtx_unlock(&ppeers_lock);
530 		PROC_LOCK(p1->p_leader);
531 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
532 			PROC_UNLOCK(p1->p_leader);
533 			/*
534 			 * The task leader is exiting, so process p1 is
535 			 * going to be killed shortly.  Since p1 obviously
536 			 * isn't dead yet, we know that the leader is either
537 			 * sending SIGKILL's to all the processes in this
538 			 * task or is sleeping waiting for all the peers to
539 			 * exit.  We let p1 complete the fork, but we need
540 			 * to go ahead and kill the new process p2 since
541 			 * the task leader may not get a chance to send
542 			 * SIGKILL to it.  We leave it on the list so that
543 			 * the task leader will wait for this new process
544 			 * to commit suicide.
545 			 */
546 			PROC_LOCK(p2);
547 			kern_psignal(p2, SIGKILL);
548 			PROC_UNLOCK(p2);
549 		} else
550 			PROC_UNLOCK(p1->p_leader);
551 	} else {
552 		p2->p_peers = NULL;
553 		p2->p_leader = p2;
554 	}
555 
556 	sx_xlock(&proctree_lock);
557 	PGRP_LOCK(p1->p_pgrp);
558 	PROC_LOCK(p2);
559 	PROC_LOCK(p1);
560 
561 	/*
562 	 * Preserve some more flags in subprocess.  P_PROFIL has already
563 	 * been preserved.
564 	 */
565 	p2->p_flag |= p1->p_flag & P_SUGID;
566 	td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING;
567 	SESS_LOCK(p1->p_session);
568 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
569 		p2->p_flag |= P_CONTROLT;
570 	SESS_UNLOCK(p1->p_session);
571 	if (fr->fr_flags & RFPPWAIT)
572 		p2->p_flag |= P_PPWAIT;
573 
574 	p2->p_pgrp = p1->p_pgrp;
575 	LIST_INSERT_AFTER(p1, p2, p_pglist);
576 	PGRP_UNLOCK(p1->p_pgrp);
577 	LIST_INIT(&p2->p_children);
578 	LIST_INIT(&p2->p_orphans);
579 
580 	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
581 
582 	/*
583 	 * If PF_FORK is set, the child process inherits the
584 	 * procfs ioctl flags from its parent.
585 	 */
586 	if (p1->p_pfsflags & PF_FORK) {
587 		p2->p_stops = p1->p_stops;
588 		p2->p_pfsflags = p1->p_pfsflags;
589 	}
590 
591 	/*
592 	 * This begins the section where we must prevent the parent
593 	 * from being swapped.
594 	 */
595 	_PHOLD(p1);
596 	PROC_UNLOCK(p1);
597 
598 	/*
599 	 * Attach the new process to its parent.
600 	 *
601 	 * If RFNOWAIT is set, the newly created process becomes a child
602 	 * of init.  This effectively disassociates the child from the
603 	 * parent.
604 	 */
605 	if ((fr->fr_flags & RFNOWAIT) != 0) {
606 		pptr = p1->p_reaper;
607 		p2->p_reaper = pptr;
608 	} else {
609 		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
610 		    p1 : p1->p_reaper;
611 		pptr = p1;
612 	}
613 	p2->p_pptr = pptr;
614 	p2->p_oppid = pptr->p_pid;
615 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
616 	LIST_INIT(&p2->p_reaplist);
617 	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
618 	if (p2->p_reaper == p1 && p1 != initproc) {
619 		p2->p_reapsubtree = p2->p_pid;
620 		proc_id_set_cond(PROC_ID_REAP, p2->p_pid);
621 	}
622 	sx_xunlock(&proctree_lock);
623 
624 	/* Inform accounting that we have forked. */
625 	p2->p_acflag = AFORK;
626 	PROC_UNLOCK(p2);
627 
628 #ifdef KTRACE
629 	ktrprocfork(p1, p2);
630 #endif
631 
632 	/*
633 	 * Finish creating the child process.  It will return via a different
634 	 * execution path later.  (ie: directly into user mode)
635 	 */
636 	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
637 
638 	if (fr->fr_flags == (RFFDG | RFPROC)) {
639 		VM_CNT_INC(v_forks);
640 		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
641 		    p2->p_vmspace->vm_ssize);
642 	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
643 		VM_CNT_INC(v_vforks);
644 		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
645 		    p2->p_vmspace->vm_ssize);
646 	} else if (p1 == &proc0) {
647 		VM_CNT_INC(v_kthreads);
648 		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
649 		    p2->p_vmspace->vm_ssize);
650 	} else {
651 		VM_CNT_INC(v_rforks);
652 		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
653 		    p2->p_vmspace->vm_ssize);
654 	}
655 
656 	/*
657 	 * Associate the process descriptor with the process before anything
658 	 * can happen that might cause that process to need the descriptor.
