xref: /freebsd/sys/kern/kern_fork.c (revision ec0e626bafb335b30c499d06066997f54b10c092)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_kstack_pages.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysproto.h>
46 #include <sys/eventhandler.h>
47 #include <sys/fcntl.h>
48 #include <sys/filedesc.h>
49 #include <sys/jail.h>
50 #include <sys/kernel.h>
51 #include <sys/kthread.h>
52 #include <sys/sysctl.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mutex.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/procdesc.h>
59 #include <sys/pioctl.h>
60 #include <sys/racct.h>
61 #include <sys/resourcevar.h>
62 #include <sys/sched.h>
63 #include <sys/syscall.h>
64 #include <sys/vmmeter.h>
65 #include <sys/vnode.h>
66 #include <sys/acct.h>
67 #include <sys/ktr.h>
68 #include <sys/ktrace.h>
69 #include <sys/unistd.h>
70 #include <sys/sdt.h>
71 #include <sys/sx.h>
72 #include <sys/sysent.h>
73 #include <sys/signalvar.h>
74 
75 #include <security/audit/audit.h>
76 #include <security/mac/mac_framework.h>
77 
78 #include <vm/vm.h>
79 #include <vm/pmap.h>
80 #include <vm/vm_map.h>
81 #include <vm/vm_extern.h>
82 #include <vm/uma.h>
83 
84 #ifdef KDTRACE_HOOKS
85 #include <sys/dtrace_bsd.h>
86 dtrace_fork_func_t	dtrace_fasttrap_fork;
87 #endif
88 
89 SDT_PROVIDER_DECLARE(proc);
90 SDT_PROBE_DEFINE3(proc, kernel, , create, "struct proc *",
91     "struct proc *", "int");
92 
93 #ifndef _SYS_SYSPROTO_H_
94 struct fork_args {
95 	int     dummy;
96 };
97 #endif
98 
99 /* ARGSUSED */
100 int
101 sys_fork(struct thread *td, struct fork_args *uap)
102 {
103 	int error;
104 	struct proc *p2;
105 
106 	error = fork1(td, RFFDG | RFPROC, 0, &p2, NULL, 0);
107 	if (error == 0) {
108 		td->td_retval[0] = p2->p_pid;
109 		td->td_retval[1] = 0;
110 	}
111 	return (error);
112 }
113 
114 /* ARGUSED */
115 int
116 sys_pdfork(td, uap)
117 	struct thread *td;
118 	struct pdfork_args *uap;
119 {
120 	int error, fd;
121 	struct proc *p2;
122 
123 	/*
124 	 * It is necessary to return fd by reference because 0 is a valid file
125 	 * descriptor number, and the child needs to be able to distinguish
126 	 * itself from the parent using the return value.
127 	 */
128 	error = fork1(td, RFFDG | RFPROC | RFPROCDESC, 0, &p2,
129 	    &fd, uap->flags);
130 	if (error == 0) {
131 		td->td_retval[0] = p2->p_pid;
132 		td->td_retval[1] = 0;
133 		error = copyout(&fd, uap->fdp, sizeof(fd));
134 	}
135 	return (error);
136 }
137 
138 /* ARGSUSED */
139 int
140 sys_vfork(struct thread *td, struct vfork_args *uap)
141 {
142 	int error, flags;
143 	struct proc *p2;
144 
145 	flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
146 	error = fork1(td, flags, 0, &p2, NULL, 0);
147 	if (error == 0) {
148 		td->td_retval[0] = p2->p_pid;
149 		td->td_retval[1] = 0;
150 	}
151 	return (error);
152 }
153 
154 int
155 sys_rfork(struct thread *td, struct rfork_args *uap)
156 {
157 	struct proc *p2;
158 	int error;
159 
160 	/* Don't allow kernel-only flags. */
161 	if ((uap->flags & RFKERNELONLY) != 0)
162 		return (EINVAL);
163 
164 	AUDIT_ARG_FFLAGS(uap->flags);
165 	error = fork1(td, uap->flags, 0, &p2, NULL, 0);
166 	if (error == 0) {
167 		td->td_retval[0] = p2 ? p2->p_pid : 0;
168 		td->td_retval[1] = 0;
169 	}
170 	return (error);
171 }
172 
173 int	nprocs = 1;		/* process 0 */
174 int	lastpid = 0;
175 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
176     "Last used PID");
177 
178 /*
179  * Random component to lastpid generation.  We mix in a random factor to make
180  * it a little harder to predict.  We sanity check the modulus value to avoid
181  * doing it in critical paths.  Don't let it be too small or we pointlessly
182  * waste randomness entropy, and don't let it be impossibly large.  Using a
183  * modulus that is too big causes a LOT more process table scans and slows
184  * down fork processing as the pidchecked caching is defeated.
