xref: /freebsd/sys/kern/kern_fork.c (revision d8a0fe102c0cfdfcd5b818f850eff09d8536c9bc)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 #include "opt_kstack_pages.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/eventhandler.h>
49 #include <sys/fcntl.h>
50 #include <sys/filedesc.h>
51 #include <sys/jail.h>
52 #include <sys/kernel.h>
53 #include <sys/kthread.h>
54 #include <sys/sysctl.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/procdesc.h>
61 #include <sys/pioctl.h>
62 #include <sys/ptrace.h>
63 #include <sys/racct.h>
64 #include <sys/resourcevar.h>
65 #include <sys/sched.h>
66 #include <sys/syscall.h>
67 #include <sys/vmmeter.h>
68 #include <sys/vnode.h>
69 #include <sys/acct.h>
70 #include <sys/ktr.h>
71 #include <sys/ktrace.h>
72 #include <sys/unistd.h>
73 #include <sys/sdt.h>
74 #include <sys/sx.h>
75 #include <sys/sysent.h>
76 #include <sys/signalvar.h>
77 
78 #include <security/audit/audit.h>
79 #include <security/mac/mac_framework.h>
80 
81 #include <vm/vm.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_extern.h>
85 #include <vm/uma.h>
86 #include <vm/vm_domain.h>
87 
88 #ifdef KDTRACE_HOOKS
89 #include <sys/dtrace_bsd.h>
90 dtrace_fork_func_t	dtrace_fasttrap_fork;
91 #endif
92 
93 SDT_PROVIDER_DECLARE(proc);
94 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
95 
96 #ifndef _SYS_SYSPROTO_H_
97 struct fork_args {
98 	int     dummy;
99 };
100 #endif
101 
102 EVENTHANDLER_LIST_DECLARE(process_fork);
103 
104 /* ARGSUSED */
105 int
106 sys_fork(struct thread *td, struct fork_args *uap)
107 {
108 	struct fork_req fr;
109 	int error, pid;
110 
111 	bzero(&fr, sizeof(fr));
112 	fr.fr_flags = RFFDG | RFPROC;
113 	fr.fr_pidp = &pid;
114 	error = fork1(td, &fr);
115 	if (error == 0) {
116 		td->td_retval[0] = pid;
117 		td->td_retval[1] = 0;
118 	}
119 	return (error);
120 }
121 
122 /* ARGUSED */
123 int
124 sys_pdfork(struct thread *td, struct pdfork_args *uap)
125 {
126 	struct fork_req fr;
127 	int error, fd, pid;
128 
129 	bzero(&fr, sizeof(fr));
130 	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
131 	fr.fr_pidp = &pid;
132 	fr.fr_pd_fd = &fd;
133 	fr.fr_pd_flags = uap->flags;
134 	/*
135 	 * It is necessary to return fd by reference because 0 is a valid file
136 	 * descriptor number, and the child needs to be able to distinguish
137 	 * itself from the parent using the return value.
138 	 */
139 	error = fork1(td, &fr);
140 	if (error == 0) {
141 		td->td_retval[0] = pid;
142 		td->td_retval[1] = 0;
143 		error = copyout(&fd, uap->fdp, sizeof(fd));
144 	}
145 	return (error);
146 }
147 
148 /* ARGSUSED */
149 int
150 sys_vfork(struct thread *td, struct vfork_args *uap)
151 {
152 	struct fork_req fr;
153 	int error, pid;
154 
155 	bzero(&fr, sizeof(fr));
156 	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
157 	fr.fr_pidp = &pid;
158 	error = fork1(td, &fr);
159 	if (error == 0) {
160 		td->td_retval[0] = pid;
161 		td->td_retval[1] = 0;
162 	}
163 	return (error);
164 }
165 
166 int
167 sys_rfork(struct thread *td, struct rfork_args *uap)
168 {
169 	struct fork_req fr;
170 	int error, pid;
171 
172 	/* Don't allow kernel-only flags. */
173 	if ((uap->flags & RFKERNELONLY) != 0)
174 		return (EINVAL);
175 
176 	AUDIT_ARG_FFLAGS(uap->flags);
177 	bzero(&fr, sizeof(fr));
178 	fr.fr_flags = uap->flags;
179 	fr.fr_pidp = &pid;
180 	error = fork1(td, &fr);
181 	if (error == 0) {
182 		td->td_retval[0] = pid;
183 		td->td_retval[1] = 0;
184 	}
185 	return (error);
186 }
187 
188 int	nprocs = 1;		/* process 0 */
189 int	lastpid = 0;
190 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
191     "Last used PID");
192 
193 /*
194  * Random component to lastpid generation.  We mix in a random factor to make
195  * it a little harder to predict.  We sanity check the modulus value to avoid
196  * doing it in critical paths.  Don't let it be too small or we pointlessly
197  * waste randomness entropy, and don't let it be impossibly large.  Using a
198  * modulus that is too big causes a LOT more process table scans and slows
199  * down fork processing as the pidchecked caching is defeated.