659 	 * However, don't do this until after fork(2) can no longer fail.
660 	 */
661 	if (fr->fr_flags & RFPROCDESC)
662 		procdesc_new(p2, fr->fr_pd_flags);
663 
664 	/*
665 	 * Both processes are set up, now check if any loadable modules want
666 	 * to adjust anything.
667 	 */
668 	EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
669 
670 	/*
671 	 * Set the child start time and mark the process as being complete.
672 	 */
673 	PROC_LOCK(p2);
674 	PROC_LOCK(p1);
675 	microuptime(&p2->p_stats->p_start);
676 	PROC_SLOCK(p2);
677 	p2->p_state = PRS_NORMAL;
678 	PROC_SUNLOCK(p2);
679 
680 #ifdef KDTRACE_HOOKS
681 	/*
682 	 * Tell the DTrace fasttrap provider about the new process so that any
683 	 * tracepoints inherited from the parent can be removed. We have to do
684 	 * this only after p_state is PRS_NORMAL since the fasttrap module will
685 	 * use pfind() later on.
686 	 */
687 	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
688 		dtrace_fasttrap_fork(p1, p2);
689 #endif
690 	if (fr->fr_flags & RFPPWAIT) {
691 		td->td_pflags |= TDP_RFPPWAIT;
692 		td->td_rfppwait_p = p2;
693 		td->td_dbgflags |= TDB_VFORK;
694 	}
695 	PROC_UNLOCK(p2);
696 
697 	/*
698 	 * Tell any interested parties about the new process.
699 	 */
700 	knote_fork(p1->p_klist, p2->p_pid);
701 
702 	/*
703 	 * Now can be swapped.
704 	 */
705 	_PRELE(p1);
706 	PROC_UNLOCK(p1);
707 	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
708 
709 	if (fr->fr_flags & RFPROCDESC) {
710 		procdesc_finit(p2->p_procdesc, fp_procdesc);
711 		fdrop(fp_procdesc, td);
712 	}
713 
714 	/*
715 	 * Speculative check for PTRACE_FORK. PTRACE_FORK is not
716 	 * synced with forks in progress so it is OK if we miss it
717 	 * if being set atm.
718 	 */
719 	if ((p1->p_ptevents & PTRACE_FORK) != 0) {
720 		sx_xlock(&proctree_lock);
721 		PROC_LOCK(p2);
722 
723 		/*
724 		 * p1->p_ptevents & p1->p_pptr are protected by both
725 		 * process and proctree locks for modifications,
726 		 * so owning proctree_lock allows the race-free read.
727 		 */
728 		if ((p1->p_ptevents & PTRACE_FORK) != 0) {
729 			/*
730 			 * Arrange for debugger to receive the fork event.
731 			 *
732 			 * We can report PL_FLAG_FORKED regardless of
733 			 * P_FOLLOWFORK settings, but it does not make a sense
734 			 * for runaway child.
735 			 */
736 			td->td_dbgflags |= TDB_FORK;
737 			td->td_dbg_forked = p2->p_pid;
738 			td2->td_dbgflags |= TDB_STOPATFORK;
739 			proc_set_traced(p2, true);
740 			CTR2(KTR_PTRACE,
741 			    "do_fork: attaching to new child pid %d: oppid %d",
742 			    p2->p_pid, p2->p_oppid);
743 			proc_reparent(p2, p1->p_pptr, false);
744 		}
745 		PROC_UNLOCK(p2);
746 		sx_xunlock(&proctree_lock);
747 	}
748 
749 	racct_proc_fork_done(p2);
750 
751 	if ((fr->fr_flags & RFSTOPPED) == 0) {
752 		if (fr->fr_pidp != NULL)
753 			*fr->fr_pidp = p2->p_pid;
754 		/*
755 		 * If RFSTOPPED not requested, make child runnable and
756 		 * add to run queue.
