1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ktrace.h" 43 #include "opt_kstack_pages.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/sysproto.h> 48 #include <sys/eventhandler.h> 49 #include <sys/fcntl.h> 50 #include <sys/filedesc.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/kthread.h> 54 #include <sys/sysctl.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/mutex.h> 58 #include <sys/priv.h> 59 #include <sys/proc.h> 60 #include <sys/procdesc.h> 61 #include <sys/pioctl.h> 62 #include <sys/ptrace.h> 63 #include <sys/racct.h> 64 #include <sys/resourcevar.h> 65 #include <sys/sched.h> 66 #include <sys/syscall.h> 67 #include <sys/vmmeter.h> 68 #include <sys/vnode.h> 69 #include <sys/acct.h> 70 #include <sys/ktr.h> 71 #include <sys/ktrace.h> 72 #include <sys/unistd.h> 73 #include <sys/sdt.h> 74 #include <sys/sx.h> 75 #include <sys/sysent.h> 76 #include <sys/signalvar.h> 77 78 #include <security/audit/audit.h> 79 #include <security/mac/mac_framework.h> 80 81 #include <vm/vm.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_extern.h> 85 #include <vm/uma.h> 86 #include <vm/vm_domain.h> 87 88 #ifdef KDTRACE_HOOKS 89 #include <sys/dtrace_bsd.h> 90 dtrace_fork_func_t dtrace_fasttrap_fork; 91 #endif 92 93 SDT_PROVIDER_DECLARE(proc); 94 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int"); 95 96 #ifndef _SYS_SYSPROTO_H_ 97 struct fork_args { 98 int dummy; 99 }; 100 #endif 101 102 EVENTHANDLER_LIST_DECLARE(process_fork); 103 104 /* ARGSUSED */ 105 int 106 sys_fork(struct thread *td, struct fork_args *uap) 107 { 108 struct fork_req fr; 109 int error, pid; 110 111 bzero(&fr, sizeof(fr)); 112 fr.fr_flags = RFFDG | RFPROC; 113 fr.fr_pidp = &pid; 114 error = fork1(td, &fr); 115 if (error == 0) { 116 td->td_retval[0] = pid; 117 td->td_retval[1] = 0; 118 } 119 return (error); 120 } 121 122 /* ARGUSED */ 123 int 124 sys_pdfork(struct thread *td, struct pdfork_args *uap) 125 { 126 struct fork_req fr; 127 int error, fd, pid; 128 129 bzero(&fr, sizeof(fr)); 130 fr.fr_flags = RFFDG | RFPROC | RFPROCDESC; 131 fr.fr_pidp = &pid; 132 fr.fr_pd_fd = &fd; 133 fr.fr_pd_flags = uap->flags; 134 /* 135 * It is necessary to return fd by reference because 0 is a valid file 136 * descriptor number, and the child needs to be able to distinguish 137 * itself from the parent using the return value. 138 */ 139 error = fork1(td, &fr); 140 if (error == 0) { 141 td->td_retval[0] = pid; 142 td->td_retval[1] = 0; 143 error = copyout(&fd, uap->fdp, sizeof(fd)); 144 } 145 return (error); 146 } 147 148 /* ARGSUSED */ 149 int 150 sys_vfork(struct thread *td, struct vfork_args *uap) 151 { 152 struct fork_req fr; 153 int error, pid; 154 155 bzero(&fr, sizeof(fr)); 156 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; 157 fr.fr_pidp = &pid; 158 error = fork1(td, &fr); 159 if (error == 0) { 160 td->td_retval[0] = pid; 161 td->td_retval[1] = 0; 162 } 163 return (error); 164 } 165 166 int 167 sys_rfork(struct thread *td, struct rfork_args *uap) 168 { 169 struct fork_req fr; 170 int error, pid; 171 172 /* Don't allow kernel-only flags. */ 173 if ((uap->flags & RFKERNELONLY) != 0) 174 return (EINVAL); 175 176 AUDIT_ARG_FFLAGS(uap->flags); 177 bzero(&fr, sizeof(fr)); 178 fr.fr_flags = uap->flags; 179 fr.fr_pidp = &pid; 180 error = fork1(td, &fr); 181 if (error == 0) { 182 td->td_retval[0] = pid; 183 td->td_retval[1] = 0; 184 } 185 return (error); 186 } 187 188 int nprocs = 1; /* process 0 */ 189 int lastpid = 0; 190 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 191 "Last used PID"); 192 193 /* 194 * Random component to lastpid generation. We mix in a random factor to make 195 * it a little harder to predict. We sanity check the modulus value to avoid 196 * doing it in critical paths. Don't let it be too small or we pointlessly 197 * waste randomness entropy, and don't let it be impossibly large. Using a 198 * modulus that is too big causes a LOT more process table scans and slows 199 * down fork processing as the pidchecked caching is defeated. 