200  */
201 static int randompid = 0;
202 
203 static int
204 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
205 {
206 	int error, pid;
207 
208 	error = sysctl_wire_old_buffer(req, sizeof(int));
209 	if (error != 0)
210 		return(error);
211 	sx_xlock(&allproc_lock);
212 	pid = randompid;
213 	error = sysctl_handle_int(oidp, &pid, 0, req);
214 	if (error == 0 && req->newptr != NULL) {
215 		if (pid == 0)
216 			randompid = 0;
217 		else if (pid == 1)
218 			/* generate a random PID modulus between 100 and 1123 */
219 			randompid = 100 + arc4random() % 1024;
220 		else if (pid < 0 || pid > pid_max - 100)
221 			/* out of range */
222 			randompid = pid_max - 100;
223 		else if (pid < 100)
224 			/* Make it reasonable */
225 			randompid = 100;
226 		else
227 			randompid = pid;
228 	}
229 	sx_xunlock(&allproc_lock);
230 	return (error);
231 }
232 
233 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
234     0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value");
235 
236 static int
237 fork_findpid(int flags)
238 {
239 	struct proc *p;
240 	int trypid;
241 	static int pidchecked = 0;
242 
243 	/*
244 	 * Requires allproc_lock in order to iterate over the list
245 	 * of processes, and proctree_lock to access p_pgrp.
246 	 */
247 	sx_assert(&allproc_lock, SX_LOCKED);
248 	sx_assert(&proctree_lock, SX_LOCKED);
249 
250 	/*
251 	 * Find an unused process ID.  We remember a range of unused IDs
252 	 * ready to use (from lastpid+1 through pidchecked-1).
253 	 *
254 	 * If RFHIGHPID is set (used during system boot), do not allocate
255 	 * low-numbered pids.
256 	 */
257 	trypid = lastpid + 1;
258 	if (flags & RFHIGHPID) {
259 		if (trypid < 10)
260 			trypid = 10;
261 	} else {
262 		if (randompid)
263 			trypid += arc4random() % randompid;
264 	}
265 retry:
266 	/*
267 	 * If the process ID prototype has wrapped around,
268 	 * restart somewhat above 0, as the low-numbered procs
269 	 * tend to include daemons that don't exit.
270 	 */
271 	if (trypid >= pid_max) {
272 		trypid = trypid % pid_max;
273 		if (trypid < 100)
274 			trypid += 100;
275 		pidchecked = 0;
276 	}
277 	if (trypid >= pidchecked) {
278 		int doingzomb = 0;
279 
280 		pidchecked = PID_MAX;
281 		/*
282 		 * Scan the active and zombie procs to check whether this pid
283 		 * is in use.  Remember the lowest pid that's greater
284 		 * than trypid, so we can avoid checking for a while.
285 		 *
286 		 * Avoid reuse of the process group id, session id or
287 		 * the reaper subtree id.  Note that for process group
288 		 * and sessions, the amount of reserved pids is
289 		 * limited by process limit.  For the subtree ids, the
290 		 * id is kept reserved only while there is a
291 		 * non-reaped process in the subtree, so amount of
292 		 * reserved pids is limited by process limit times
293 		 * two.
294 		 */
295 		p = LIST_FIRST(&allproc);
296 again:
297 		for (; p != NULL; p = LIST_NEXT(p, p_list)) {
298 			while (p->p_pid == trypid ||
299 			    p->p_reapsubtree == trypid ||
300 			    (p->p_pgrp != NULL &&
301 			    (p->p_pgrp->pg_id == trypid ||
302 			    (p->p_session != NULL &&
303 			    p->p_session->s_sid == trypid)))) {
304 				trypid++;
305 				if (trypid >= pidchecked)
306 					goto retry;
307 			}
308 			if (p->p_pid > trypid && pidchecked > p->p_pid)
309 				pidchecked = p->p_pid;
310 			if (p->p_pgrp != NULL) {
311 				if (p->p_pgrp->pg_id > trypid &&
312 				    pidchecked > p->p_pgrp->pg_id)
313 					pidchecked = p->p_pgrp->pg_id;
314 				if (p->p_session != NULL &&
315 				    p->p_session->s_sid > trypid &&
316 				    pidchecked > p->p_session->s_sid)
317 					pidchecked = p->p_session->s_sid;
318 			}
319 		}
320 		if (!doingzomb) {
321 			doingzomb = 1;
322 			p = LIST_FIRST(&zombproc);
323 			goto again;
324 		}
325 	}
326 
327 	/*
328 	 * RFHIGHPID does not mess with the lastpid counter during boot.