757 		 */
758 		thread_lock(td2);
759 		TD_SET_CAN_RUN(td2);
760 		sched_add(td2, SRQ_BORING);
761 	} else {
762 		*fr->fr_procp = p2;
763 	}
764 }
765 
766 void
767 fork_rfppwait(struct thread *td)
768 {
769 	struct proc *p, *p2;
770 
771 	MPASS(td->td_pflags & TDP_RFPPWAIT);
772 
773 	p = td->td_proc;
774 	/*
775 	 * Preserve synchronization semantics of vfork.  If
776 	 * waiting for child to exec or exit, fork set
777 	 * P_PPWAIT on child, and there we sleep on our proc
778 	 * (in case of exit).
779 	 *
780 	 * Do it after the ptracestop() above is finished, to
781 	 * not block our debugger until child execs or exits
782 	 * to finish vfork wait.
783 	 */
784 	td->td_pflags &= ~TDP_RFPPWAIT;
785 	p2 = td->td_rfppwait_p;
786 again:
787 	PROC_LOCK(p2);
788 	while (p2->p_flag & P_PPWAIT) {
789 		PROC_LOCK(p);
790 		if (thread_suspend_check_needed()) {
791 			PROC_UNLOCK(p2);
792 			thread_suspend_check(0);
793 			PROC_UNLOCK(p);
794 			goto again;
795 		} else {
796 			PROC_UNLOCK(p);
797 		}
798 		cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz);
799 	}
800 	PROC_UNLOCK(p2);
801 
802 	if (td->td_dbgflags & TDB_VFORK) {
803 		PROC_LOCK(p);
804 		if (p->p_ptevents & PTRACE_VFORK)
805 			ptracestop(td, SIGTRAP, NULL);
806 		td->td_dbgflags &= ~TDB_VFORK;
807 		PROC_UNLOCK(p);
808 	}
809 }
810 
811 int
812 fork1(struct thread *td, struct fork_req *fr)
813 {
814 	struct proc *p1, *newproc;
815 	struct thread *td2;
816 	struct vmspace *vm2;
817 	struct ucred *cred;
818 	struct file *fp_procdesc;
819 	vm_ooffset_t mem_charged;
820 	int error, nprocs_new;
821 	static int curfail;
822 	static struct timeval lastfail;
823 	int flags, pages;
824 
825 	flags = fr->fr_flags;
826 	pages = fr->fr_pages;
827 
828 	if ((flags & RFSTOPPED) != 0)
829 		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
830 	else
831 		MPASS(fr->fr_procp == NULL);
832 
833 	/* Check for the undefined or unimplemented flags. */
834 	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
835 		return (EINVAL);
836 
837 	/* Signal value requires RFTSIGZMB. */
838 	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
839 		return (EINVAL);
840 
841 	/* Can't copy and clear. */
842 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
843 		return (EINVAL);
844 
845 	/* Check the validity of the signal number. */
846 	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
847 		return (EINVAL);
848 
849 	if ((flags & RFPROCDESC) != 0) {
850 		/* Can't not create a process yet get a process descriptor. */
851 		if ((flags & RFPROC) == 0)
852 			return (EINVAL);
853 
854 		/* Must provide a place to put a procdesc if creating one. */
855 		if (fr->fr_pd_fd == NULL)
856 			return (EINVAL);
857 
858 		/* Check if we are using supported flags. */
859 		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
860 			return (EINVAL);
861 	}
862 
863 	p1 = td->td_proc;
864 
865 	/*
866 	 * Here we don't create a new process, but we divorce
867 	 * certain parts of a process from itself.
868 	 */
869 	if ((flags & RFPROC) == 0) {
870 		if (fr->fr_procp != NULL)
871 			*fr->fr_procp = NULL;
872 		else if (fr->fr_pidp != NULL)
873 			*fr->fr_pidp = 0;
874 		return (fork_norfproc(td, flags));
875 	}
876 
877 	fp_procdesc = NULL;
878 	newproc = NULL;
879 	vm2 = NULL;
880 
881 	/*
882 	 * Increment the nprocs resource before allocations occur.
