xref: /freebsd/sys/kern/kern_fork.c (revision daf1cffce2e07931f27c6c6998652e90df6ba87e)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
39  * $FreeBSD$
40  */
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysproto.h>
47 #include <sys/filedesc.h>
48 #include <sys/kernel.h>
49 #include <sys/sysctl.h>
50 #include <sys/malloc.h>
51 #include <sys/proc.h>
52 #include <sys/resourcevar.h>
53 #include <sys/vnode.h>
54 #include <sys/acct.h>
55 #include <sys/ktrace.h>
56 #include <sys/unistd.h>
57 #include <sys/jail.h>
58 
59 #include <vm/vm.h>
60 #include <sys/lock.h>
61 #include <vm/pmap.h>
62 #include <vm/vm_map.h>
63 #include <vm/vm_extern.h>
64 #include <vm/vm_zone.h>
65 
66 #include <sys/user.h>
67 
68 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
69 
70 static int	fast_vfork = 1;
71 SYSCTL_INT(_kern, OID_AUTO, fast_vfork, CTLFLAG_RW, &fast_vfork, 0, "");
72 
73 /*
74  * These are the stuctures used to create a callout list for things to do
75  * when forking a process
76  */
77 struct forklist {
78 	forklist_fn function;
79 	TAILQ_ENTRY(forklist) next;
80 };
81 
82 TAILQ_HEAD(forklist_head, forklist);
83 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
84 
85 #ifndef _SYS_SYSPROTO_H_
86 struct fork_args {
87 	int     dummy;
88 };
89 #endif
90 
91 /* ARGSUSED */
92 int
93 fork(p, uap)
94 	struct proc *p;
95 	struct fork_args *uap;
96 {
97 	int error;
98 	struct proc *p2;
99 
100 	error = fork1(p, RFFDG | RFPROC, &p2);
101 	if (error == 0) {
102 		p->p_retval[0] = p2->p_pid;
103 		p->p_retval[1] = 0;
104 	}
105 	return error;
106 }
107 
108 /* ARGSUSED */
109 int
110 vfork(p, uap)
111 	struct proc *p;
112 	struct vfork_args *uap;
113 {
114 	int error;
115 	struct proc *p2;
116 
117 	error = fork1(p, RFFDG | RFPROC | RFPPWAIT | RFMEM, &p2);
118 	if (error == 0) {
119 		p->p_retval[0] = p2->p_pid;
120 		p->p_retval[1] = 0;
121 	}
122 	return error;
123 }
124 
125 int
126 rfork(p, uap)
127 	struct proc *p;
128 	struct rfork_args *uap;
129 {
130 	int error;
131 	struct proc *p2;
132 
133 	error = fork1(p, uap->flags, &p2);
134 	if (error == 0) {
135 		p->p_retval[0] = p2 ? p2->p_pid : 0;
136 		p->p_retval[1] = 0;
137 	}
138 	return error;
139 }
140 
141 
142 int	nprocs = 1;		/* process 0 */
143 static int nextpid = 0;
144 
145 /*
146  * Random component to nextpid generation.  We mix in a random factor to make
147  * it a little harder to predict.  We sanity check the modulus value to avoid
148  * doing it in critical paths.  Don't let it be too small or we pointlessly
149  * waste randomness entropy, and don't let it be impossibly large.  Using a
150  * modulus that is too big causes a LOT more process table scans and slows
151  * down fork processing as the pidchecked caching is defeated.
152  */
153 static int randompid = 0;
154 
155 static int
156 sysctl_kern_randompid SYSCTL_HANDLER_ARGS
157 {
158 		int error, pid;
159 
160 		pid = randompid;
161 		error = sysctl_handle_int(oidp, &pid, 0, req);
162 		if (error || !req->newptr)
163 			return (error);
164 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
165 			pid = PID_MAX - 100;
166 		else if (pid < 2)			/* NOP */
167 			pid = 0;
168 		else if (pid < 100)			/* Make it reasonable */
169 			pid = 100;
170 		randompid = pid;
171 		return (error);
172 }
173 
174 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
175     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
176 
177 int
178 fork1(p1, flags, procp)
179 	struct proc *p1;
180 	int flags;
181 	struct proc **procp;
182 {
183 	struct proc *p2, *pptr;
184 	uid_t uid;
185 	struct proc *newproc;
186 	int count;
187 	static int pidchecked = 0;
188 	struct forklist *ep;
189 
190 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
191 		return (EINVAL);
192 
193 	/*
194 	 * Here we don't create a new process, but we divorce
195 	 * certain parts of a process from itself.