329 	 */
330 	if (flags & RFHIGHPID)
331 		pidchecked = 0;
332 	else
333 		lastpid = trypid;
334 
335 	return (trypid);
336 }
337 
338 static int
339 fork_norfproc(struct thread *td, int flags)
340 {
341 	int error;
342 	struct proc *p1;
343 
344 	KASSERT((flags & RFPROC) == 0,
345 	    ("fork_norfproc called with RFPROC set"));
346 	p1 = td->td_proc;
347 
348 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
349 	    (flags & (RFCFDG | RFFDG))) {
350 		PROC_LOCK(p1);
351 		if (thread_single(p1, SINGLE_BOUNDARY)) {
352 			PROC_UNLOCK(p1);
353 			return (ERESTART);
354 		}
355 		PROC_UNLOCK(p1);
356 	}
357 
358 	error = vm_forkproc(td, NULL, NULL, NULL, flags);
359 	if (error)
360 		goto fail;
361 
362 	/*
363 	 * Close all file descriptors.
364 	 */
365 	if (flags & RFCFDG) {
366 		struct filedesc *fdtmp;
367 		fdtmp = fdinit(td->td_proc->p_fd, false);
368 		fdescfree(td);
369 		p1->p_fd = fdtmp;
370 	}
371 
372 	/*
373 	 * Unshare file descriptors (from parent).
374 	 */
375 	if (flags & RFFDG)
376 		fdunshare(td);
377 
378 fail:
379 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
380 	    (flags & (RFCFDG | RFFDG))) {
381 		PROC_LOCK(p1);
382 		thread_single_end(p1, SINGLE_BOUNDARY);
383 		PROC_UNLOCK(p1);
384 	}
385 	return (error);
386 }
387 
388 static void
389 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
390     struct vmspace *vm2, struct file *fp_procdesc)
391 {
392 	struct proc *p1, *pptr;
393 	int trypid;
394 	struct filedesc *fd;
395 	struct filedesc_to_leader *fdtol;
396 	struct sigacts *newsigacts;
397 
398 	sx_assert(&proctree_lock, SX_SLOCKED);
399 	sx_assert(&allproc_lock, SX_XLOCKED);
400 
401 	p1 = td->td_proc;
402 
403 	trypid = fork_findpid(fr->fr_flags);
404 
405 	sx_sunlock(&proctree_lock);
406 
407 	p2->p_state = PRS_NEW;		/* protect against others */
408 	p2->p_pid = trypid;
409 	AUDIT_ARG_PID(p2->p_pid);
410 	LIST_INSERT_HEAD(&allproc, p2, p_list);
411 	allproc_gen++;
412 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
413 	tidhash_add(td2);
414 	PROC_LOCK(p2);
415 	PROC_LOCK(p1);
416 
417 	sx_xunlock(&allproc_lock);
418 
419 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
420 	    __rangeof(struct proc, p_startcopy, p_endcopy));
421 	pargs_hold(p2->p_args);
422 
423 	PROC_UNLOCK(p1);
424 
425 	bzero(&p2->p_startzero,
426 	    __rangeof(struct proc, p_startzero, p_endzero));
427 
428 	/* Tell the prison that we exist. */
429 	prison_proc_hold(p2->p_ucred->cr_prison);
430 
431 	PROC_UNLOCK(p2);
432 
433 	/*
434 	 * Malloc things while we don't hold any locks.
435 	 */
436 	if (fr->fr_flags & RFSIGSHARE)
437 		newsigacts = NULL;
438 	else
439 		newsigacts = sigacts_alloc();
440 
441 	/*
442 	 * Copy filedesc.
443 	 */
444 	if (fr->fr_flags & RFCFDG) {
445 		fd = fdinit(p1->p_fd, false);
446 		fdtol = NULL;
447 	} else if (fr->fr_flags & RFFDG) {
448 		fd = fdcopy(p1->p_fd);
449 		fdtol = NULL;
450 	} else {
451 		fd = fdshare(p1->p_fd);
452 		if (p1->p_fdtol == NULL)
453 			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
454 			    p1->p_leader);
455 		if ((fr->fr_flags & RFTHREAD) != 0) {
456 			/*
457 			 * Shared file descriptor table, and shared
458 			 * process leaders.
459 			 */
460 			fdtol = p1->p_fdtol;
461 			FILEDESC_XLOCK(p1->p_fd);
462 			fdtol->fdl_refcount++;
463 			FILEDESC_XUNLOCK(p1->p_fd);
464 		} else {
465 			/*
466 			 * Shared file descriptor table, and different
467 			 * process leaders.
