1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ktrace.h" 43 #include "opt_kstack_pages.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/sysproto.h> 48 #include <sys/eventhandler.h> 49 #include <sys/fcntl.h> 50 #include <sys/filedesc.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/kthread.h> 54 #include <sys/sysctl.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/mutex.h> 58 #include <sys/priv.h> 59 #include <sys/proc.h> 60 #include <sys/procdesc.h> 61 #include <sys/pioctl.h> 62 #include <sys/ptrace.h> 63 #include <sys/racct.h> 64 #include <sys/resourcevar.h> 65 #include <sys/sched.h> 66 #include <sys/syscall.h> 67 #include <sys/vmmeter.h> 68 #include <sys/vnode.h> 69 #include <sys/acct.h> 70 #include <sys/ktr.h> 71 #include <sys/ktrace.h> 72 #include <sys/unistd.h> 73 #include <sys/sdt.h> 74 #include <sys/sx.h> 75 #include <sys/sysent.h> 76 #include <sys/signalvar.h> 77 78 #include <security/audit/audit.h> 79 #include <security/mac/mac_framework.h> 80 81 #include <vm/vm.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_extern.h> 85 #include <vm/uma.h> 86 87 #ifdef KDTRACE_HOOKS 88 #include <sys/dtrace_bsd.h> 89 dtrace_fork_func_t dtrace_fasttrap_fork; 90 #endif 91 92 SDT_PROVIDER_DECLARE(proc); 93 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int"); 94 95 #ifndef _SYS_SYSPROTO_H_ 96 struct fork_args { 97 int dummy; 98 }; 99 #endif 100 101 EVENTHANDLER_LIST_DECLARE(process_fork); 102 103 /* ARGSUSED */ 104 int 105 sys_fork(struct thread *td, struct fork_args *uap) 106 { 107 struct fork_req fr; 108 int error, pid; 109 110 bzero(&fr, sizeof(fr)); 111 fr.fr_flags = RFFDG | RFPROC; 112 fr.fr_pidp = &pid; 113 error = fork1(td, &fr); 114 if (error == 0) { 115 td->td_retval[0] = pid; 116 td->td_retval[1] = 0; 117 } 118 return (error); 119 } 120 121 /* ARGUSED */ 122 int 123 sys_pdfork(struct thread *td, struct pdfork_args *uap) 124 { 125 struct fork_req fr; 126 int error, fd, pid; 127 128 bzero(&fr, sizeof(fr)); 129 fr.fr_flags = RFFDG | RFPROC | RFPROCDESC; 130 fr.fr_pidp = &pid; 131 fr.fr_pd_fd = &fd; 132 fr.fr_pd_flags = uap->flags; 133 /* 134 * It is necessary to return fd by reference because 0 is a valid file 135 * descriptor number, and the child needs to be able to distinguish 136 * itself from the parent using the return value. 137 */ 138 error = fork1(td, &fr); 139 if (error == 0) { 140 td->td_retval[0] = pid; 141 td->td_retval[1] = 0; 142 error = copyout(&fd, uap->fdp, sizeof(fd)); 143 } 144 return (error); 145 } 146 147 /* ARGSUSED */ 148 int 149 sys_vfork(struct thread *td, struct vfork_args *uap) 150 { 151 struct fork_req fr; 152 int error, pid; 153 154 bzero(&fr, sizeof(fr)); 155 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; 156 fr.fr_pidp = &pid; 157 error = fork1(td, &fr); 158 if (error == 0) { 159 td->td_retval[0] = pid; 160 td->td_retval[1] = 0; 161 } 162 return (error); 163 } 164 165 int 166 sys_rfork(struct thread *td, struct rfork_args *uap) 167 { 168 struct fork_req fr; 169 int error, pid; 170 171 /* Don't allow kernel-only flags. */ 172 if ((uap->flags & RFKERNELONLY) != 0) 173 return (EINVAL); 174 175 AUDIT_ARG_FFLAGS(uap->flags); 176 bzero(&fr, sizeof(fr)); 177 fr.fr_flags = uap->flags; 178 fr.fr_pidp = &pid; 179 error = fork1(td, &fr); 180 if (error == 0) { 181 td->td_retval[0] = pid; 182 td->td_retval[1] = 0; 183 } 184 return (error); 185 } 186 187 int nprocs = 1; /* process 0 */ 188 int lastpid = 0; 189 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 190 "Last used PID"); 191 192 /* 193 * Random component to lastpid generation. We mix in a random factor to make 194 * it a little harder to predict. We sanity check the modulus value to avoid 195 * doing it in critical paths. Don't let it be too small or we pointlessly 196 * waste randomness entropy, and don't let it be impossibly large. Using a 197 * modulus that is too big causes a LOT more process table scans and slows 198 * down fork processing as the pidchecked caching is defeated. 