185  */
186 static int randompid = 0;
187 
188 static int
189 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
190 {
191 	int error, pid;
192 
193 	error = sysctl_wire_old_buffer(req, sizeof(int));
194 	if (error != 0)
195 		return(error);
196 	sx_xlock(&allproc_lock);
197 	pid = randompid;
198 	error = sysctl_handle_int(oidp, &pid, 0, req);
199 	if (error == 0 && req->newptr != NULL) {
200 		if (pid < 0 || pid > pid_max - 100)	/* out of range */
201 			pid = pid_max - 100;
202 		else if (pid < 2)			/* NOP */
203 			pid = 0;
204 		else if (pid < 100)			/* Make it reasonable */
205 			pid = 100;
206 		randompid = pid;
207 	}
208 	sx_xunlock(&allproc_lock);
209 	return (error);
210 }
211 
212 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
213     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
214 
215 static int
216 fork_findpid(int flags)
217 {
218 	struct proc *p;
219 	int trypid;
220 	static int pidchecked = 0;
221 
222 	/*
223 	 * Requires allproc_lock in order to iterate over the list
224 	 * of processes, and proctree_lock to access p_pgrp.
225 	 */
226 	sx_assert(&allproc_lock, SX_LOCKED);
227 	sx_assert(&proctree_lock, SX_LOCKED);
228 
229 	/*
230 	 * Find an unused process ID.  We remember a range of unused IDs
231 	 * ready to use (from lastpid+1 through pidchecked-1).
232 	 *
233 	 * If RFHIGHPID is set (used during system boot), do not allocate
234 	 * low-numbered pids.
235 	 */
236 	trypid = lastpid + 1;
237 	if (flags & RFHIGHPID) {
238 		if (trypid < 10)
239 			trypid = 10;
240 	} else {
241 		if (randompid)
242 			trypid += arc4random() % randompid;
243 	}
244 retry:
245 	/*
246 	 * If the process ID prototype has wrapped around,
247 	 * restart somewhat above 0, as the low-numbered procs
248 	 * tend to include daemons that don't exit.
249 	 */
250 	if (trypid >= pid_max) {
251 		trypid = trypid % pid_max;
252 		if (trypid < 100)
253 			trypid += 100;
254 		pidchecked = 0;
255 	}
256 	if (trypid >= pidchecked) {
257 		int doingzomb = 0;
258 
259 		pidchecked = PID_MAX;
260 		/*
261 		 * Scan the active and zombie procs to check whether this pid
262 		 * is in use.  Remember the lowest pid that's greater
263 		 * than trypid, so we can avoid checking for a while.
264 		 *
265 		 * Avoid reuse of the process group id, session id or
266 		 * the reaper subtree id.  Note that for process group
267 		 * and sessions, the amount of reserved pids is
268 		 * limited by process limit.  For the subtree ids, the
269 		 * id is kept reserved only while there is a
270 		 * non-reaped process in the subtree, so amount of
271 		 * reserved pids is limited by process limit times
272 		 * two.
273 		 */
274 		p = LIST_FIRST(&allproc);
275 again:
276 		for (; p != NULL; p = LIST_NEXT(p, p_list)) {
277 			while (p->p_pid == trypid ||
278 			    p->p_reapsubtree == trypid ||
279 			    (p->p_pgrp != NULL &&
280 			    (p->p_pgrp->pg_id == trypid ||
281 			    (p->p_session != NULL &&
282 			    p->p_session->s_sid == trypid)))) {
283 				trypid++;
284 				if (trypid >= pidchecked)
285 					goto retry;
286 			}
287 			if (p->p_pid > trypid && pidchecked > p->p_pid)
288 				pidchecked = p->p_pid;
289 			if (p->p_pgrp != NULL) {
290 				if (p->p_pgrp->pg_id > trypid &&
291 				    pidchecked > p->p_pgrp->pg_id)
292 					pidchecked = p->p_pgrp->pg_id;
293 				if (p->p_session != NULL &&
294 				    p->p_session->s_sid > trypid &&
295 				    pidchecked > p->p_session->s_sid)
296 					pidchecked = p->p_session->s_sid;
297 			}
298 		}
299 		if (!doingzomb) {
300 			doingzomb = 1;
301 			p = LIST_FIRST(&zombproc);
302 			goto again;
303 		}
304 	}
305 
306 	/*
307 	 * RFHIGHPID does not mess with the lastpid counter during boot.