468 			 */
469 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
470 			    p1->p_fd, p2);
471 		}
472 	}
473 	/*
474 	 * Make a proc table entry for the new process.
475 	 * Start by zeroing the section of proc that is zero-initialized,
476 	 * then copy the section that is copied directly from the parent.
477 	 */
478 
479 	PROC_LOCK(p2);
480 	PROC_LOCK(p1);
481 
482 	bzero(&td2->td_startzero,
483 	    __rangeof(struct thread, td_startzero, td_endzero));
484 
485 	bcopy(&td->td_startcopy, &td2->td_startcopy,
486 	    __rangeof(struct thread, td_startcopy, td_endcopy));
487 
488 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
489 	td2->td_sigstk = td->td_sigstk;
490 	td2->td_flags = TDF_INMEM;
491 	td2->td_lend_user_pri = PRI_MAX;
492 
493 #ifdef VIMAGE
494 	td2->td_vnet = NULL;
495 	td2->td_vnet_lpush = NULL;
496 #endif
497 
498 	/*
499 	 * Allow the scheduler to initialize the child.
500 	 */
501 	thread_lock(td);
502 	sched_fork(td, td2);
503 	thread_unlock(td);
504 
505 	/*
506 	 * Duplicate sub-structures as needed.
507 	 * Increase reference counts on shared objects.
508 	 */
509 	p2->p_flag = P_INMEM;
510 	p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP);
511 	p2->p_swtick = ticks;
512 	if (p1->p_flag & P_PROFIL)
513 		startprofclock(p2);
514 
515 	/*
516 	 * Whilst the proc lock is held, copy the VM domain data out
517 	 * using the VM domain method.
518 	 */
519 	vm_domain_policy_init(&p2->p_vm_dom_policy);
520 	vm_domain_policy_localcopy(&p2->p_vm_dom_policy,
521 	    &p1->p_vm_dom_policy);
522 
523 	if (fr->fr_flags & RFSIGSHARE) {
524 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
525 	} else {
526 		sigacts_copy(newsigacts, p1->p_sigacts);
527 		p2->p_sigacts = newsigacts;
528 	}
529 
530 	if (fr->fr_flags & RFTSIGZMB)
531 	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
532 	else if (fr->fr_flags & RFLINUXTHPN)
533 	        p2->p_sigparent = SIGUSR1;
534 	else
535 	        p2->p_sigparent = SIGCHLD;
536 
537 	p2->p_textvp = p1->p_textvp;
538 	p2->p_fd = fd;
539 	p2->p_fdtol = fdtol;
540 
541 	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
542 		p2->p_flag |= P_PROTECTED;
543 		p2->p_flag2 |= P2_INHERIT_PROTECTED;
544 	}
545 
546 	/*
547 	 * p_limit is copy-on-write.  Bump its refcount.
548 	 */
549 	lim_fork(p1, p2);
550 
551 	thread_cow_get_proc(td2, p2);
552 
553 	pstats_fork(p1->p_stats, p2->p_stats);
554 
555 	PROC_UNLOCK(p1);
556 	PROC_UNLOCK(p2);
557 
558 	/* Bump references to the text vnode (for procfs). */
559 	if (p2->p_textvp)
560 		vrefact(p2->p_textvp);
561 
562 	/*
563 	 * Set up linkage for kernel based threading.
564 	 */
565 	if ((fr->fr_flags & RFTHREAD) != 0) {
566 		mtx_lock(&ppeers_lock);
567 		p2->p_peers = p1->p_peers;
568 		p1->p_peers = p2;
569 		p2->p_leader = p1->p_leader;
570 		mtx_unlock(&ppeers_lock);
571 		PROC_LOCK(p1->p_leader);
572 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
573 			PROC_UNLOCK(p1->p_leader);
574 			/*
575 			 * The task leader is exiting, so process p1 is
576 			 * going to be killed shortly.  Since p1 obviously
577 			 * isn't dead yet, we know that the leader is either
578 			 * sending SIGKILL's to all the processes in this
579 			 * task or is sleeping waiting for all the peers to
580 			 * exit.  We let p1 complete the fork, but we need
581 			 * to go ahead and kill the new process p2 since
582 			 * the task leader may not get a chance to send
583 			 * SIGKILL to it.  We leave it on the list so that
584 			 * the task leader will wait for this new process
585 			 * to commit suicide.