883 	 * Although process entries are dynamically created, we still
884 	 * keep a global limit on the maximum number we will
885 	 * create. There are hard-limits as to the number of processes
886 	 * that can run, established by the KVA and memory usage for
887 	 * the process data.
888 	 *
889 	 * Don't allow a nonprivileged user to use the last ten
890 	 * processes; don't let root exceed the limit.
891 	 */
892 	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
893 	if (nprocs_new >= maxproc - 10) {
894 		if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 ||
895 		    nprocs_new >= maxproc) {
896 			error = EAGAIN;
897 			sx_xlock(&allproc_lock);
898 			if (ppsratecheck(&lastfail, &curfail, 1)) {
899 				printf("maxproc limit exceeded by uid %u "
900 				    "(pid %d); see tuning(7) and "
901 				    "login.conf(5)\n",
902 				    td->td_ucred->cr_ruid, p1->p_pid);
903 			}
904 			sx_xunlock(&allproc_lock);
905 			goto fail2;
906 		}
907 	}
908 
909 	/*
910 	 * If required, create a process descriptor in the parent first; we
911 	 * will abandon it if something goes wrong. We don't finit() until
912 	 * later.
913 	 */
914 	if (flags & RFPROCDESC) {
915 		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
916 		    fr->fr_pd_flags, fr->fr_pd_fcaps);
917 		if (error != 0)
918 			goto fail2;
919 	}
920 
921 	mem_charged = 0;
922 	if (pages == 0)
923 		pages = kstack_pages;
924 	/* Allocate new proc. */
925 	newproc = uma_zalloc(proc_zone, M_WAITOK);
926 	td2 = FIRST_THREAD_IN_PROC(newproc);
927 	if (td2 == NULL) {
928 		td2 = thread_alloc(pages);
929 		if (td2 == NULL) {
930 			error = ENOMEM;
931 			goto fail2;
932 		}
933 		proc_linkup(newproc, td2);
934 	} else {
935 		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
936 			if (td2->td_kstack != 0)
937 				vm_thread_dispose(td2);
938 			if (!thread_alloc_stack(td2, pages)) {
939 				error = ENOMEM;
940 				goto fail2;
941 			}
942 		}
943 	}
944 
945 	if ((flags & RFMEM) == 0) {
946 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
947 		if (vm2 == NULL) {
948 			error = ENOMEM;
949 			goto fail2;
950 		}
951 		if (!swap_reserve(mem_charged)) {
952 			/*
953 			 * The swap reservation failed. The accounting
954 			 * from the entries of the copied vm2 will be
955 			 * subtracted in vmspace_free(), so force the
956 			 * reservation there.
957 			 */
958 			swap_reserve_force(mem_charged);
959 			error = ENOMEM;
960 			goto fail2;
961 		}
962 	} else
963 		vm2 = NULL;
964 
965 	/*
966 	 * XXX: This is ugly; when we copy resource usage, we need to bump
967 	 *      per-cred resource counters.
968 	 */
969 	proc_set_cred_init(newproc, crhold(td->td_ucred));
970 
971 	/*
972 	 * Initialize resource accounting for the child process.
973 	 */
974 	error = racct_proc_fork(p1, newproc);
975 	if (error != 0) {
976 		error = EAGAIN;
977 		goto fail1;
978 	}
979 
980 #ifdef MAC
981 	mac_proc_init(newproc);
982 #endif
983 	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
984 	STAILQ_INIT(&newproc->p_ktr);
985 
986 	/*
987 	 * Increment the count of procs running with this uid. Don't allow
988 	 * a nonprivileged user to exceed their current limit.