196 	 */
197 	if ((flags & RFPROC) == 0) {
198 
199 		vm_fork(p1, 0, flags);
200 
201 		/*
202 		 * Close all file descriptors.
203 		 */
204 		if (flags & RFCFDG) {
205 			struct filedesc *fdtmp;
206 			fdtmp = fdinit(p1);
207 			fdfree(p1);
208 			p1->p_fd = fdtmp;
209 		}
210 
211 		/*
212 		 * Unshare file descriptors (from parent.)
213 		 */
214 		if (flags & RFFDG) {
215 			if (p1->p_fd->fd_refcnt > 1) {
216 				struct filedesc *newfd;
217 				newfd = fdcopy(p1);
218 				fdfree(p1);
219 				p1->p_fd = newfd;
220 			}
221 		}
222 		*procp = NULL;
223 		return (0);
224 	}
225 
226 	/*
227 	 * Although process entries are dynamically created, we still keep
228 	 * a global limit on the maximum number we will create.  Don't allow
229 	 * a nonprivileged user to use the last process; don't let root
230 	 * exceed the limit. The variable nprocs is the current number of
231 	 * processes, maxproc is the limit.
232 	 */
233 	uid = p1->p_cred->p_ruid;
234 	if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
235 		tablefull("proc");
236 		return (EAGAIN);
237 	}
238 	/*
239 	 * Increment the nprocs resource before blocking can occur.  There
240 	 * are hard-limits as to the number of processes that can run.
241 	 */
242 	nprocs++;
243 
244 	/*
245 	 * Increment the count of procs running with this uid. Don't allow
246 	 * a nonprivileged user to exceed their current limit.
247 	 */
248 	count = chgproccnt(uid, 1);
249 	if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) {
250 		(void)chgproccnt(uid, -1);
251 		/*
252 		 * Back out the process count
253 		 */
254 		nprocs--;
255 		return (EAGAIN);
256 	}
257 
258 	/* Allocate new proc. */
259 	newproc = zalloc(proc_zone);
260 
261 	/*
262 	 * Setup linkage for kernel based threading
263 	 */
264 	if((flags & RFTHREAD) != 0) {
265 		newproc->p_peers = p1->p_peers;
266 		p1->p_peers = newproc;
267 		newproc->p_leader = p1->p_leader;
268 	} else {
269 		newproc->p_peers = 0;
270 		newproc->p_leader = newproc;
271 	}
272 
273 	newproc->p_wakeup = 0;
274 
275 	newproc->p_vmspace = NULL;
276 
277 	/*
278 	 * Find an unused process ID.  We remember a range of unused IDs
279 	 * ready to use (from nextpid+1 through pidchecked-1).
280 	 */
281 	nextpid++;
282 	if (randompid)
283 		nextpid += arc4random() % randompid;
284 retry:
285 	/*
286 	 * If the process ID prototype has wrapped around,
287 	 * restart somewhat above 0, as the low-numbered procs
288 	 * tend to include daemons that don't exit.
289 	 */
290 	if (nextpid >= PID_MAX) {
291 		nextpid = nextpid % PID_MAX;
292 		if (nextpid < 100)
293 			nextpid += 100;
294 		pidchecked = 0;
295 	}
296 	if (nextpid >= pidchecked) {
297 		int doingzomb = 0;
298 
299 		pidchecked = PID_MAX;
300 		/*
301 		 * Scan the active and zombie procs to check whether this pid
302 		 * is in use.  Remember the lowest pid that's greater
303 		 * than nextpid, so we can avoid checking for a while.
304 		 */
305 		p2 = LIST_FIRST(&allproc);
306 again:
307 		for (; p2 != 0; p2 = LIST_NEXT(p2, p_list)) {
308 			while (p2->p_pid == nextpid ||
309 			    p2->p_pgrp->pg_id == nextpid ||
310 			    p2->p_session->s_sid == nextpid) {
311 				nextpid++;
312 				if (nextpid >= pidchecked)
313 					goto retry;
314 			}
315 			if (p2->p_pid > nextpid && pidchecked > p2->p_pid)
316 				pidchecked = p2->p_pid;
317 			if (p2->p_pgrp->pg_id > nextpid &&
318 			    pidchecked > p2->p_pgrp->pg_id)
319 				pidchecked = p2->p_pgrp->pg_id;
320 			if (p2->p_session->s_sid > nextpid &&
321 			    pidchecked > p2->p_session->s_sid)
322 				pidchecked = p2->p_session->s_sid;
323 		}
324 		if (!doingzomb) {
325 			doingzomb = 1;
326 			p2 = LIST_FIRST(&zombproc);
327 			goto again;
328 		}
329 	}
330 
331 	p2 = newproc;
332 	p2->p_stat = SIDL;			/* protect against others */
333 	p2->p_pid = nextpid;
334 	LIST_INSERT_HEAD(&allproc, p2, p_list);
335 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
336 
337 	/*
338 	 * Make a proc table entry for the new process.