586 			 */
587 			PROC_LOCK(p2);
588 			kern_psignal(p2, SIGKILL);
589 			PROC_UNLOCK(p2);
590 		} else
591 			PROC_UNLOCK(p1->p_leader);
592 	} else {
593 		p2->p_peers = NULL;
594 		p2->p_leader = p2;
595 	}
596 
597 	sx_xlock(&proctree_lock);
598 	PGRP_LOCK(p1->p_pgrp);
599 	PROC_LOCK(p2);
600 	PROC_LOCK(p1);
601 
602 	/*
603 	 * Preserve some more flags in subprocess.  P_PROFIL has already
604 	 * been preserved.
605 	 */
606 	p2->p_flag |= p1->p_flag & P_SUGID;
607 	td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING;
608 	SESS_LOCK(p1->p_session);
609 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
610 		p2->p_flag |= P_CONTROLT;
611 	SESS_UNLOCK(p1->p_session);
612 	if (fr->fr_flags & RFPPWAIT)
613 		p2->p_flag |= P_PPWAIT;
614 
615 	p2->p_pgrp = p1->p_pgrp;
616 	LIST_INSERT_AFTER(p1, p2, p_pglist);
617 	PGRP_UNLOCK(p1->p_pgrp);
618 	LIST_INIT(&p2->p_children);
619 	LIST_INIT(&p2->p_orphans);
620 
621 	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
622 
623 	/*
624 	 * If PF_FORK is set, the child process inherits the
625 	 * procfs ioctl flags from its parent.
626 	 */
627 	if (p1->p_pfsflags & PF_FORK) {
628 		p2->p_stops = p1->p_stops;
629 		p2->p_pfsflags = p1->p_pfsflags;
630 	}
631 
632 	/*
633 	 * This begins the section where we must prevent the parent
634 	 * from being swapped.
635 	 */
636 	_PHOLD(p1);
637 	PROC_UNLOCK(p1);
638 
639 	/*
640 	 * Attach the new process to its parent.
641 	 *
642 	 * If RFNOWAIT is set, the newly created process becomes a child
643 	 * of init.  This effectively disassociates the child from the
644 	 * parent.
645 	 */
646 	if ((fr->fr_flags & RFNOWAIT) != 0) {
647 		pptr = p1->p_reaper;
648 		p2->p_reaper = pptr;
649 	} else {
650 		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
651 		    p1 : p1->p_reaper;
652 		pptr = p1;
653 	}
654 	p2->p_pptr = pptr;
655 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
656 	LIST_INIT(&p2->p_reaplist);
657 	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
658 	if (p2->p_reaper == p1)
659 		p2->p_reapsubtree = p2->p_pid;
660 	sx_xunlock(&proctree_lock);
661 
662 	/* Inform accounting that we have forked. */
663 	p2->p_acflag = AFORK;
664 	PROC_UNLOCK(p2);
665 
666 #ifdef KTRACE
667 	ktrprocfork(p1, p2);
668 #endif
669 
670 	/*
671 	 * Finish creating the child process.  It will return via a different
672 	 * execution path later.  (ie: directly into user mode)
673 	 */
674 	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
675 
676 	if (fr->fr_flags == (RFFDG | RFPROC)) {
677 		VM_CNT_INC(v_forks);
678 		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
679 		    p2->p_vmspace->vm_ssize);
680 	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
681 		VM_CNT_INC(v_vforks);
682 		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
683 		    p2->p_vmspace->vm_ssize);
684 	} else if (p1 == &proc0) {
685 		VM_CNT_INC(v_kthreads);
686 		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
687 		    p2->p_vmspace->vm_ssize);
688 	} else {
689 		VM_CNT_INC(v_rforks);
690 		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
691 		    p2->p_vmspace->vm_ssize);
692 	}
693 
694 	/*
695 	 * Associate the process descriptor with the process before anything
696 	 * can happen that might cause that process to need the descriptor.
697 	 * However, don't do this until after fork(2) can no longer fail.
698 	 */
699 	if (fr->fr_flags & RFPROCDESC)
700 		procdesc_new(p2, fr->fr_pd_flags);
701 
702 	/*
703 	 * Both processes are set up, now check if any loadable modules want
704 	 * to adjust anything.
705 	 */
706 	EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
707 
708 	/*
709 	 * Set the child start time and mark the process as being complete.
710 	 */
711 	PROC_LOCK(p2);
712 	PROC_LOCK(p1);
713 	microuptime(&p2->p_stats->p_start);
714 	PROC_SLOCK(p2);
715 	p2->p_state = PRS_NORMAL;
716 	PROC_SUNLOCK(p2);
717 
718 #ifdef KDTRACE_HOOKS
719 	/*
720 	 * Tell the DTrace fasttrap provider about the new process so that any
721 	 * tracepoints inherited from the parent can be removed. We have to do
722 	 * this only after p_state is PRS_NORMAL since the fasttrap module will
723 	 * use pfind() later on.