989 	 */
990 	cred = td->td_ucred;
991 	if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) {
992 		if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0)
993 			goto fail0;
994 		chgproccnt(cred->cr_ruidinfo, 1, 0);
995 	}
996 
997 	do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
998 	return (0);
999 fail0:
1000 	error = EAGAIN;
1001 #ifdef MAC
1002 	mac_proc_destroy(newproc);
1003 #endif
1004 	racct_proc_exit(newproc);
1005 fail1:
1006 	crfree(newproc->p_ucred);
1007 	newproc->p_ucred = NULL;
1008 fail2:
1009 	if (vm2 != NULL)
1010 		vmspace_free(vm2);
1011 	uma_zfree(proc_zone, newproc);
1012 	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
1013 		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1014 		fdrop(fp_procdesc, td);
1015 	}
1016 	atomic_add_int(&nprocs, -1);
1017 	pause("fork", hz / 2);
1018 	return (error);
1019 }
1020 
1021 /*
1022  * Handle the return of a child process from fork1().  This function
1023  * is called from the MD fork_trampoline() entry point.
1024  */
1025 void
1026 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1027     struct trapframe *frame)
1028 {
1029 	struct proc *p;
1030 	struct thread *td;
1031 	struct thread *dtd;
1032 
1033 	td = curthread;
1034 	p = td->td_proc;
1035 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1036 
1037 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1038 	    td, td_get_sched(td), p->p_pid, td->td_name);
1039 
1040 	sched_fork_exit(td);
1041 	/*
1042 	* Processes normally resume in mi_switch() after being
1043 	* cpu_switch()'ed to, but when children start up they arrive here
1044 	* instead, so we must do much the same things as mi_switch() would.
1045 	*/
1046 	if ((dtd = PCPU_GET(deadthread))) {
1047 		PCPU_SET(deadthread, NULL);
1048 		thread_stash(dtd);
1049 	}
1050 	thread_unlock(td);
1051 
1052 	/*
1053 	 * cpu_fork_kthread_handler intercepts this function call to
1054 	 * have this call a non-return function to stay in kernel mode.
1055 	 * initproc has its own fork handler, but it does return.
1056 	 */
1057 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1058 	callout(arg, frame);
1059 
1060 	/*
1061 	 * Check if a kernel thread misbehaved and returned from its main
1062 	 * function.
1063 	 */
1064 	if (p->p_flag & P_KPROC) {
1065 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1066 		    td->td_name, p->p_pid);
1067 		kthread_exit();
1068 	}
1069 	mtx_assert(&Giant, MA_NOTOWNED);
1070 
1071 	if (p->p_sysent->sv_schedtail != NULL)
1072 		(p->p_sysent->sv_schedtail)(td);
1073 	td->td_pflags &= ~TDP_FORKING;
1074 }
1075 
1076 /*
1077  * Simplified back end of syscall(), used when returning from fork()
1078  * directly into user mode.  This function is passed in to fork_exit()
1079  * as the first parameter and is called when returning to a new
1080  * userland process.
1081  */
1082 void
1083 fork_return(struct thread *td, struct trapframe *frame)
1084 {
1085 	struct proc *p;
1086 
1087 	p = td->td_proc;
1088 	if (td->td_dbgflags & TDB_STOPATFORK) {
1089 		PROC_LOCK(p);
1090 		if ((p->p_flag & P_TRACED) != 0) {
1091 			/*
1092 			 * Inform the debugger if one is still present.
1093 			 */
1094 			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1095 			ptracestop(td, SIGSTOP, NULL);
1096 			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1097 		} else {
1098 			/*
1099 			 * ... otherwise clear the request.
1100 			 */
1101 			td->td_dbgflags &= ~TDB_STOPATFORK;
1102 		}
1103 		PROC_UNLOCK(p);
1104 	} else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
1105  		/*
1106 		 * This is the start of a new thread in a traced
1107 		 * process.  Report a system call exit event.
1108 		 */
1109 		PROC_LOCK(p);
1110 		td->td_dbgflags |= TDB_SCX;
1111 		_STOPEVENT(p, S_SCX, td->td_sa.code);
1112 		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1113 		    (td->td_dbgflags & TDB_BORN) != 0)
1114 			ptracestop(td, SIGTRAP, NULL);
1115 		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1116 		PROC_UNLOCK(p);
1117 	}
1118 
1119 	userret(td, frame);
1120 
1121 #ifdef KTRACE
1122 	if (KTRPOINT(td, KTR_SYSRET))
1123 		ktrsysret(SYS_fork, 0, 0);
1124 #endif
1125 }
1126