200 */ 201 static int randompid = 0; 202 203 static int 204 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 205 { 206 int error, pid; 207 208 error = sysctl_wire_old_buffer(req, sizeof(int)); 209 if (error != 0) 210 return(error); 211 sx_xlock(&allproc_lock); 212 pid = randompid; 213 error = sysctl_handle_int(oidp, &pid, 0, req); 214 if (error == 0 && req->newptr != NULL) { 215 if (pid == 0) 216 randompid = 0; 217 else if (pid == 1) 218 /* generate a random PID modulus between 100 and 1123 */ 219 randompid = 100 + arc4random() % 1024; 220 else if (pid < 0 || pid > pid_max - 100) 221 /* out of range */ 222 randompid = pid_max - 100; 223 else if (pid < 100) 224 /* Make it reasonable */ 225 randompid = 100; 226 else 227 randompid = pid; 228 } 229 sx_xunlock(&allproc_lock); 230 return (error); 231 } 232 233 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 234 0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value"); 235 236 static int 237 fork_findpid(int flags) 238 { 239 struct proc *p; 240 int trypid; 241 static int pidchecked = 0; 242 243 /* 244 * Requires allproc_lock in order to iterate over the list 245 * of processes, and proctree_lock to access p_pgrp. 246 */ 247 sx_assert(&allproc_lock, SX_LOCKED); 248 sx_assert(&proctree_lock, SX_LOCKED); 249 250 /* 251 * Find an unused process ID. We remember a range of unused IDs 252 * ready to use (from lastpid+1 through pidchecked-1). 253 * 254 * If RFHIGHPID is set (used during system boot), do not allocate 255 * low-numbered pids. 256 */ 257 trypid = lastpid + 1; 258 if (flags & RFHIGHPID) { 259 if (trypid < 10) 260 trypid = 10; 261 } else { 262 if (randompid) 263 trypid += arc4random() % randompid; 264 } 265 retry: 266 /* 267 * If the process ID prototype has wrapped around, 268 * restart somewhat above 0, as the low-numbered procs 269 * tend to include daemons that don't exit. 270 */ 271 if (trypid >= pid_max) { 272 trypid = trypid % pid_max; 273 if (trypid < 100) 274 trypid += 100; 275 pidchecked = 0; 276 } 277 if (trypid >= pidchecked) { 278 int doingzomb = 0; 279 280 pidchecked = PID_MAX; 281 /* 282 * Scan the active and zombie procs to check whether this pid 283 * is in use. Remember the lowest pid that's greater 284 * than trypid, so we can avoid checking for a while. 285 * 286 * Avoid reuse of the process group id, session id or 287 * the reaper subtree id. Note that for process group 288 * and sessions, the amount of reserved pids is 289 * limited by process limit. For the subtree ids, the 290 * id is kept reserved only while there is a 291 * non-reaped process in the subtree, so amount of 292 * reserved pids is limited by process limit times 293 * two. 294 */ 295 p = LIST_FIRST(&allproc); 296 again: 297 for (; p != NULL; p = LIST_NEXT(p, p_list)) { 298 while (p->p_pid == trypid || 299 p->p_reapsubtree == trypid || 300 (p->p_pgrp != NULL && 301 (p->p_pgrp->pg_id == trypid || 302 (p->p_session != NULL && 303 p->p_session->s_sid == trypid)))) { 304 trypid++; 305 if (trypid >= pidchecked) 306 goto retry; 307 } 308 if (p->p_pid > trypid && pidchecked > p->p_pid) 309 pidchecked = p->p_pid; 310 if (p->p_pgrp != NULL) { 311 if (p->p_pgrp->pg_id > trypid && 312 pidchecked > p->p_pgrp->pg_id) 313 pidchecked = p->p_pgrp->pg_id; 314 if (p->p_session != NULL && 315 p->p_session->s_sid > trypid && 316 pidchecked > p->p_session->s_sid) 317 