724 	 */
725 	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
726 		dtrace_fasttrap_fork(p1, p2);
727 #endif
728 	/*
729 	 * Hold the process so that it cannot exit after we make it runnable,
730 	 * but before we wait for the debugger.
731 	 */
732 	_PHOLD(p2);
733 	if (p1->p_ptevents & PTRACE_FORK) {
734 		/*
735 		 * Arrange for debugger to receive the fork event.
736 		 *
737 		 * We can report PL_FLAG_FORKED regardless of
738 		 * P_FOLLOWFORK settings, but it does not make a sense
739 		 * for runaway child.
740 		 */
741 		td->td_dbgflags |= TDB_FORK;
742 		td->td_dbg_forked = p2->p_pid;
743 		td2->td_dbgflags |= TDB_STOPATFORK;
744 	}
745 	if (fr->fr_flags & RFPPWAIT) {
746 		td->td_pflags |= TDP_RFPPWAIT;
747 		td->td_rfppwait_p = p2;
748 		td->td_dbgflags |= TDB_VFORK;
749 	}
750 	PROC_UNLOCK(p2);
751 
752 	/*
753 	 * Now can be swapped.
754 	 */
755 	_PRELE(p1);
756 	PROC_UNLOCK(p1);
757 
758 	/*
759 	 * Tell any interested parties about the new process.
760 	 */
761 	knote_fork(p1->p_klist, p2->p_pid);
762 	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
763 
764 	if (fr->fr_flags & RFPROCDESC) {
765 		procdesc_finit(p2->p_procdesc, fp_procdesc);
766 		fdrop(fp_procdesc, td);
767 	}
768 
769 	if ((fr->fr_flags & RFSTOPPED) == 0) {
770 		/*
771 		 * If RFSTOPPED not requested, make child runnable and
772 		 * add to run queue.
773 		 */
774 		thread_lock(td2);
775 		TD_SET_CAN_RUN(td2);
776 		sched_add(td2, SRQ_BORING);
777 		thread_unlock(td2);
778 		if (fr->fr_pidp != NULL)
779 			*fr->fr_pidp = p2->p_pid;
780 	} else {
781 		*fr->fr_procp = p2;
782 	}
783 
784 	PROC_LOCK(p2);
785 	/*
786 	 * Wait until debugger is attached to child.
787 	 */
788 	while (td2->td_proc == p2 && (td2->td_dbgflags & TDB_STOPATFORK) != 0)
789 		cv_wait(&p2->p_dbgwait, &p2->p_mtx);
790 	_PRELE(p2);
791 	racct_proc_fork_done(p2);
792 	PROC_UNLOCK(p2);
793 }
794 
795 int
796 fork1(struct thread *td, struct fork_req *fr)
797 {
798 	struct proc *p1, *newproc;
799 	struct thread *td2;
800 	struct vmspace *vm2;
801 	struct file *fp_procdesc;
802 	vm_ooffset_t mem_charged;
803 	int error, nprocs_new, ok;
804 	static int curfail;
805 	static struct timeval lastfail;
806 	int flags, pages;
807 
808 	flags = fr->fr_flags;
809 	pages = fr->fr_pages;
810 
811 	if ((flags & RFSTOPPED) != 0)
812 		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
813 	else
814 		MPASS(fr->fr_procp == NULL);
815 
816 	/* Check for the undefined or unimplemented flags. */
817 	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
818 		return (EINVAL);
819 
820 	/* Signal value requires RFTSIGZMB. */
821 	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
822 		return (EINVAL);
823 
824 	/* Can't copy and clear. */
825 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
826 		return (EINVAL);
827 
828 	/* Check the validity of the signal number. */
829 	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
830 		return (EINVAL);
831 
832 	if ((flags & RFPROCDESC) != 0) {
833 		/* Can't not create a process yet get a process descriptor. */
834 		if ((flags & RFPROC) == 0)
835 			return (EINVAL);
836 
837 		/* Must provide a place to put a procdesc if creating one. */
838 		if (fr->fr_pd_fd == NULL)
839 			return (EINVAL);
840 
841 		/* Check if we are using supported flags. */
842 		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
843 			return (EINVAL);
844 	}
845 
846 	p1 = td->td_proc;
847 
848 	/*
849 	 * Here we don't create a new process, but we divorce
850 	 * certain parts of a process from itself.