339 	 * Start by zeroing the section of proc that is zero-initialized,
340 	 * then copy the section that is copied directly from the parent.
341 	 */
342 	bzero(&p2->p_startzero,
343 	    (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
344 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
345 	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
346 
347 	p2->p_aioinfo = NULL;
348 
349 	/*
350 	 * Duplicate sub-structures as needed.
351 	 * Increase reference counts on shared objects.
352 	 * The p_stats and p_sigacts substructs are set in vm_fork.
353 	 */
354 	p2->p_flag = P_INMEM;
355 	if (p1->p_flag & P_PROFIL)
356 		startprofclock(p2);
357 	MALLOC(p2->p_cred, struct pcred *, sizeof(struct pcred),
358 	    M_SUBPROC, M_WAITOK);
359 	bcopy(p1->p_cred, p2->p_cred, sizeof(*p2->p_cred));
360 	p2->p_cred->p_refcnt = 1;
361 	crhold(p1->p_ucred);
362 
363 	if (p2->p_prison) {
364 		p2->p_prison->pr_ref++;
365 		p2->p_flag |= P_JAILED;
366 	}
367 
368 	if (p2->p_args)
369 		p2->p_args->ar_ref++;
370 
371 	if (flags & RFSIGSHARE) {
372 		p2->p_procsig = p1->p_procsig;
373 		p2->p_procsig->ps_refcnt++;
374 		if (p1->p_sigacts == &p1->p_addr->u_sigacts) {
375 			struct sigacts *newsigacts;
376 			int s;
377 
378 			/* Create the shared sigacts structure */
379 			MALLOC(newsigacts, struct sigacts *,
380 			    sizeof(struct sigacts), M_SUBPROC, M_WAITOK);
381 			s = splhigh();
382 			/*
383 			 * Set p_sigacts to the new shared structure.
384 			 * Note that this is updating p1->p_sigacts at the
385 			 * same time, since p_sigacts is just a pointer to
386 			 * the shared p_procsig->ps_sigacts.
387 			 */
388 			p2->p_sigacts  = newsigacts;
389 			bcopy(&p1->p_addr->u_sigacts, p2->p_sigacts,
390 			    sizeof(*p2->p_sigacts));
391 			*p2->p_sigacts = p1->p_addr->u_sigacts;
392 			splx(s);
393 		}
394 	} else {
395 		MALLOC(p2->p_procsig, struct procsig *, sizeof(struct procsig),
396 		    M_SUBPROC, M_WAITOK);
397 		bcopy(p1->p_procsig, p2->p_procsig, sizeof(*p2->p_procsig));
398 		p2->p_procsig->ps_refcnt = 1;
399 		p2->p_sigacts = NULL;	/* finished in vm_fork() */
400 	}
401 	if (flags & RFLINUXTHPN)
402 	        p2->p_sigparent = SIGUSR1;
403 	else
404 	        p2->p_sigparent = SIGCHLD;
405 
406 	/* bump references to the text vnode (for procfs) */
407 	p2->p_textvp = p1->p_textvp;
408 	if (p2->p_textvp)
409 		VREF(p2->p_textvp);
410 
411 	if (flags & RFCFDG)
412 		p2->p_fd = fdinit(p1);
413 	else if (flags & RFFDG)
414 		p2->p_fd = fdcopy(p1);
415 	else
416 		p2->p_fd = fdshare(p1);
417 
418 	/*
419 	 * If p_limit is still copy-on-write, bump refcnt,
420 	 * otherwise get a copy that won't be modified.
421 	 * (If PL_SHAREMOD is clear, the structure is shared
422 	 * copy-on-write.)
423 	 */
424 	if (p1->p_limit->p_lflags & PL_SHAREMOD)
425 		p2->p_limit = limcopy(p1->p_limit);
426 	else {
427 		p2->p_limit = p1->p_limit;
428 		p2->p_limit->p_refcnt++;
429 	}
430 
431 	/*
432 	 * Preserve some more flags in subprocess.  P_PROFIL has already
433 	 * been preserved.