308 	 */
309 	if (flags & RFHIGHPID)
310 		pidchecked = 0;
311 	else
312 		lastpid = trypid;
313 
314 	return (trypid);
315 }
316 
317 static int
318 fork_norfproc(struct thread *td, int flags)
319 {
320 	int error;
321 	struct proc *p1;
322 
323 	KASSERT((flags & RFPROC) == 0,
324 	    ("fork_norfproc called with RFPROC set"));
325 	p1 = td->td_proc;
326 
327 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
328 	    (flags & (RFCFDG | RFFDG))) {
329 		PROC_LOCK(p1);
330 		if (thread_single(p1, SINGLE_BOUNDARY)) {
331 			PROC_UNLOCK(p1);
332 			return (ERESTART);
333 		}
334 		PROC_UNLOCK(p1);
335 	}
336 
337 	error = vm_forkproc(td, NULL, NULL, NULL, flags);
338 	if (error)
339 		goto fail;
340 
341 	/*
342 	 * Close all file descriptors.
343 	 */
344 	if (flags & RFCFDG) {
345 		struct filedesc *fdtmp;
346 		fdtmp = fdinit(td->td_proc->p_fd, false);
347 		fdescfree(td);
348 		p1->p_fd = fdtmp;
349 	}
350 
351 	/*
352 	 * Unshare file descriptors (from parent).
353 	 */
354 	if (flags & RFFDG)
355 		fdunshare(td);
356 
357 fail:
358 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
359 	    (flags & (RFCFDG | RFFDG))) {
360 		PROC_LOCK(p1);
361 		thread_single_end(p1, SINGLE_BOUNDARY);
362 		PROC_UNLOCK(p1);
363 	}
364 	return (error);
365 }
366 
367 static void
368 do_fork(struct thread *td, int flags, struct proc *p2, struct thread *td2,
369     struct vmspace *vm2, int pdflags)
370 {
371 	struct proc *p1, *pptr;
372 	int p2_held, trypid;
373 	struct filedesc *fd;
374 	struct filedesc_to_leader *fdtol;
375 	struct sigacts *newsigacts;
376 
377 	sx_assert(&proctree_lock, SX_SLOCKED);
378 	sx_assert(&allproc_lock, SX_XLOCKED);
379 
380 	p2_held = 0;
381 	p1 = td->td_proc;
382 
383 	/*
384 	 * Increment the nprocs resource before blocking can occur.  There
385 	 * are hard-limits as to the number of processes that can run.
386 	 */
387 	nprocs++;
388 
389 	trypid = fork_findpid(flags);
390 
391 	sx_sunlock(&proctree_lock);
392 
393 	p2->p_state = PRS_NEW;		/* protect against others */
394 	p2->p_pid = trypid;
395 	AUDIT_ARG_PID(p2->p_pid);
396 	LIST_INSERT_HEAD(&allproc, p2, p_list);
397 	allproc_gen++;
398 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
399 	tidhash_add(td2);
400 	PROC_LOCK(p2);
401 	PROC_LOCK(p1);
402 
403 	sx_xunlock(&allproc_lock);
404 
405 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
406 	    __rangeof(struct proc, p_startcopy, p_endcopy));
407 	pargs_hold(p2->p_args);
408 	PROC_UNLOCK(p1);
409 
410 	bzero(&p2->p_startzero,
411 	    __rangeof(struct proc, p_startzero, p_endzero));
412 
413 	crhold(td->td_ucred);
414 	proc_set_cred(p2, td->td_ucred);
415 
416 	/* Tell the prison that we exist. */
417 	prison_proc_hold(p2->p_ucred->cr_prison);
418 
419 	PROC_UNLOCK(p2);
420 
421 	/*
422 	 * Malloc things while we don't hold any locks.
423 	 */
424 	if (flags & RFSIGSHARE)
425 		newsigacts = NULL;
426 	else
427 		newsigacts = sigacts_alloc();
428 
429 	/*
430 	 * Copy filedesc.