851 	 */
852 	if ((flags & RFPROC) == 0) {
853 		if (fr->fr_procp != NULL)
854 			*fr->fr_procp = NULL;
855 		else if (fr->fr_pidp != NULL)
856 			*fr->fr_pidp = 0;
857 		return (fork_norfproc(td, flags));
858 	}
859 
860 	fp_procdesc = NULL;
861 	newproc = NULL;
862 	vm2 = NULL;
863 
864 	/*
865 	 * Increment the nprocs resource before allocations occur.
866 	 * Although process entries are dynamically created, we still
867 	 * keep a global limit on the maximum number we will
868 	 * create. There are hard-limits as to the number of processes
869 	 * that can run, established by the KVA and memory usage for
870 	 * the process data.
871 	 *
872 	 * Don't allow a nonprivileged user to use the last ten
873 	 * processes; don't let root exceed the limit.
874 	 */
875 	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
876 	if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred,
877 	    PRIV_MAXPROC, 0) != 0) || nprocs_new >= maxproc) {
878 		error = EAGAIN;
879 		sx_xlock(&allproc_lock);
880 		if (ppsratecheck(&lastfail, &curfail, 1)) {
881 			printf("maxproc limit exceeded by uid %u (pid %d); "
882 			    "see tuning(7) and login.conf(5)\n",
883 			    td->td_ucred->cr_ruid, p1->p_pid);
884 		}
885 		sx_xunlock(&allproc_lock);
886 		goto fail2;
887 	}
888 
889 	/*
890 	 * If required, create a process descriptor in the parent first; we
891 	 * will abandon it if something goes wrong. We don't finit() until
892 	 * later.
893 	 */
894 	if (flags & RFPROCDESC) {
895 		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
896 		    fr->fr_pd_flags, fr->fr_pd_fcaps);
897 		if (error != 0)
898 			goto fail2;
899 	}
900 
901 	mem_charged = 0;
902 	if (pages == 0)
903 		pages = kstack_pages;
904 	/* Allocate new proc. */
905 	newproc = uma_zalloc(proc_zone, M_WAITOK);
906 	td2 = FIRST_THREAD_IN_PROC(newproc);
907 	if (td2 == NULL) {
908 		td2 = thread_alloc(pages);
909 		if (td2 == NULL) {
910 			error = ENOMEM;
911 			goto fail2;
912 		}
913 		proc_linkup(newproc, td2);
914 	} else {
915 		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
916 			if (td2->td_kstack != 0)
917 				vm_thread_dispose(td2);
918 			if (!thread_alloc_stack(td2, pages)) {
919 				error = ENOMEM;
920 				goto fail2;
921 			}
922 		}
923 	}
924 
925 	if ((flags & RFMEM) == 0) {
926 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
927 		if (vm2 == NULL) {
928 			error = ENOMEM;
929 			goto fail2;
930 		}
931 		if (!swap_reserve(mem_charged)) {
932 			/*
933 			 * The swap reservation failed. The accounting
934 			 * from the entries of the copied vm2 will be
935 			 * subtracted in vmspace_free(), so force the
936 			 * reservation there.
937 			 */
938 			swap_reserve_force(mem_charged);
939 			error = ENOMEM;
940 			goto fail2;
941 		}
942 	} else
943 		vm2 = NULL;
944 
945 	/*
946 	 * XXX: This is ugly; when we copy resource usage, we need to bump
947 	 *      per-cred resource counters.
948 	 */
949 	proc_set_cred_init(newproc, crhold(td->td_ucred));
950 
951 	/*
952 	 * Initialize resource accounting for the child process.
953 	 */
954 	error = racct_proc_fork(p1, newproc);
955 	if (error != 0) {
956 		error = EAGAIN;
957 		goto fail1;
958 	}
959 
960 #ifdef MAC
961 	mac_proc_init(newproc);
962 #endif
963 	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
964 	STAILQ_INIT(&newproc->p_ktr);
965 
966 	/* We have to lock the process tree while we look for a pid. */
967 	sx_slock(&proctree_lock);
968 	sx_xlock(&allproc_lock);
969 
970 	/*
971 	 * Increment the count of procs running with this uid. Don't allow
972 	 * a nonprivileged user to exceed their current limit.
973 	 *
974 	 * XXXRW: Can we avoid privilege here if it's not needed?
975 	 */
976 	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
977 	if (error == 0)
978 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
979 	else {
980 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
981 		    lim_cur(td, RLIMIT_NPROC));
982 	}
983 	if (ok) {
984 		do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
985 		return (0);
986 	}
987 
988 	error = EAGAIN;
989 	sx_sunlock(&proctree_lock);
990 	sx_xunlock(&allproc_lock);
991 #ifdef MAC
992 	mac_proc_destroy(newproc);
993 #endif
994 	racct_proc_exit(newproc);
995 fail1:
996 	crfree(newproc->p_ucred);
997 	newproc->p_ucred = NULL;
998 fail2:
999 	if (vm2 != NULL)
1000 		vmspace_free(vm2);
1001 	uma_zfree(proc_zone, newproc);
1002 	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
1003 		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1004 		fdrop(fp_procdesc, td);
1005 	}
1006 	atomic_add_int(&nprocs, -1);
1007 	pause("fork", hz / 2);
1008 	return (error);
1009 }
1010 
1011 /*
1012  * Handle the return of a child process from fork1().  This function
1013  * is called from the MD fork_trampoline() entry point.