pidchecked = p->p_session->s_sid; 318 } 319 } 320 if (!doingzomb) { 321 doingzomb = 1; 322 p = LIST_FIRST(&zombproc); 323 goto again; 324 } 325 } 326 327 /* 328 * RFHIGHPID does not mess with the lastpid counter during boot. 329 */ 330 if (flags & RFHIGHPID) 331 pidchecked = 0; 332 else 333 lastpid = trypid; 334 335 return (trypid); 336 } 337 338 static int 339 fork_norfproc(struct thread *td, int flags) 340 { 341 int error; 342 struct proc *p1; 343 344 KASSERT((flags & RFPROC) == 0, 345 ("fork_norfproc called with RFPROC set")); 346 p1 = td->td_proc; 347 348 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 349 (flags & (RFCFDG | RFFDG))) { 350 PROC_LOCK(p1); 351 if (thread_single(p1, SINGLE_BOUNDARY)) { 352 PROC_UNLOCK(p1); 353 return (ERESTART); 354 } 355 PROC_UNLOCK(p1); 356 } 357 358 error = vm_forkproc(td, NULL, NULL, NULL, flags); 359 if (error) 360 goto fail; 361 362 /* 363 * Close all file descriptors. 364 */ 365 if (flags & RFCFDG) { 366 struct filedesc *fdtmp; 367 fdtmp = fdinit(td->td_proc->p_fd, false); 368 fdescfree(td); 369 p1->p_fd = fdtmp; 370 } 371 372 /* 373 * Unshare file descriptors (from parent). 374 */ 375 if (flags & RFFDG) 376 fdunshare(td); 377 378 fail: 379 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 380 (flags & (RFCFDG | RFFDG))) { 381 PROC_LOCK(p1); 382 thread_single_end(p1, SINGLE_BOUNDARY); 383 PROC_UNLOCK(p1); 384 } 385 return (error); 386 } 387 388 static void 389 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2, 390 struct vmspace *vm2, struct file *fp_procdesc) 391 { 392 struct proc *p1, *pptr; 393 int trypid; 394 struct filedesc *fd; 395 struct filedesc_to_leader *fdtol; 396 struct sigacts *newsigacts; 397 398 sx_assert(&proctree_lock, SX_SLOCKED); 399 sx_assert(&allproc_lock, SX_XLOCKED); 400 401 p1 = td->td_proc; 402 403 trypid = fork_findpid(fr->fr_flags); 404 405 sx_sunlock(&proctree_lock); 406 407 p2->p_state = PRS_NEW; /* protect against others */ 408 p2->p_pid = trypid; 409 AUDIT_ARG_PID(p2->p_pid); 410 LIST_INSERT_HEAD(&allproc, p2, p_list); 411 allproc_gen++; 412 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); 413 tidhash_add(td2); 414 PROC_LOCK(p2); 415 PROC_LOCK(p1); 416 417 sx_xunlock(&allproc_lock); 418 419 bcopy(&p1->p_startcopy, &p2->p_startcopy, 420 __rangeof(struct proc, p_startcopy, p_endcopy)); 421 pargs_hold(p2->p_args); 422 423 PROC_UNLOCK(p1); 424 425 bzero(&p2->p_startzero, 426 __rangeof(struct proc, p_startzero, p_endzero)); 427 428 /* Tell the prison that we exist. */ 429 prison_proc_hold(p2->p_ucred->cr_prison); 430 431 PROC_UNLOCK(p2); 432 433 /* 434 * Malloc things while we don't hold any locks. 435 */ 436 if (fr->fr_flags & RFSIGSHARE) 437 newsigacts = NULL; 438 else 439 newsigacts = sigacts_alloc(); 440 441 /* 442 * Copy filedesc. 443 */ 444 if (fr->fr_flags & RFCFDG) { 445 fd = fdinit(p1->p_fd, false); 446 fdtol = NULL; 447 } else if (fr->fr_flags & RFFDG) { 448 fd = fdcopy(p1->p_fd); 449 fdtol = NULL; 450 } else { 451 fd = fdshare(p1->p_fd); 452 if (p1->p_fdtol == NULL) 453 p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL, 454 p1->p_leader); 455 if ((fr->fr_flags & RFTHREAD) != 0) { 456 /* 457 * Shared file descriptor table, and shared 458 * process leaders. 459 */ 460 fdtol = p1->p_fdtol; 461 FILEDESC_XLOCK(p1->p_fd); 462 fdtol->fdl_refcount++; 463 FILEDESC_XUNLOCK(p1->p_fd); 464 } else { 465 /* 466 * Shared file descriptor table, and different 467 * process leaders. 468 */ 469 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, 470 p1->p_fd, p2); 471 } 472 } 473 /* 474 * Make a proc table entry for the new process. 475 * Start by zeroing the section of proc that is zero-initialized, 476 * then copy the section that is copied directly from the parent. 