1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_ktrace.h" 41 #include "opt_mac.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/sysproto.h> 46 #include <sys/eventhandler.h> 47 #include <sys/filedesc.h> 48 #include <sys/kernel.h> 49 #include <sys/kthread.h> 50 #include <sys/sysctl.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/mutex.h> 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/pioctl.h> 57 #include <sys/resourcevar.h> 58 #include <sys/sched.h> 59 #include <sys/syscall.h> 60 #include <sys/vmmeter.h> 61 #include <sys/vnode.h> 62 #include <sys/acct.h> 63 #include <sys/ktr.h> 64 #include <sys/ktrace.h> 65 #include <sys/unistd.h> 66 #include <sys/sx.h> 67 #include <sys/signalvar.h> 68 69 #include <security/audit/audit.h> 70 #include <security/mac/mac_framework.h> 71 72 #include <vm/vm.h> 73 #include <vm/pmap.h> 74 #include <vm/vm_map.h> 75 #include <vm/vm_extern.h> 76 #include <vm/uma.h> 77 78 79 #ifndef _SYS_SYSPROTO_H_ 80 struct fork_args { 81 int dummy; 82 }; 83 #endif 84 85 /* ARGSUSED */ 86 int 87 fork(td, uap) 88 struct thread *td; 89 struct fork_args *uap; 90 { 91 int error; 92 struct proc *p2; 93 94 error = fork1(td, RFFDG | RFPROC, 0, &p2); 95 if (error == 0) { 96 td->td_retval[0] = p2->p_pid; 97 td->td_retval[1] = 0; 98 } 99 return (error); 100 } 101 102 /* ARGSUSED */ 103 int 104 vfork(td, uap) 105 struct thread *td; 106 struct vfork_args *uap; 107 { 108 int error; 109 struct proc *p2; 110 111 error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, 0, &p2); 112 if (error == 0) { 113 td->td_retval[0] = p2->p_pid; 114 td->td_retval[1] = 0; 115 } 116 return (error); 117 } 118 119 int 120 rfork(td, uap) 121 struct thread *td; 122 struct rfork_args *uap; 123 { 124 struct proc *p2; 125 int error; 126 127 /* Don't allow kernel-only flags. */ 128 if ((uap->flags & RFKERNELONLY) != 0) 129 return (EINVAL); 130 131 AUDIT_ARG(fflags, uap->flags); 132 error = fork1(td, uap->flags, 0, &p2); 133 if (error == 0) { 134 td->td_retval[0] = p2 ? p2->p_pid : 0; 135 td->td_retval[1] = 0; 136 } 137 return (error); 138 } 139 140 int nprocs = 1; /* process 0 */ 141 int lastpid = 0; 142 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 143 "Last used PID"); 144 145 /* 146 * Random component to lastpid generation. We mix in a random factor to make 147 * it a little harder to predict. We sanity check the modulus value to avoid 148 * doing it in critical paths. Don't let it be too small or we pointlessly 149 * waste randomness entropy, and don't let it be impossibly large. Using a 150 * modulus that is too big causes a LOT more process table scans and slows 151 * down fork processing as the pidchecked caching is defeated. 152 */ 153 static int randompid = 0; 154 155 static int 156 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 157 { 158 int error, pid; 159 160 error = sysctl_wire_old_buffer(req, sizeof(int)); 161 if (error != 0) 162 return(error); 163 sx_xlock(&allproc_lock); 164 pid = randompid; 165 error = sysctl_handle_int(oidp, &pid, 0, req); 166 if (error == 0 && req->newptr != NULL) { 167 if (pid < 0 || pid > PID_MAX - 100) /* out of range */ 168 pid = PID_MAX - 100; 169 else if (pid < 2) /* NOP */ 170 pid = 0; 171 else if (pid < 100) /* Make it reasonable */ 172 pid = 100; 173 randompid = pid; 174 } 175 sx_xunlock(&allproc_lock); 176 return (error); 177 } 178 179 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 180 0, 0, sysctl_kern_randompid, "I", "Random PID modulus"); 181 182 int 183 fork1(td, flags, pages, procp) 184 struct thread *td; 185 