431 	 */
432 	if (flags & RFCFDG) {
433 		fd = fdinit(p1->p_fd, false);
434 		fdtol = NULL;
435 	} else if (flags & RFFDG) {
436 		fd = fdcopy(p1->p_fd);
437 		fdtol = NULL;
438 	} else {
439 		fd = fdshare(p1->p_fd);
440 		if (p1->p_fdtol == NULL)
441 			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
442 			    p1->p_leader);
443 		if ((flags & RFTHREAD) != 0) {
444 			/*
445 			 * Shared file descriptor table, and shared
446 			 * process leaders.
447 			 */
448 			fdtol = p1->p_fdtol;
449 			FILEDESC_XLOCK(p1->p_fd);
450 			fdtol->fdl_refcount++;
451 			FILEDESC_XUNLOCK(p1->p_fd);
452 		} else {
453 			/*
454 			 * Shared file descriptor table, and different
455 			 * process leaders.
456 			 */
457 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
458 			    p1->p_fd, p2);
459 		}
460 	}
461 	/*
462 	 * Make a proc table entry for the new process.
463 	 * Start by zeroing the section of proc that is zero-initialized,
464 	 * then copy the section that is copied directly from the parent.
465 	 */
466 
467 	PROC_LOCK(p2);
468 	PROC_LOCK(p1);
469 
470 	bzero(&td2->td_startzero,
471 	    __rangeof(struct thread, td_startzero, td_endzero));
472 
473 	bcopy(&td->td_startcopy, &td2->td_startcopy,
474 	    __rangeof(struct thread, td_startcopy, td_endcopy));
475 
476 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
477 	td2->td_sigstk = td->td_sigstk;
478 	td2->td_flags = TDF_INMEM;
479 	td2->td_lend_user_pri = PRI_MAX;
480 
481 #ifdef VIMAGE
482 	td2->td_vnet = NULL;
483 	td2->td_vnet_lpush = NULL;
484 #endif
485 
486 	/*
487 	 * Allow the scheduler to initialize the child.
488 	 */
489 	thread_lock(td);
490 	sched_fork(td, td2);
491 	thread_unlock(td);
492 
493 	/*
494 	 * Duplicate sub-structures as needed.
495 	 * Increase reference counts on shared objects.
496 	 */
497 	p2->p_flag = P_INMEM;
498 	p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC);
499 	p2->p_swtick = ticks;
500 	if (p1->p_flag & P_PROFIL)
501 		startprofclock(p2);
502 	td2->td_ucred = crhold(p2->p_ucred);
503 
504 	if (flags & RFSIGSHARE) {
505 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
506 	} else {
507 		sigacts_copy(newsigacts, p1->p_sigacts);
508 		p2->p_sigacts = newsigacts;
509 	}
510 
511 	if (flags & RFTSIGZMB)
512 	        p2->p_sigparent = RFTSIGNUM(flags);
513 	else if (flags & RFLINUXTHPN)
514 	        p2->p_sigparent = SIGUSR1;
515 	else
516 	        p2->p_sigparent = SIGCHLD;
517 
518 	p2->p_textvp = p1->p_textvp;
519 	p2->p_fd = fd;
520 	p2->p_fdtol = fdtol;
521 
522 	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
523 		p2->p_flag |= P_PROTECTED;
524 		p2->p_flag2 |= P2_INHERIT_PROTECTED;
525 	}
526 
527 	/*
528 	 * p_limit is copy-on-write.  Bump its refcount.
529 	 */
530 	lim_fork(p1, p2);
531 
532 	pstats_fork(p1->p_stats, p2->p_stats);
533 
534 	PROC_UNLOCK(p1);
535 	PROC_UNLOCK(p2);
536 
537 	/* Bump references to the text vnode (for procfs). */
538 	if (p2->p_textvp)
539 		vref(p2->p_textvp);
540 
541 	/*
542 	 * Set up linkage for kernel based threading.
543 	 */
544 	if ((flags & RFTHREAD) != 0) {
545 		mtx_lock(&ppeers_lock);
546 		p2->p_peers = p1->p_peers;
547 		p1->p_peers = p2;
548 		p2->p_leader = p1->p_leader;
549 		mtx_unlock(&ppeers_lock);
550 		PROC_LOCK(p1->p_leader);
551 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
552 			PROC_UNLOCK(p1->p_leader);
553 			/*
554 			 * The task leader is exiting, so process p1 is
555 			 * going to be killed shortly.  Since p1 obviously
556 			 * isn't dead yet, we know that the leader is either
557 			 * sending SIGKILL's to all the processes in this
558 			 * task or is sleeping waiting for all the peers to
559 			 * exit.  We let p1 complete the fork, but we need
560 			 * to go ahead and kill the new process p2 since
561 			 * the task leader may not get a chance to send
562 			 * SIGKILL to it.  We leave it on the list so that
563 			 * the task leader will wait for this new process
564 			 * to commit suicide.