477 */ 478 479 PROC_LOCK(p2); 480 PROC_LOCK(p1); 481 482 bzero(&td2->td_startzero, 483 __rangeof(struct thread, td_startzero, td_endzero)); 484 485 bcopy(&td->td_startcopy, &td2->td_startcopy, 486 __rangeof(struct thread, td_startcopy, td_endcopy)); 487 488 bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name)); 489 td2->td_sigstk = td->td_sigstk; 490 td2->td_flags = TDF_INMEM; 491 td2->td_lend_user_pri = PRI_MAX; 492 493 #ifdef VIMAGE 494 td2->td_vnet = NULL; 495 td2->td_vnet_lpush = NULL; 496 #endif 497 498 /* 499 * Allow the scheduler to initialize the child. 500 */ 501 thread_lock(td); 502 sched_fork(td, td2); 503 thread_unlock(td); 504 505 /* 506 * Duplicate sub-structures as needed. 507 * Increase reference counts on shared objects. 508 */ 509 p2->p_flag = P_INMEM; 510 p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP); 511 p2->p_swtick = ticks; 512 if (p1->p_flag & P_PROFIL) 513 startprofclock(p2); 514 515 /* 516 * Whilst the proc lock is held, copy the VM domain data out 517 * using the VM domain method. 518 */ 519 vm_domain_policy_init(&p2->p_vm_dom_policy); 520 vm_domain_policy_localcopy(&p2->p_vm_dom_policy, 521 &p1->p_vm_dom_policy); 522 523 if (fr->fr_flags & RFSIGSHARE) { 524 p2->p_sigacts = sigacts_hold(p1->p_sigacts); 525 } else { 526 sigacts_copy(newsigacts, p1->p_sigacts); 527 p2->p_sigacts = newsigacts; 528 } 529 530 if (fr->fr_flags & RFTSIGZMB) 531 p2->p_sigparent = RFTSIGNUM(fr->fr_flags); 532 else if (fr->fr_flags & RFLINUXTHPN) 533 p2->p_sigparent = SIGUSR1; 534 else 535 p2->p_sigparent = SIGCHLD; 536 537 p2->p_textvp = p1->p_textvp; 538 p2->p_fd = fd; 539 p2->p_fdtol = fdtol; 540 541 if (p1->p_flag2 & P2_INHERIT_PROTECTED) { 542 p2->p_flag |= P_PROTECTED; 543 p2->p_flag2 |= P2_INHERIT_PROTECTED; 544 } 545 546 /* 547 * p_limit is copy-on-write. Bump its refcount. 548 */ 549 lim_fork(p1, p2); 550 551 thread_cow_get_proc(td2, p2); 552 553 pstats_fork(p1->p_stats, p2->p_stats); 554 555 PROC_UNLOCK(p1); 556 PROC_UNLOCK(p2); 557 558 /* Bump references to the text vnode (for procfs). */ 559 if (p2->p_textvp) 560 vrefact(p2->p_textvp); 561 562 /* 563 * Set up linkage for kernel based threading. 564 */ 565 if ((fr->fr_flags & RFTHREAD) != 0) { 566 mtx_lock(&ppeers_lock); 567 p2->p_peers = p1->p_peers; 568 p1->p_peers = p2; 569 p2->p_leader = p1->p_leader; 570 mtx_unlock(&ppeers_lock); 571 PROC_LOCK(p1->p_leader); 572 if ((p1->p_leader->p_flag & P_WEXIT) != 0) { 573 PROC_UNLOCK(p1->p_leader); 574 /* 575 * The task leader is exiting, so process p1 is 576 * going to be killed shortly. Since p1 obviously 577 * isn't dead yet, we know that the leader is either 578 * sending SIGKILL's to all the processes in this 579 * task or is sleeping waiting for all the peers to 580 * exit. We let p1 complete the fork, but we need 581 * to go ahead and kill the new process p2 since 582 * the task leader may not get a chance to send 583 * SIGKILL to it. We leave it on the list so that 584 * the task leader will wait for this new process 585 * to commit suicide. 586 */ 587 PROC_LOCK(p2); 588 kern_psignal(p2, SIGKILL); 589 PROC_UNLOCK(p2); 590 } else 591 PROC_UNLOCK(p1->p_leader); 592 } else { 593 p2->p_peers = NULL; 594 p2->p_leader = p2; 595 } 596 597 sx_xlock(&proctree_lock); 598 PGRP_LOCK(p1->p_pgrp); 599 PROC_LOCK(p2); 600 PROC_LOCK(p1); 601 602 /* 603 * Preserve some more flags in subprocess. P_PROFIL has already 604 * been preserved. 