int flags; 186 int pages; 187 struct proc **procp; 188 { 189 struct proc *p1, *p2, *pptr; 190 struct proc *newproc; 191 int ok, trypid; 192 static int curfail, pidchecked = 0; 193 static struct timeval lastfail; 194 struct filedesc *fd; 195 struct filedesc_to_leader *fdtol; 196 struct thread *td2; 197 struct sigacts *newsigacts; 198 int error; 199 200 /* Can't copy and clear. */ 201 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) 202 return (EINVAL); 203 204 p1 = td->td_proc; 205 206 /* 207 * Here we don't create a new process, but we divorce 208 * certain parts of a process from itself. 209 */ 210 if ((flags & RFPROC) == 0) { 211 #if 0 /* XXX no other OS tries to do this */ 212 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 213 (flags & (RFCFDG | RFFDG))) { 214 PROC_LOCK(p1); 215 if (thread_single(SINGLE_BOUNDARY)) { 216 PROC_UNLOCK(p1); 217 return (ERESTART); 218 } 219 PROC_UNLOCK(p1); 220 } 221 #endif 222 223 vm_forkproc(td, NULL, NULL, flags); 224 225 /* 226 * Close all file descriptors. 227 */ 228 if (flags & RFCFDG) { 229 struct filedesc *fdtmp; 230 fdtmp = fdinit(td->td_proc->p_fd); 231 fdfree(td); 232 p1->p_fd = fdtmp; 233 } 234 235 /* 236 * Unshare file descriptors (from parent). 237 */ 238 if (flags & RFFDG) 239 fdunshare(p1, td); 240 241 #if 0 /* XXX no other OS tries to do this */ 242 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 243 (flags & (RFCFDG | RFFDG))) { 244 PROC_LOCK(p1); 245 thread_single_end(); 246 PROC_UNLOCK(p1); 247 } 248 #endif 249 *procp = NULL; 250 return (0); 251 } 252 253 #if 0 /* XXX no other OS tries to do this */ 254 /* 255 * Note 1:1 allows for forking with one thread coming out on the 256 * other side with the expectation that the process is about to 257 * exec. 258 */ 259 if ((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) { 260 /* 261 * Systems processes don't need this. 262 * Idle the other threads for a second. 263 * Since the user space is copied, it must remain stable. 264 * In addition, all threads (from the user perspective) 265 * need to either be suspended or in the kernel, 266 * where they will try restart in the parent and will 267 * be aborted in the child. 268 * keep threadds at the boundary there. 269 */ 270 PROC_LOCK(p1); 271 if (thread_single(SINGLE_BOUNDARY)) { 272 /* Abort. Someone else is single threading before us. */ 273 PROC_UNLOCK(p1); 274 return (ERESTART); 275 } 276 PROC_UNLOCK(p1); 277 /* 278 * All other activity in this process 279 * is now suspended at the user boundary, 280 * (or other safe places if we think of any). 281 */ 282 } 283 #endif 284 285 /* Allocate new proc. */ 286 newproc = uma_zalloc(proc_zone, M_WAITOK); 287 #ifdef MAC 288 mac_proc_init(newproc); 289 #endif 290 knlist_init(&newproc->p_klist, &newproc->p_mtx, NULL, NULL, NULL); 291 STAILQ_INIT(&newproc->p_ktr); 292 293 /* We have to lock the process tree while we look for a pid. */ 294 sx_slock(&proctree_lock); 295 296 /* 297 * Although process entries are dynamically created, we still keep 298 * a global limit on the maximum number we will create. Don't allow 299 * a nonprivileged user to use the last ten processes; don't let root 300 * exceed the limit. The variable nprocs is the current number of 301 * processes, maxproc is the limit. 302 */ 303 sx_xlock(&allproc_lock); 304 if ((nprocs >= maxproc - 10 && priv_check_cred(td->td_ucred, 305 PRIV_MAXPROC, 0) != 0) || nprocs >= maxproc) { 306 error = EAGAIN; 307 goto fail; 308 } 309 310 /* 311 * Increment the count of procs running with this uid. Don't allow 312 * a nonprivileged user to exceed their current limit. 