565 			 */
566 			PROC_LOCK(p2);
567 			kern_psignal(p2, SIGKILL);
568 			PROC_UNLOCK(p2);
569 		} else
570 			PROC_UNLOCK(p1->p_leader);
571 	} else {
572 		p2->p_peers = NULL;
573 		p2->p_leader = p2;
574 	}
575 
576 	sx_xlock(&proctree_lock);
577 	PGRP_LOCK(p1->p_pgrp);
578 	PROC_LOCK(p2);
579 	PROC_LOCK(p1);
580 
581 	/*
582 	 * Preserve some more flags in subprocess.  P_PROFIL has already
583 	 * been preserved.
584 	 */
585 	p2->p_flag |= p1->p_flag & P_SUGID;
586 	td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
587 	SESS_LOCK(p1->p_session);
588 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
589 		p2->p_flag |= P_CONTROLT;
590 	SESS_UNLOCK(p1->p_session);
591 	if (flags & RFPPWAIT)
592 		p2->p_flag |= P_PPWAIT;
593 
594 	p2->p_pgrp = p1->p_pgrp;
595 	LIST_INSERT_AFTER(p1, p2, p_pglist);
596 	PGRP_UNLOCK(p1->p_pgrp);
597 	LIST_INIT(&p2->p_children);
598 	LIST_INIT(&p2->p_orphans);
599 
600 	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
601 
602 	/*
603 	 * If PF_FORK is set, the child process inherits the
604 	 * procfs ioctl flags from its parent.
605 	 */
606 	if (p1->p_pfsflags & PF_FORK) {
607 		p2->p_stops = p1->p_stops;
608 		p2->p_pfsflags = p1->p_pfsflags;
609 	}
610 
611 	/*
612 	 * This begins the section where we must prevent the parent
613 	 * from being swapped.
614 	 */
615 	_PHOLD(p1);
616 	PROC_UNLOCK(p1);
617 
618 	/*
619 	 * Attach the new process to its parent.
620 	 *
621 	 * If RFNOWAIT is set, the newly created process becomes a child
622 	 * of init.  This effectively disassociates the child from the
623 	 * parent.
624 	 */
625 	if ((flags & RFNOWAIT) != 0) {
626 		pptr = p1->p_reaper;
627 		p2->p_reaper = pptr;
628 	} else {
629 		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
630 		    p1 : p1->p_reaper;
631 		pptr = p1;
632 	}
633 	p2->p_pptr = pptr;
634 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
635 	LIST_INIT(&p2->p_reaplist);
636 	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
637 	if (p2->p_reaper == p1)
638 		p2->p_reapsubtree = p2->p_pid;
639 	sx_xunlock(&proctree_lock);
640 
641 	/* Inform accounting that we have forked. */
642 	p2->p_acflag = AFORK;
643 	PROC_UNLOCK(p2);
644 
645 #ifdef KTRACE
646 	ktrprocfork(p1, p2);
647 #endif
648 
649 	/*
650 	 * Finish creating the child process.  It will return via a different
651 	 * execution path later.  (ie: directly into user mode)
652 	 */
653 	vm_forkproc(td, p2, td2, vm2, flags);
654 
655 	if (flags == (RFFDG | RFPROC)) {
656 		PCPU_INC(cnt.v_forks);
657 		PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize +
658 		    p2->p_vmspace->vm_ssize);
659 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
660 		PCPU_INC(cnt.v_vforks);
661 		PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
662 		    p2->p_vmspace->vm_ssize);
663 	} else if (p1 == &proc0) {
664 		PCPU_INC(cnt.v_kthreads);
665 		PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
666 		    p2->p_vmspace->vm_ssize);
667 	} else {
668 		PCPU_INC(cnt.v_rforks);
669 		PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
670 		    p2->p_vmspace->vm_ssize);
671 	}
672 
673 	/*
674 	 * Associate the process descriptor with the process before anything
675 	 * can happen that might cause that process to need the descriptor.
676 	 * However, don't do this until after fork(2) can no longer fail.
677 	 */
678 	if (flags & RFPROCDESC)
679 		procdesc_new(p2, pdflags);
680 
681 	/*
682 	 * Both processes are set up, now check if any loadable modules want
683 	 * to adjust anything.