605 */ 606 p2->p_flag |= p1->p_flag & P_SUGID; 607 td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING; 608 SESS_LOCK(p1->p_session); 609 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) 610 p2->p_flag |= P_CONTROLT; 611 SESS_UNLOCK(p1->p_session); 612 if (fr->fr_flags & RFPPWAIT) 613 p2->p_flag |= P_PPWAIT; 614 615 p2->p_pgrp = p1->p_pgrp; 616 LIST_INSERT_AFTER(p1, p2, p_pglist); 617 PGRP_UNLOCK(p1->p_pgrp); 618 LIST_INIT(&p2->p_children); 619 LIST_INIT(&p2->p_orphans); 620 621 callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0); 622 623 /* 624 * If PF_FORK is set, the child process inherits the 625 * procfs ioctl flags from its parent. 626 */ 627 if (p1->p_pfsflags & PF_FORK) { 628 p2->p_stops = p1->p_stops; 629 p2->p_pfsflags = p1->p_pfsflags; 630 } 631 632 /* 633 * This begins the section where we must prevent the parent 634 * from being swapped. 635 */ 636 _PHOLD(p1); 637 PROC_UNLOCK(p1); 638 639 /* 640 * Attach the new process to its parent. 641 * 642 * If RFNOWAIT is set, the newly created process becomes a child 643 * of init. This effectively disassociates the child from the 644 * parent. 645 */ 646 if ((fr->fr_flags & RFNOWAIT) != 0) { 647 pptr = p1->p_reaper; 648 p2->p_reaper = pptr; 649 } else { 650 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ? 651 p1 : p1->p_reaper; 652 pptr = p1; 653 } 654 p2->p_pptr = pptr; 655 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); 656 LIST_INIT(&p2->p_reaplist); 657 LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling); 658 if (p2->p_reaper == p1) 659 p2->p_reapsubtree = p2->p_pid; 660 sx_xunlock(&proctree_lock); 661 662 /* Inform accounting that we have forked. */ 663 p2->p_acflag = AFORK; 664 PROC_UNLOCK(p2); 665 666 #ifdef KTRACE 667 ktrprocfork(p1, p2); 668 #endif 669 670 /* 671 * Finish creating the child process. It will return via a different 672 * execution path later. (ie: directly into user mode) 673 */ 674 vm_forkproc(td, p2, td2, vm2, fr->fr_flags); 675 676 if (fr->fr_flags == (RFFDG | RFPROC)) { 677 VM_CNT_INC(v_forks); 678 VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize + 679 p2->p_vmspace->vm_ssize); 680 } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { 681 VM_CNT_INC(v_vforks); 682 VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize + 683 p2->p_vmspace->vm_ssize); 684 } else if (p1 == &proc0) { 685 VM_CNT_INC(v_kthreads); 686 VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize + 687 p2->p_vmspace->vm_ssize); 688 } else { 689 VM_CNT_INC(v_rforks); 690 VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize + 691 p2->p_vmspace->vm_ssize); 692 } 693 694 /* 695 * Associate the process descriptor with the process before anything 696 * can happen that might cause that process to need the descriptor. 697 * However, don't do this until after fork(2) can no longer fail. 698 */ 699 if (fr->fr_flags & RFPROCDESC) 700 procdesc_new(p2, fr->fr_pd_flags); 701 702 /* 703 * Both processes are set up, now check if any loadable modules want 704 * to adjust anything. 705 */ 706 EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags); 707 708 /* 709 * Set the child start time and mark the process as being complete. 710 */ 711 PROC_LOCK(p2); 712 PROC_LOCK(p1); 713 microuptime(&p2->p_stats->p_start); 714 PROC_SLOCK(p2); 715 p2->p_state = PRS_NORMAL; 716 PROC_SUNLOCK(p2); 717 718 #ifdef KDTRACE_HOOKS 719 /* 720 * Tell the DTrace fasttrap provider about the new process so that any 721 * tracepoints inherited from the parent can be removed. We have to do 722 * this only after p_state is PRS_NORMAL since the fasttrap module will 723 * use pfind() later on. 724 */ 725 if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork) 726 dtrace_fasttrap_fork(p1, p2); 727 #endif 728 /* 729 * Hold the process so that it cannot exit after we make it runnable, 730 * but before we wait for the debugger. 