434 	 */
435 	p2->p_flag |= p1->p_flag & P_SUGID;
436 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
437 		p2->p_flag |= P_CONTROLT;
438 	if (flags & RFPPWAIT)
439 		p2->p_flag |= P_PPWAIT;
440 
441 	LIST_INSERT_AFTER(p1, p2, p_pglist);
442 
443 	/*
444 	 * Attach the new process to its parent.
445 	 *
446 	 * If RFNOWAIT is set, the newly created process becomes a child
447 	 * of init.  This effectively disassociates the child from the
448 	 * parent.
449 	 */
450 	if (flags & RFNOWAIT)
451 		pptr = initproc;
452 	else
453 		pptr = p1;
454 	p2->p_pptr = pptr;
455 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
456 	LIST_INIT(&p2->p_children);
457 
458 #ifdef KTRACE
459 	/*
460 	 * Copy traceflag and tracefile if enabled.
461 	 * If not inherited, these were zeroed above.
462 	 */
463 	if (p1->p_traceflag&KTRFAC_INHERIT) {
464 		p2->p_traceflag = p1->p_traceflag;
465 		if ((p2->p_tracep = p1->p_tracep) != NULL)
466 			VREF(p2->p_tracep);
467 	}
468 #endif
469 
470 	/*
471 	 * set priority of child to be that of parent
472 	 */
473 	p2->p_estcpu = p1->p_estcpu;
474 
475 	/*
476 	 * This begins the section where we must prevent the parent
477 	 * from being swapped.
478 	 */
479 	PHOLD(p1);
480 
481 	/*
482 	 * Finish creating the child process.  It will return via a different
483 	 * execution path later.  (ie: directly into user mode)
484 	 */
485 	vm_fork(p1, p2, flags);
486 
487 	/*
488 	 * Both processes are set up, now check if any loadable modules want
489 	 * to adjust anything.
490 	 *   What if they have an error? XXX
491 	 */
492 	TAILQ_FOREACH(ep, &fork_list, next) {
493 		(*ep->function)(p1, p2, flags);
494 	}
495 
496 	/*
497 	 * Make child runnable and add to run queue.
498 	 */
499 	microtime(&(p2->p_stats->p_start));
500 	p2->p_acflag = AFORK;
501 	(void) splhigh();
502 	p2->p_stat = SRUN;
503 	setrunqueue(p2);
504 	(void) spl0();
505 
506 	/*
507 	 * Now can be swapped.
508 	 */
509 	PRELE(p1);
510 
511 	/*
512 	 * Preserve synchronization semantics of vfork.  If waiting for
513 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
514 	 * proc (in case of exit).
515 	 */
516 	while (p2->p_flag & P_PPWAIT)
517 		tsleep(p1, PWAIT, "ppwait", 0);
518 
519 	/*
520 	 * Return child proc pointer to parent.
521 	 */
522 	*procp = p2;
523 	return (0);
524 }
525 
526 /*
527  * The next two functionms are general routines to handle adding/deleting
528  * items on the fork callout list.
529  *
530  * at_fork():
531  * Take the arguments given and put them onto the fork callout list,
532  * However first make sure that it's not already there.
533  * Returns 0 on success or a standard error number.
534  */
535 
536 int
537 at_fork(function)
538 	forklist_fn function;
539 {
540 	struct forklist *ep;
541 
542 #ifdef INVARIANTS
543 	/* let the programmer know if he's been stupid */
544 	if (rm_at_fork(function))
545 		printf("WARNING: fork callout entry (%p) already present\n",
546 		    function);
547 #endif
548 	ep = malloc(sizeof(*ep), M_ATFORK, M_NOWAIT);
549 	if (ep == NULL)
550 		return (ENOMEM);
551 	ep->function = function;
552 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
553 	return (0);
554 }
555 
556 /*
557  * Scan the exit callout list for the given item and remove it..
558  * Returns the number of items removed (0 or 1)
559  */
560 
561 int
562 rm_at_fork(function)
563 	forklist_fn function;
564 {
565 	struct forklist *ep;
566 
567 	TAILQ_FOREACH(ep, &fork_list, next) {
568 		if (ep->function == function) {
569 			TAILQ_REMOVE(&fork_list, ep, next);
570 			free(ep, M_ATFORK);
571 			return(1);
572 		}
573 	}
574 	return (0);
575 }
576