313 * 314 * XXXRW: Can we avoid privilege here if it's not needed? 315 */ 316 error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0); 317 if (error == 0) 318 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0); 319 else { 320 PROC_LOCK(p1); 321 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 322 lim_cur(p1, RLIMIT_NPROC)); 323 PROC_UNLOCK(p1); 324 } 325 if (!ok) { 326 error = EAGAIN; 327 goto fail; 328 } 329 330 /* 331 * Increment the nprocs resource before blocking can occur. There 332 * are hard-limits as to the number of processes that can run. 333 */ 334 nprocs++; 335 336 /* 337 * Find an unused process ID. We remember a range of unused IDs 338 * ready to use (from lastpid+1 through pidchecked-1). 339 * 340 * If RFHIGHPID is set (used during system boot), do not allocate 341 * low-numbered pids. 342 */ 343 trypid = lastpid + 1; 344 if (flags & RFHIGHPID) { 345 if (trypid < 10) 346 trypid = 10; 347 } else { 348 if (randompid) 349 trypid += arc4random() % randompid; 350 } 351 retry: 352 /* 353 * If the process ID prototype has wrapped around, 354 * restart somewhat above 0, as the low-numbered procs 355 * tend to include daemons that don't exit. 356 */ 357 if (trypid >= PID_MAX) { 358 trypid = trypid % PID_MAX; 359 if (trypid < 100) 360 trypid += 100; 361 pidchecked = 0; 362 } 363 if (trypid >= pidchecked) { 364 int doingzomb = 0; 365 366 pidchecked = PID_MAX; 367 /* 368 * Scan the active and zombie procs to check whether this pid 369 * is in use. Remember the lowest pid that's greater 370 * than trypid, so we can avoid checking for a while. 371 */ 372 p2 = LIST_FIRST(&allproc); 373 again: 374 for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) { 375 while (p2->p_pid == trypid || 376 (p2->p_pgrp != NULL && 377 (p2->p_pgrp->pg_id == trypid || 378 (p2->p_session != NULL && 379 p2->p_session->s_sid == trypid)))) { 380 trypid++; 381 if (trypid >= pidchecked) 382 goto retry; 383 } 384 if (p2->p_pid > trypid && pidchecked > p2->p_pid) 385 pidchecked = p2->p_pid; 386 if (p2->p_pgrp != NULL) { 387 if (p2->p_pgrp->pg_id > trypid && 388 pidchecked > p2->p_pgrp->pg_id) 389 pidchecked = p2->p_pgrp->pg_id; 390 if (p2->p_session != NULL && 391 p2->p_session->s_sid > trypid && 392 pidchecked > p2->p_session->s_sid) 393 pidchecked = p2->p_session->s_sid; 394 } 395 } 396 if (!doingzomb) { 397 doingzomb = 1; 398 p2 = LIST_FIRST(&zombproc); 399 goto again; 400 } 401 } 402 sx_sunlock(&proctree_lock); 403 404 /* 405 * RFHIGHPID does not mess with the lastpid counter during boot. 406 */ 407 if (flags & RFHIGHPID) 408 pidchecked = 0; 409 else 410 lastpid = trypid; 411 412 p2 = newproc; 413 td2 = FIRST_THREAD_IN_PROC(newproc); 414 p2->p_state = PRS_NEW; /* protect against others */ 415 p2->p_pid = trypid; 416 /* 417 * Allow the scheduler to initialize the child. 418 */ 419 thread_lock(td); 420 sched_fork(td, td2); 421 thread_unlock(td); 422 AUDIT_ARG(pid, p2->p_pid); 423 LIST_INSERT_HEAD(&allproc, p2, p_list); 424 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); 425 426 PROC_LOCK(p2); 427 PROC_LOCK(p1); 428 429 sx_xunlock(&allproc_lock); 430 431 bcopy(&p1->p_startcopy, &p2->p_startcopy, 432 __rangeof(struct proc, p_startcopy, p_endcopy)); 433 PROC_UNLOCK(p1); 434 435 bzero(&p2->p_startzero, 436 __rangeof(struct proc, p_startzero, p_endzero)); 437 438 p2->p_ucred = crhold(td->td_ucred); 439 PROC_UNLOCK(p2); 440 441 /* 442 * Malloc things while we don't hold any locks. 