731 */ 732 _PHOLD(p2); 733 if (p1->p_ptevents & PTRACE_FORK) { 734 /* 735 * Arrange for debugger to receive the fork event. 736 * 737 * We can report PL_FLAG_FORKED regardless of 738 * P_FOLLOWFORK settings, but it does not make a sense 739 * for runaway child. 740 */ 741 td->td_dbgflags |= TDB_FORK; 742 td->td_dbg_forked = p2->p_pid; 743 td2->td_dbgflags |= TDB_STOPATFORK; 744 } 745 if (fr->fr_flags & RFPPWAIT) { 746 td->td_pflags |= TDP_RFPPWAIT; 747 td->td_rfppwait_p = p2; 748 td->td_dbgflags |= TDB_VFORK; 749 } 750 PROC_UNLOCK(p2); 751 752 /* 753 * Now can be swapped. 754 */ 755 _PRELE(p1); 756 PROC_UNLOCK(p1); 757 758 /* 759 * Tell any interested parties about the new process. 760 */ 761 knote_fork(p1->p_klist, p2->p_pid); 762 SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags); 763 764 if (fr->fr_flags & RFPROCDESC) { 765 procdesc_finit(p2->p_procdesc, fp_procdesc); 766 fdrop(fp_procdesc, td); 767 } 768 769 if ((fr->fr_flags & RFSTOPPED) == 0) { 770 /* 771 * If RFSTOPPED not requested, make child runnable and 772 * add to run queue. 773 */ 774 thread_lock(td2); 775 TD_SET_CAN_RUN(td2); 776 sched_add(td2, SRQ_BORING); 777 thread_unlock(td2); 778 if (fr->fr_pidp != NULL) 779 *fr->fr_pidp = p2->p_pid; 780 } else { 781 *fr->fr_procp = p2; 782 } 783 784 PROC_LOCK(p2); 785 /* 786 * Wait until debugger is attached to child. 787 */ 788 while (td2->td_proc == p2 && (td2->td_dbgflags & TDB_STOPATFORK) != 0) 789 cv_wait(&p2->p_dbgwait, &p2->p_mtx); 790 _PRELE(p2); 791 racct_proc_fork_done(p2); 792 PROC_UNLOCK(p2); 793 } 794 795 int 796 fork1(struct thread *td, struct fork_req *fr) 797 { 798 struct proc *p1, *newproc; 799 struct thread *td2; 800 struct vmspace *vm2; 801 struct file *fp_procdesc; 802 vm_ooffset_t mem_charged; 803 int error, nprocs_new, ok; 804 static int curfail; 805 static struct timeval lastfail; 806 int flags, pages; 807 808 flags = fr->fr_flags; 809 pages = fr->fr_pages; 810 811 if ((flags & RFSTOPPED) != 0) 812 MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL); 813 else 814 MPASS(fr->fr_procp == NULL); 815 816 /* Check for the undefined or unimplemented flags. */ 817 if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0) 818 return (EINVAL); 819 820 /* Signal value requires RFTSIGZMB. */ 821 if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0) 822 return (EINVAL); 823 824 /* Can't copy and clear. */ 825 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) 826 return (EINVAL); 827 828 /* Check the validity of the signal number. */ 829 if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG) 830 return (EINVAL); 831 832 if ((flags & RFPROCDESC) != 0) { 833 /* Can't not create a process yet get a process descriptor. */ 834 if ((flags & RFPROC) == 0) 835 return (EINVAL); 836 837 /* Must provide a place to put a procdesc if creating one. */ 838 if (fr->fr_pd_fd == NULL) 839 return (EINVAL); 840 841 /* Check if we are using supported flags. */ 842 if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0) 843 return (EINVAL); 844 } 845 846 p1 = td->td_proc; 847 848 /* 849 * Here we don't create a new process, but we divorce 850 * certain parts of a process from itself. 851 */ 852 if ((flags & RFPROC) == 0) { 853 if (fr->fr_procp != NULL) 854 *fr->fr_procp = NULL; 855 else if (fr->fr_pidp != NULL) 856 *fr->fr_pidp = 0; 857 return (fork_norfproc(td, flags)); 858 } 859 860 fp_procdesc = NULL; 861 newproc = NULL; 862 vm2 = NULL; 863 864 /* 865 * Increment the nprocs resource before allocations occur. 866 * Although process entries are dynamically created, we still 867 * keep a global limit on the maximum number we will 868 * create. There are hard-limits as to the number of processes 869 * that can run, established by the KVA and memory usage for 870 * the process data. 871 * 872 * Don't allow a nonprivileged user to use the last ten 873 * processes; don't let root exceed the limit. 