684 	 */
685 	EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
686 
687 	/*
688 	 * Set the child start time and mark the process as being complete.
689 	 */
690 	PROC_LOCK(p2);
691 	PROC_LOCK(p1);
692 	microuptime(&p2->p_stats->p_start);
693 	PROC_SLOCK(p2);
694 	p2->p_state = PRS_NORMAL;
695 	PROC_SUNLOCK(p2);
696 
697 #ifdef KDTRACE_HOOKS
698 	/*
699 	 * Tell the DTrace fasttrap provider about the new process so that any
700 	 * tracepoints inherited from the parent can be removed. We have to do
701 	 * this only after p_state is PRS_NORMAL since the fasttrap module will
702 	 * use pfind() later on.
703 	 */
704 	if ((flags & RFMEM) == 0 && dtrace_fasttrap_fork)
705 		dtrace_fasttrap_fork(p1, p2);
706 #endif
707 	if ((p1->p_flag & (P_TRACED | P_FOLLOWFORK)) == (P_TRACED |
708 	    P_FOLLOWFORK)) {
709 		/*
710 		 * Arrange for debugger to receive the fork event.
711 		 *
712 		 * We can report PL_FLAG_FORKED regardless of
713 		 * P_FOLLOWFORK settings, but it does not make a sense
714 		 * for runaway child.
715 		 */
716 		td->td_dbgflags |= TDB_FORK;
717 		td->td_dbg_forked = p2->p_pid;
718 		td2->td_dbgflags |= TDB_STOPATFORK;
719 		_PHOLD(p2);
720 		p2_held = 1;
721 	}
722 	if (flags & RFPPWAIT) {
723 		td->td_pflags |= TDP_RFPPWAIT;
724 		td->td_rfppwait_p = p2;
725 	}
726 	PROC_UNLOCK(p2);
727 	if ((flags & RFSTOPPED) == 0) {
728 		/*
729 		 * If RFSTOPPED not requested, make child runnable and
730 		 * add to run queue.
731 		 */
732 		thread_lock(td2);
733 		TD_SET_CAN_RUN(td2);
734 		sched_add(td2, SRQ_BORING);
735 		thread_unlock(td2);
736 	}
737 
738 	/*
739 	 * Now can be swapped.
740 	 */
741 	_PRELE(p1);
742 	PROC_UNLOCK(p1);
743 
744 	/*
745 	 * Tell any interested parties about the new process.
746 	 */
747 	knote_fork(&p1->p_klist, p2->p_pid);
748 	SDT_PROBE(proc, kernel, , create, p2, p1, flags, 0, 0);
749 
750 	/*
751 	 * Wait until debugger is attached to child.
752 	 */
753 	PROC_LOCK(p2);
754 	while ((td2->td_dbgflags & TDB_STOPATFORK) != 0)
755 		cv_wait(&p2->p_dbgwait, &p2->p_mtx);
756 	if (p2_held)
757 		_PRELE(p2);
758 	PROC_UNLOCK(p2);
759 }
760 
761 int
762 fork1(struct thread *td, int flags, int pages, struct proc **procp,
763     int *procdescp, int pdflags)
764 {
765 	struct proc *p1;
766 	struct proc *newproc;
767 	int ok;
768 	struct thread *td2;
769 	struct vmspace *vm2;
770 	vm_ooffset_t mem_charged;
771 	int error;
772 	static int curfail;
773 	static struct timeval lastfail;
774 	struct file *fp_procdesc = NULL;
775 
776 	/* Check for the undefined or unimplemented flags. */
777 	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
778 		return (EINVAL);
779 
780 	/* Signal value requires RFTSIGZMB. */
781 	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
782 		return (EINVAL);
783 
784 	/* Can't copy and clear. */
785 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
786 		return (EINVAL);
787 
788 	/* Check the validity of the signal number. */
789 	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
790 		return (EINVAL);
791 
792 	if ((flags & RFPROCDESC) != 0) {
793 		/* Can't not create a process yet get a process descriptor. */
794 		if ((flags & RFPROC) == 0)
795 			return (EINVAL);
796 
797 		/* Must provide a place to put a procdesc if creating one. */
798 		if (procdescp == NULL)
799 			return (EINVAL);
800 	}
801 
802 	p1 = td->td_proc;
803 
804 	/*
805 	 * Here we don't create a new process, but we divorce
806 	 * certain parts of a process from itself.