443 */ 444 if (flags & RFSIGSHARE) 445 newsigacts = NULL; 446 else 447 newsigacts = sigacts_alloc(); 448 449 /* 450 * Copy filedesc. 451 */ 452 if (flags & RFCFDG) { 453 fd = fdinit(p1->p_fd); 454 fdtol = NULL; 455 } else if (flags & RFFDG) { 456 fd = fdcopy(p1->p_fd); 457 fdtol = NULL; 458 } else { 459 fd = fdshare(p1->p_fd); 460 if (p1->p_fdtol == NULL) 461 p1->p_fdtol = 462 filedesc_to_leader_alloc(NULL, 463 NULL, 464 p1->p_leader); 465 if ((flags & RFTHREAD) != 0) { 466 /* 467 * Shared file descriptor table and 468 * shared process leaders. 469 */ 470 fdtol = p1->p_fdtol; 471 FILEDESC_XLOCK(p1->p_fd); 472 fdtol->fdl_refcount++; 473 FILEDESC_XUNLOCK(p1->p_fd); 474 } else { 475 /* 476 * Shared file descriptor table, and 477 * different process leaders 478 */ 479 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, 480 p1->p_fd, 481 p2); 482 } 483 } 484 /* 485 * Make a proc table entry for the new process. 486 * Start by zeroing the section of proc that is zero-initialized, 487 * then copy the section that is copied directly from the parent. 488 */ 489 /* Allocate and switch to an alternate kstack if specified. */ 490 if (pages != 0) 491 vm_thread_new_altkstack(td2, pages); 492 493 PROC_LOCK(p2); 494 PROC_LOCK(p1); 495 496 bzero(&td2->td_startzero, 497 __rangeof(struct thread, td_startzero, td_endzero)); 498 499 bcopy(&td->td_startcopy, &td2->td_startcopy, 500 __rangeof(struct thread, td_startcopy, td_endcopy)); 501 502 td2->td_sigstk = td->td_sigstk; 503 td2->td_sigmask = td->td_sigmask; 504 td2->td_flags = TDF_INMEM; 505 506 /* 507 * Duplicate sub-structures as needed. 508 * Increase reference counts on shared objects. 509 */ 510 p2->p_flag = P_INMEM; 511 p2->p_swtick = ticks; 512 if (p1->p_flag & P_PROFIL) 513 startprofclock(p2); 514 td2->td_ucred = crhold(p2->p_ucred); 515 pargs_hold(p2->p_args); 516 517 if (flags & RFSIGSHARE) { 518 p2->p_sigacts = sigacts_hold(p1->p_sigacts); 519 } else { 520 sigacts_copy(newsigacts, p1->p_sigacts); 521 p2->p_sigacts = newsigacts; 522 } 523 if (flags & RFLINUXTHPN) 524 p2->p_sigparent = SIGUSR1; 525 else 526 p2->p_sigparent = SIGCHLD; 527 528 p2->p_textvp = p1->p_textvp; 529 p2->p_fd = fd; 530 p2->p_fdtol = fdtol; 531 532 /* 533 * p_limit is copy-on-write. Bump its refcount. 534 */ 535 lim_fork(p1, p2); 536 537 pstats_fork(p1->p_stats, p2->p_stats); 538 539 PROC_UNLOCK(p1); 540 PROC_UNLOCK(p2); 541 542 /* Bump references to the text vnode (for procfs) */ 543 if (p2->p_textvp) 544 vref(p2->p_textvp); 545 546 /* 547 * Set up linkage for kernel based threading. 548 */ 549 if ((flags & RFTHREAD) != 0) { 550 mtx_lock(&ppeers_lock); 551 p2->p_peers = p1->p_peers; 552 p1->p_peers = p2; 553 p2->p_leader = p1->p_leader; 554 mtx_unlock(&ppeers_lock); 555 PROC_LOCK(p1->p_leader); 556 if ((p1->p_leader->p_flag & P_WEXIT) != 0) { 557 PROC_UNLOCK(p1->p_leader); 558 /* 559 * The task leader is exiting, so process p1 is 560 * going to be killed shortly. Since p1 obviously 561 * isn't dead yet, we know that the leader is either 562 * sending SIGKILL's to all the processes in this 563 * task or is sleeping waiting for all the peers to 564 * exit. We let p1 complete the fork, but we need 565 * to go ahead and kill the new process p2 since 566 * the task leader may not get a chance to send 567 * SIGKILL to it. We leave it on the list so that 568 * the task leader will wait for this new process 569 * to commit suicide. 570 */ 571 PROC_LOCK(p2); 572 psignal(p2, SIGKILL); 573 PROC_UNLOCK(p2); 574 } else 575 PROC_UNLOCK(p1->p_leader); 576 } else { 577 p2->p_peers = NULL; 578 p2->p_leader = p2; 579 } 580 581 sx_xlock(&proctree_lock); 582 PGRP_LOCK(p1->p_pgrp); 583 PROC_LOCK(p2); 584 PROC_LOCK(p1); 585 586 /* 587 * Preserve some more flags in subprocess. P_PROFIL has already 588 * been preserved. 