874 */ 875 nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1; 876 if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred, 877 PRIV_MAXPROC, 0) != 0) || nprocs_new >= maxproc) { 878 error = EAGAIN; 879 sx_xlock(&allproc_lock); 880 if (ppsratecheck(&lastfail, &curfail, 1)) { 881 printf("maxproc limit exceeded by uid %u (pid %d); " 882 "see tuning(7) and login.conf(5)\n", 883 td->td_ucred->cr_ruid, p1->p_pid); 884 } 885 sx_xunlock(&allproc_lock); 886 goto fail2; 887 } 888 889 /* 890 * If required, create a process descriptor in the parent first; we 891 * will abandon it if something goes wrong. We don't finit() until 892 * later. 893 */ 894 if (flags & RFPROCDESC) { 895 error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd, 896 fr->fr_pd_flags, fr->fr_pd_fcaps); 897 if (error != 0) 898 goto fail2; 899 } 900 901 mem_charged = 0; 902 if (pages == 0) 903 pages = kstack_pages; 904 /* Allocate new proc. */ 905 newproc = uma_zalloc(proc_zone, M_WAITOK); 906 td2 = FIRST_THREAD_IN_PROC(newproc); 907 if (td2 == NULL) { 908 td2 = thread_alloc(pages); 909 if (td2 == NULL) { 910 error = ENOMEM; 911 goto fail2; 912 } 913 proc_linkup(newproc, td2); 914 } else { 915 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) { 916 if (td2->td_kstack != 0) 917 vm_thread_dispose(td2); 918 if (!thread_alloc_stack(td2, pages)) { 919 error = ENOMEM; 920 goto fail2; 921 } 922 } 923 } 924 925 if ((flags & RFMEM) == 0) { 926 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged); 927 if (vm2 == NULL) { 928 error = ENOMEM; 929 goto fail2; 930 } 931 if (!swap_reserve(mem_charged)) { 932 /* 933 * The swap reservation failed. The accounting 934 * from the entries of the copied vm2 will be 935 * subtracted in vmspace_free(), so force the 936 * reservation there. 937 */ 938 swap_reserve_force(mem_charged); 939 error = ENOMEM; 940 goto fail2; 941 } 942 } else 943 vm2 = NULL; 944 945 /* 946 * XXX: This is ugly; when we copy resource usage, we need to bump 947 * per-cred resource counters. 948 */ 949 proc_set_cred_init(newproc, crhold(td->td_ucred)); 950 951 /* 952 * Initialize resource accounting for the child process. 953 */ 954 error = racct_proc_fork(p1, newproc); 955 if (error != 0) { 956 error = EAGAIN; 957 goto fail1; 958 } 959 960 #ifdef MAC 961 mac_proc_init(newproc); 962 #endif 963 newproc->p_klist = knlist_alloc(&newproc->p_mtx); 964 STAILQ_INIT(&newproc->p_ktr); 965 966 /* We have to lock the process tree while we look for a pid. */ 967 sx_slock(&proctree_lock); 968 sx_xlock(&allproc_lock); 969 970 /* 971 * Increment the count of procs running with this uid. Don't allow 972 * a nonprivileged user to exceed their current limit. 973 * 974 * XXXRW: Can we avoid privilege here if it's not needed? 975 */ 976 error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0); 977 if (error == 0) 978 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0); 979 else { 980 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 981 lim_cur(td, RLIMIT_NPROC)); 982 } 983 if (ok) { 984 do_fork(td, fr, newproc, td2, vm2, fp_procdesc); 985 return (0); 986 } 987 988 error = EAGAIN; 989 sx_sunlock(&proctree_lock); 990 sx_xunlock(&allproc_lock); 991 #ifdef MAC 992 mac_proc_destroy(newproc); 993 #endif 994 racct_proc_exit(newproc); 995 fail1: 996 crfree(newproc->p_ucred); 997 newproc->p_ucred = NULL; 998 fail2: 999 if (vm2 != NULL) 1000 vmspace_free(vm2); 1001 uma_zfree(proc_zone, newproc); 1002 if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) { 1003 fdclose(td, fp_procdesc, *fr->fr_pd_fd); 1004 fdrop(fp_procdesc, td); 1005 } 1006 atomic_add_int(&nprocs, -1); 1007 pause("fork", hz / 2); 1008 return (error); 1009 } 1010 1011 /* 1012 * Handle the return of a child process from fork1(). This function 1013 * is called from the MD fork_trampoline() entry point. 