1014  */
1015 void
1016 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1017     struct trapframe *frame)
1018 {
1019 	struct proc *p;
1020 	struct thread *td;
1021 	struct thread *dtd;
1022 
1023 	td = curthread;
1024 	p = td->td_proc;
1025 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1026 
1027 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1028 	    td, td_get_sched(td), p->p_pid, td->td_name);
1029 
1030 	sched_fork_exit(td);
1031 	/*
1032 	* Processes normally resume in mi_switch() after being
1033 	* cpu_switch()'ed to, but when children start up they arrive here
1034 	* instead, so we must do much the same things as mi_switch() would.
1035 	*/
1036 	if ((dtd = PCPU_GET(deadthread))) {
1037 		PCPU_SET(deadthread, NULL);
1038 		thread_stash(dtd);
1039 	}
1040 	thread_unlock(td);
1041 
1042 	/*
1043 	 * cpu_fork_kthread_handler intercepts this function call to
1044 	 * have this call a non-return function to stay in kernel mode.
1045 	 * initproc has its own fork handler, but it does return.
1046 	 */
1047 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1048 	callout(arg, frame);
1049 
1050 	/*
1051 	 * Check if a kernel thread misbehaved and returned from its main
1052 	 * function.
1053 	 */
1054 	if (p->p_flag & P_KPROC) {
1055 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1056 		    td->td_name, p->p_pid);
1057 		kthread_exit();
1058 	}
1059 	mtx_assert(&Giant, MA_NOTOWNED);
1060 
1061 	if (p->p_sysent->sv_schedtail != NULL)
1062 		(p->p_sysent->sv_schedtail)(td);
1063 	td->td_pflags &= ~TDP_FORKING;
1064 }
1065 
1066 /*
1067  * Simplified back end of syscall(), used when returning from fork()
1068  * directly into user mode.  This function is passed in to fork_exit()
1069  * as the first parameter and is called when returning to a new
1070  * userland process.
1071  */
1072 void
1073 fork_return(struct thread *td, struct trapframe *frame)
1074 {
1075 	struct proc *p, *dbg;
1076 
1077 	p = td->td_proc;
1078 	if (td->td_dbgflags & TDB_STOPATFORK) {
1079 		sx_xlock(&proctree_lock);
1080 		PROC_LOCK(p);
1081 		if (p->p_pptr->p_ptevents & PTRACE_FORK) {
1082 			/*
1083 			 * If debugger still wants auto-attach for the
1084 			 * parent's children, do it now.
1085 			 */
1086 			dbg = p->p_pptr->p_pptr;
1087 			proc_set_traced(p, true);
1088 			CTR2(KTR_PTRACE,
1089 		    "fork_return: attaching to new child pid %d: oppid %d",
1090 			    p->p_pid, p->p_oppid);
1091 			proc_reparent(p, dbg);
1092 			sx_xunlock(&proctree_lock);
1093 			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1094 			ptracestop(td, SIGSTOP, NULL);
1095 			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1096 		} else {
1097 			/*
1098 			 * ... otherwise clear the request.
1099 			 */
1100 			sx_xunlock(&proctree_lock);
1101 			td->td_dbgflags &= ~TDB_STOPATFORK;
1102 			cv_broadcast(&p->p_dbgwait);
1103 		}
1104 		PROC_UNLOCK(p);
1105 	} else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
1106  		/*
1107 		 * This is the start of a new thread in a traced
1108 		 * process.  Report a system call exit event.
1109 		 */
1110 		PROC_LOCK(p);
1111 		td->td_dbgflags |= TDB_SCX;
1112 		_STOPEVENT(p, S_SCX, td->td_sa.code);
1113 		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1114 		    (td->td_dbgflags & TDB_BORN) != 0)
1115 			ptracestop(td, SIGTRAP, NULL);
1116 		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1117 		PROC_UNLOCK(p);
1118 	}
1119 
1120 	userret(td, frame);
1121 
1122 #ifdef KTRACE
1123 	if (KTRPOINT(td, KTR_SYSRET))
1124 		ktrsysret(SYS_fork, 0, 0);
1125 #endif
1126 }
1127