589 */ 590 p2->p_flag |= p1->p_flag & P_SUGID; 591 td2->td_pflags |= td->td_pflags & TDP_ALTSTACK; 592 SESS_LOCK(p1->p_session); 593 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) 594 p2->p_flag |= P_CONTROLT; 595 SESS_UNLOCK(p1->p_session); 596 if (flags & RFPPWAIT) 597 p2->p_flag |= P_PPWAIT; 598 599 p2->p_pgrp = p1->p_pgrp; 600 LIST_INSERT_AFTER(p1, p2, p_pglist); 601 PGRP_UNLOCK(p1->p_pgrp); 602 LIST_INIT(&p2->p_children); 603 604 callout_init(&p2->p_itcallout, CALLOUT_MPSAFE); 605 606 #ifdef KTRACE 607 /* 608 * Copy traceflag and tracefile if enabled. 609 */ 610 mtx_lock(&ktrace_mtx); 611 KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode")); 612 if (p1->p_traceflag & KTRFAC_INHERIT) { 613 p2->p_traceflag = p1->p_traceflag; 614 if ((p2->p_tracevp = p1->p_tracevp) != NULL) { 615 VREF(p2->p_tracevp); 616 KASSERT(p1->p_tracecred != NULL, 617 ("ktrace vnode with no cred")); 618 p2->p_tracecred = crhold(p1->p_tracecred); 619 } 620 } 621 mtx_unlock(&ktrace_mtx); 622 #endif 623 624 /* 625 * If PF_FORK is set, the child process inherits the 626 * procfs ioctl flags from its parent. 627 */ 628 if (p1->p_pfsflags & PF_FORK) { 629 p2->p_stops = p1->p_stops; 630 p2->p_pfsflags = p1->p_pfsflags; 631 } 632 633 /* 634 * This begins the section where we must prevent the parent 635 * from being swapped. 636 */ 637 _PHOLD(p1); 638 PROC_UNLOCK(p1); 639 640 /* 641 * Attach the new process to its parent. 642 * 643 * If RFNOWAIT is set, the newly created process becomes a child 644 * of init. This effectively disassociates the child from the 645 * parent. 646 */ 647 if (flags & RFNOWAIT) 648 pptr = initproc; 649 else 650 pptr = p1; 651 p2->p_pptr = pptr; 652 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); 653 sx_xunlock(&proctree_lock); 654 655 /* Inform accounting that we have forked. */ 656 p2->p_acflag = AFORK; 657 PROC_UNLOCK(p2); 658 659 /* 660 * Finish creating the child process. It will return via a different 661 * execution path later. (ie: directly into user mode) 662 */ 663 vm_forkproc(td, p2, td2, flags); 664 665 if (flags == (RFFDG | RFPROC)) { 666 PCPU_INC(cnt.v_forks); 667 PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize + 668 p2->p_vmspace->vm_ssize); 669 } else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { 670 PCPU_INC(cnt.v_vforks); 671 PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize + 672 p2->p_vmspace->vm_ssize); 673 } else if (p1 == &proc0) { 674 PCPU_INC(cnt.v_kthreads); 675 PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize + 676 p2->p_vmspace->vm_ssize); 677 } else { 678 PCPU_INC(cnt.v_rforks); 679 PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize + 680 p2->p_vmspace->vm_ssize); 681 } 682 683 /* 684 * Both processes are set up, now check if any loadable modules want 685 * to adjust anything. 686 * What if they have an error? XXX 687 */ 688 EVENTHANDLER_INVOKE(process_fork, p1, p2, flags); 689 690 /* 691 * Set the child start time and mark the process as being complete. 692 */ 693 microuptime(&p2->p_stats->p_start); 694 PROC_SLOCK(p2); 695 p2->p_state = PRS_NORMAL; 696 PROC_SUNLOCK(p2); 697 698 /* 699 * If RFSTOPPED not requested, make child runnable and add to 700 * run queue. 701 */ 702 if ((flags & RFSTOPPED) == 0) { 703 thread_lock(td2); 704 TD_SET_CAN_RUN(td2); 705 sched_add(td2, SRQ_BORING); 706 thread_unlock(td2); 707 } 708 709 /* 710 * Now can be swapped. 