807 	 */
808 	if ((flags & RFPROC) == 0) {
809 		*procp = NULL;
810 		return (fork_norfproc(td, flags));
811 	}
812 
813 	/*
814 	 * If required, create a process descriptor in the parent first; we
815 	 * will abandon it if something goes wrong. We don't finit() until
816 	 * later.
817 	 */
818 	if (flags & RFPROCDESC) {
819 		error = falloc(td, &fp_procdesc, procdescp, 0);
820 		if (error != 0)
821 			return (error);
822 	}
823 
824 	mem_charged = 0;
825 	vm2 = NULL;
826 	if (pages == 0)
827 		pages = KSTACK_PAGES;
828 	/* Allocate new proc. */
829 	newproc = uma_zalloc(proc_zone, M_WAITOK);
830 	td2 = FIRST_THREAD_IN_PROC(newproc);
831 	if (td2 == NULL) {
832 		td2 = thread_alloc(pages);
833 		if (td2 == NULL) {
834 			error = ENOMEM;
835 			goto fail1;
836 		}
837 		proc_linkup(newproc, td2);
838 	} else {
839 		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
840 			if (td2->td_kstack != 0)
841 				vm_thread_dispose(td2);
842 			if (!thread_alloc_stack(td2, pages)) {
843 				error = ENOMEM;
844 				goto fail1;
845 			}
846 		}
847 	}
848 
849 	if ((flags & RFMEM) == 0) {
850 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
851 		if (vm2 == NULL) {
852 			error = ENOMEM;
853 			goto fail1;
854 		}
855 		if (!swap_reserve(mem_charged)) {
856 			/*
857 			 * The swap reservation failed. The accounting
858 			 * from the entries of the copied vm2 will be
859 			 * substracted in vmspace_free(), so force the
860 			 * reservation there.
861 			 */
862 			swap_reserve_force(mem_charged);
863 			error = ENOMEM;
864 			goto fail1;
865 		}
866 	} else
867 		vm2 = NULL;
868 
869 	/*
870 	 * XXX: This is ugly; when we copy resource usage, we need to bump
871 	 *      per-cred resource counters.
872 	 */
873 	proc_set_cred(newproc, p1->p_ucred);
874 
875 	/*
876 	 * Initialize resource accounting for the child process.
877 	 */
878 	error = racct_proc_fork(p1, newproc);
879 	if (error != 0) {
880 		error = EAGAIN;
881 		goto fail1;
882 	}
883 
884 #ifdef MAC
885 	mac_proc_init(newproc);
886 #endif
887 	knlist_init_mtx(&newproc->p_klist, &newproc->p_mtx);
888 	STAILQ_INIT(&newproc->p_ktr);
889 
890 	/* We have to lock the process tree while we look for a pid. */
891 	sx_slock(&proctree_lock);
892 
893 	/*
894 	 * Although process entries are dynamically created, we still keep
895 	 * a global limit on the maximum number we will create.  Don't allow
896 	 * a nonprivileged user to use the last ten processes; don't let root
897 	 * exceed the limit. The variable nprocs is the current number of
898 	 * processes, maxproc is the limit.
899 	 */
900 	sx_xlock(&allproc_lock);
901 	if ((nprocs >= maxproc - 10 && priv_check_cred(td->td_ucred,
902 	    PRIV_MAXPROC, 0) != 0) || nprocs >= maxproc) {
903 		error = EAGAIN;
904 		goto fail;
905 	}
906 
907 	/*
908 	 * Increment the count of procs running with this uid. Don't allow
909 	 * a nonprivileged user to exceed their current limit.
910 	 *
911 	 * XXXRW: Can we avoid privilege here if it's not needed?
912 	 */
913 	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
914 	if (error == 0)
915 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
916 	else {
917 		PROC_LOCK(p1);
918 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
919 		    lim_cur(p1, RLIMIT_NPROC));
920 		PROC_UNLOCK(p1);
921 	}
922 	if (ok) {
923 		do_fork(td, flags, newproc, td2, vm2, pdflags);
924 
925 		/*
926 		 * Return child proc pointer to parent.