1014 */ 1015 void 1016 fork_exit(void (*callout)(void *, struct trapframe *), void *arg, 1017 struct trapframe *frame) 1018 { 1019 struct proc *p; 1020 struct thread *td; 1021 struct thread *dtd; 1022 1023 td = curthread; 1024 p = td->td_proc; 1025 KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new")); 1026 1027 CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)", 1028 td, td_get_sched(td), p->p_pid, td->td_name); 1029 1030 sched_fork_exit(td); 1031 /* 1032 * Processes normally resume in mi_switch() after being 1033 * cpu_switch()'ed to, but when children start up they arrive here 1034 * instead, so we must do much the same things as mi_switch() would. 1035 */ 1036 if ((dtd = PCPU_GET(deadthread))) { 1037 PCPU_SET(deadthread, NULL); 1038 thread_stash(dtd); 1039 } 1040 thread_unlock(td); 1041 1042 /* 1043 * cpu_fork_kthread_handler intercepts this function call to 1044 * have this call a non-return function to stay in kernel mode. 1045 * initproc has its own fork handler, but it does return. 1046 */ 1047 KASSERT(callout != NULL, ("NULL callout in fork_exit")); 1048 callout(arg, frame); 1049 1050 /* 1051 * Check if a kernel thread misbehaved and returned from its main 1052 * function. 1053 */ 1054 if (p->p_flag & P_KPROC) { 1055 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n", 1056 td->td_name, p->p_pid); 1057 kthread_exit(); 1058 } 1059 mtx_assert(&Giant, MA_NOTOWNED); 1060 1061 if (p->p_sysent->sv_schedtail != NULL) 1062 (p->p_sysent->sv_schedtail)(td); 1063 td->td_pflags &= ~TDP_FORKING; 1064 } 1065 1066 /* 1067 * Simplified back end of syscall(), used when returning from fork() 1068 * directly into user mode. This function is passed in to fork_exit() 1069 * as the first parameter and is called when returning to a new 1070 * userland process. 1071 */ 1072 void 1073 fork_return(struct thread *td, struct trapframe *frame) 1074 { 1075 struct proc *p, *dbg; 1076 1077 p = td->td_proc; 1078 if (td->td_dbgflags & TDB_STOPATFORK) { 1079 sx_xlock(&proctree_lock); 1080 PROC_LOCK(p); 1081 if (p->p_pptr->p_ptevents & PTRACE_FORK) { 1082 /* 1083 * If debugger still wants auto-attach for the 1084 * parent's children, do it now. 1085 */ 1086 dbg = p->p_pptr->p_pptr; 1087 proc_set_traced(p, true); 1088 CTR2(KTR_PTRACE, 1089 "fork_return: attaching to new child pid %d: oppid %d", 1090 p->p_pid, p->p_oppid); 1091 proc_reparent(p, dbg); 1092 sx_xunlock(&proctree_lock); 1093 td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP; 1094 ptracestop(td, SIGSTOP, NULL); 1095 td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX); 1096 } else { 1097 /* 1098 * ... otherwise clear the request. 1099 */ 1100 sx_xunlock(&proctree_lock); 1101 td->td_dbgflags &= ~TDB_STOPATFORK; 1102 cv_broadcast(&p->p_dbgwait); 1103 } 1104 PROC_UNLOCK(p); 1105 } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) { 1106 /* 1107 * This is the start of a new thread in a traced 1108 * process. Report a system call exit event. 1109 */ 1110 PROC_LOCK(p); 1111 td->td_dbgflags |= TDB_SCX; 1112 _STOPEVENT(p, S_SCX, td->td_sa.code); 1113 if ((p->p_ptevents & PTRACE_SCX) != 0 || 1114 (td->td_dbgflags & TDB_BORN) != 0) 1115 ptracestop(td, SIGTRAP, NULL); 1116 td->td_dbgflags &= ~(TDB_SCX | TDB_BORN); 1117 PROC_UNLOCK(p); 1118 } 1119 1120 userret(td, frame); 1121 1122 #ifdef KTRACE 1123 if (KTRPOINT(td, KTR_SYSRET)) 1124 ktrsysret(SYS_fork, 0, 0); 1125 #endif 1126 } 1127