711 */ 712 PROC_LOCK(p1); 713 _PRELE(p1); 714 715 /* 716 * Tell any interested parties about the new process. 717 */ 718 KNOTE_LOCKED(&p1->p_klist, NOTE_FORK | p2->p_pid); 719 720 PROC_UNLOCK(p1); 721 722 /* 723 * Preserve synchronization semantics of vfork. If waiting for 724 * child to exec or exit, set P_PPWAIT on child, and sleep on our 725 * proc (in case of exit). 726 */ 727 PROC_LOCK(p2); 728 while (p2->p_flag & P_PPWAIT) 729 msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0); 730 PROC_UNLOCK(p2); 731 732 #if 0 /* XXX no other OS tries to do this */ 733 /* 734 * If other threads are waiting, let them continue now. 735 */ 736 if ((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) { 737 PROC_LOCK(p1); 738 thread_single_end(); 739 PROC_UNLOCK(p1); 740 } 741 742 #endif 743 /* 744 * Return child proc pointer to parent. 745 */ 746 *procp = p2; 747 return (0); 748 fail: 749 sx_sunlock(&proctree_lock); 750 if (ppsratecheck(&lastfail, &curfail, 1)) 751 printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n", 752 td->td_ucred->cr_ruid); 753 sx_xunlock(&allproc_lock); 754 #ifdef MAC 755 mac_proc_destroy(newproc); 756 #endif 757 uma_zfree(proc_zone, newproc); 758 if (p1->p_flag & P_HADTHREADS) { 759 PROC_LOCK(p1); 760 thread_single_end(); 761 PROC_UNLOCK(p1); 762 } 763 pause("fork", hz / 2); 764 return (error); 765 } 766 767 /* 768 * Handle the return of a child process from fork1(). This function 769 * is called from the MD fork_trampoline() entry point. 770 */ 771 void 772 fork_exit(callout, arg, frame) 773 void (*callout)(void *, struct trapframe *); 774 void *arg; 775 struct trapframe *frame; 776 { 777 struct proc *p; 778 struct thread *td; 779 struct thread *dtd; 780 781 td = curthread; 782 p = td->td_proc; 783 KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new")); 784 785 CTR4(KTR_PROC, "fork_exit: new thread %p (kse %p, pid %d, %s)", 786 td, td->td_sched, p->p_pid, p->p_comm); 787 788 sched_fork_exit(td); 789 /* 790 * Processes normally resume in mi_switch() after being 791 * cpu_switch()'ed to, but when children start up they arrive here 792 * instead, so we must do much the same things as mi_switch() would. 793 */ 794 if ((dtd = PCPU_GET(deadthread))) { 795 PCPU_SET(deadthread, NULL); 796 thread_stash(dtd); 797 } 798 thread_unlock(td); 799 800 /* 801 * cpu_set_fork_handler intercepts this function call to 802 * have this call a non-return function to stay in kernel mode. 803 * initproc has its own fork handler, but it does return. 804 */ 805 KASSERT(callout != NULL, ("NULL callout in fork_exit")); 806 callout(arg, frame); 807 808 /* 809 * Check if a kernel thread misbehaved and returned from its main 810 * function. 811 */ 812 if (p->p_flag & P_KTHREAD) { 813 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n", 814 p->p_comm, p->p_pid); 815 kproc_exit(0); 816 } 817 mtx_assert(&Giant, MA_NOTOWNED); 818 819 EVENTHANDLER_INVOKE(schedtail, p); 820 } 821 822 /* 823 * Simplified back end of syscall(), used when returning from fork() 824 * directly into user mode. Giant is not held on entry, and must not 825 * be held on return. This function is passed in to fork_exit() as the 826 * first parameter and is called when returning to a new userland process. 827 */ 828 void 829 fork_return(td, frame) 830 struct thread *td; 831 struct trapframe *frame; 832 { 833 834 userret(td, frame); 835 #ifdef KTRACE 836 if (KTRPOINT(td, KTR_SYSRET)) 837 ktrsysret(SYS_fork, 0, 0); 838 #endif 839 mtx_assert(&Giant, MA_NOTOWNED); 840 } 841