927 		 */
928 		*procp = newproc;
929 		if (flags & RFPROCDESC) {
930 			procdesc_finit(newproc->p_procdesc, fp_procdesc);
931 			fdrop(fp_procdesc, td);
932 		}
933 		racct_proc_fork_done(newproc);
934 		return (0);
935 	}
936 
937 	error = EAGAIN;
938 fail:
939 	sx_sunlock(&proctree_lock);
940 	if (ppsratecheck(&lastfail, &curfail, 1))
941 		printf("maxproc limit exceeded by uid %u (pid %d); see tuning(7) and login.conf(5)\n",
942 		    td->td_ucred->cr_ruid, p1->p_pid);
943 	sx_xunlock(&allproc_lock);
944 #ifdef MAC
945 	mac_proc_destroy(newproc);
946 #endif
947 	racct_proc_exit(newproc);
948 fail1:
949 	if (vm2 != NULL)
950 		vmspace_free(vm2);
951 	uma_zfree(proc_zone, newproc);
952 	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
953 		fdclose(td->td_proc->p_fd, fp_procdesc, *procdescp, td);
954 		fdrop(fp_procdesc, td);
955 	}
956 	pause("fork", hz / 2);
957 	return (error);
958 }
959 
960 /*
961  * Handle the return of a child process from fork1().  This function
962  * is called from the MD fork_trampoline() entry point.
963  */
964 void
965 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
966     struct trapframe *frame)
967 {
968 	struct proc *p;
969 	struct thread *td;
970 	struct thread *dtd;
971 
972 	td = curthread;
973 	p = td->td_proc;
974 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
975 
976 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
977 		td, td->td_sched, p->p_pid, td->td_name);
978 
979 	sched_fork_exit(td);
980 	/*
981 	* Processes normally resume in mi_switch() after being
982 	* cpu_switch()'ed to, but when children start up they arrive here
983 	* instead, so we must do much the same things as mi_switch() would.
984 	*/
985 	if ((dtd = PCPU_GET(deadthread))) {
986 		PCPU_SET(deadthread, NULL);
987 		thread_stash(dtd);
988 	}
989 	thread_unlock(td);
990 
991 	/*
992 	 * cpu_set_fork_handler intercepts this function call to
993 	 * have this call a non-return function to stay in kernel mode.
994 	 * initproc has its own fork handler, but it does return.
995 	 */
996 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
997 	callout(arg, frame);
998 
999 	/*
1000 	 * Check if a kernel thread misbehaved and returned from its main
1001 	 * function.
1002 	 */
1003 	if (p->p_flag & P_KTHREAD) {
1004 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1005 		    td->td_name, p->p_pid);
1006 		kproc_exit(0);
1007 	}
1008 	mtx_assert(&Giant, MA_NOTOWNED);
1009 
1010 	if (p->p_sysent->sv_schedtail != NULL)
1011 		(p->p_sysent->sv_schedtail)(td);
1012 }
1013 
1014 /*
1015  * Simplified back end of syscall(), used when returning from fork()
1016  * directly into user mode.  Giant is not held on entry, and must not
1017  * be held on return.  This function is passed in to fork_exit() as the
1018  * first parameter and is called when returning to a new userland process.
1019  */
1020 void
1021 fork_return(struct thread *td, struct trapframe *frame)
1022 {
1023 	struct proc *p, *dbg;
1024 
1025 	if (td->td_dbgflags & TDB_STOPATFORK) {
1026 		p = td->td_proc;
1027 		sx_xlock(&proctree_lock);
1028 		PROC_LOCK(p);
1029 		if ((p->p_pptr->p_flag & (P_TRACED | P_FOLLOWFORK)) ==
1030 		    (P_TRACED | P_FOLLOWFORK)) {
1031 			/*
1032 			 * If debugger still wants auto-attach for the
1033 			 * parent's children, do it now.
1034 			 */
1035 			dbg = p->p_pptr->p_pptr;
1036 			p->p_flag |= P_TRACED;
1037 			p->p_oppid = p->p_pptr->p_pid;
1038 			proc_reparent(p, dbg);
1039 			sx_xunlock(&proctree_lock);
1040 			td->td_dbgflags |= TDB_CHILD;
1041 			ptracestop(td, SIGSTOP);
1042 			td->td_dbgflags &= ~TDB_CHILD;
1043 		} else {
1044 			/*
1045 			 * ... otherwise clear the request.
1046 			 */
1047 			sx_xunlock(&proctree_lock);
1048 			td->td_dbgflags &= ~TDB_STOPATFORK;
1049 			cv_broadcast(&p->p_dbgwait);
1050 		}
1051 		PROC_UNLOCK(p);
1052 	}
1053 
1054 	userret(td, frame);
1055 
1056 #ifdef KTRACE
1057 	if (KTRPOINT(td, KTR_SYSRET))
1058 		ktrsysret(SYS_fork, 0, 0);
1059 #endif
1060 }
1061