199 */ 200 static int randompid = 0; 201 202 static int 203 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 204 { 205 int error, pid; 206 207 error = sysctl_wire_old_buffer(req, sizeof(int)); 208 if (error != 0) 209 return(error); 210 sx_xlock(&allproc_lock); 211 pid = randompid; 212 error = sysctl_handle_int(oidp, &pid, 0, req); 213 if (error == 0 && req->newptr != NULL) { 214 if (pid == 0) 215 randompid = 0; 216 else if (pid == 1) 217 /* generate a random PID modulus between 100 and 1123 */ 218 randompid = 100 + arc4random() % 1024; 219 else if (pid < 0 || pid > pid_max - 100) 220 /* out of range */ 221 randompid = pid_max - 100; 222 else if (pid < 100) 223 /* Make it reasonable */ 224 randompid = 100; 225 else 226 randompid = pid; 227 } 228 sx_xunlock(&allproc_lock); 229 return (error); 230 } 231 232 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 233 0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value"); 234 235 static int 236 fork_findpid(int flags) 237 { 238 struct proc *p; 239 int trypid; 240 static int pidchecked = 0; 241 242 /* 243 * Requires allproc_lock in order to iterate over the list 244 * of processes, and proctree_lock to access p_pgrp. 245 */ 246 sx_assert(&allproc_lock, SX_LOCKED); 247 sx_assert(&proctree_lock, SX_LOCKED); 248 249 /* 250 * Find an unused process ID. We remember a range of unused IDs 251 * ready to use (from lastpid+1 through pidchecked-1). 252 * 253 * If RFHIGHPID is set (used during system boot), do not allocate 254 * low-numbered pids. 255 */ 256 trypid = lastpid + 1; 257 if (flags & RFHIGHPID) { 258 if (trypid < 10) 259 trypid = 10; 260 } else { 261 if (randompid) 262 trypid += arc4random() % randompid; 263 } 264 retry: 265 /* 266 * If the process ID prototype has wrapped around, 267 * restart somewhat above 0, as the low-numbered procs 268 * tend to include daemons that don't exit. 269 */ 270 if (trypid >= pid_max) { 271 trypid = trypid % pid_max; 272 if (trypid < 100) 273 trypid += 100; 274 pidchecked = 0; 275 } 276 if (trypid >= pidchecked) { 277 int doingzomb = 0; 278 279 pidchecked = PID_MAX; 280 /* 281 * Scan the active and zombie procs to check whether this pid 282 * is in use. Remember the lowest pid that's greater 283 * than trypid, so we can avoid checking for a while. 284 * 285 * Avoid reuse of the process group id, session id or 286 * the reaper subtree id. Note that for process group 287 * and sessions, the amount of reserved pids is 288 * limited by process limit. For the subtree ids, the 289 * id is kept reserved only while there is a 290 * non-reaped process in the subtree, so amount of 291 * reserved pids is limited by process limit times 292 * two. 293 */ 294 p = LIST_FIRST(&allproc); 295 again: 296 for (; p != NULL; p = LIST_NEXT(p, p_list)) { 297 while (p->p_pid == trypid || 298 p->p_reapsubtree == trypid || 299 (p->p_pgrp != NULL && 300 (p->p_pgrp->pg_id == trypid || 301 (p->p_session != NULL && 302 p->p_session->s_sid == trypid)))) { 303 trypid++; 304 if (trypid >= pidchecked) 305 goto retry; 306 } 307 if (p->p_pid > trypid && pidchecked > p->p_pid) 308 pidchecked = p->p_pid; 309 if (p->p_pgrp != NULL) { 310 if (p->p_pgrp->pg_id > trypid && 311 pidchecked > p->p_pgrp->pg_id) 312 pidchecked = p->p_pgrp->pg_id; 313 if (p->p_session != NULL && 314 p->p_session->s_sid > trypid && 315 pidchecked > p->p_session->s_sid) 316 pidchecked = p->p_session->s_sid; 317 } 318 } 319 if (!doingzomb) { 320 doingzomb = 1; 321 p = LIST_FIRST(&zombproc); 322 goto again; 323 } 324 } 325 326 /* 327 * RFHIGHPID does not mess with the lastpid counter during boot. 328 */ 329 if (flags & RFHIGHPID) 330 pidchecked = 0; 331 else 332 lastpid = trypid; 333 334 return (trypid); 335 } 336 337 static int 338 fork_norfproc(struct thread *td, int flags) 339 { 340 int error; 341 struct proc *p1; 342 343 KASSERT((flags & RFPROC) == 0, 344 ("fork_norfproc called with RFPROC set")); 345 p1 = td->td_proc; 346 347 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 348 (flags & (RFCFDG | RFFDG))) { 349 PROC_LOCK(p1); 350 if (thread_single(p1, SINGLE_BOUNDARY)) { 351 PROC_UNLOCK(p1); 352 return (ERESTART); 353 } 354 PROC_UNLOCK(p1); 355 } 356 357 error = vm_forkproc(td, NULL, NULL, NULL, flags); 358 if (error) 359 goto fail; 360 361 /* 362 * Close all file descriptors. 363 */ 364 if (flags & RFCFDG) { 365 struct filedesc *fdtmp; 366 fdtmp = fdinit(td->td_proc->p_fd, false); 367 fdescfree(td); 368 p1->p_fd = fdtmp; 369 } 370 371 /* 372 * Unshare file descriptors (from parent). 373 */ 374 if (flags & RFFDG) 375 fdunshare(td); 376 377 fail: 378 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 379 (flags & (RFCFDG | RFFDG))) { 380 PROC_LOCK(p1); 381 thread_single_end(p1, SINGLE_BOUNDARY); 382 PROC_UNLOCK(p1); 383 } 384 return (error); 385 } 386 387 static void 388 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2, 389 struct vmspace *vm2, struct file *fp_procdesc) 390 { 391 struct proc *p1, *pptr; 392 int trypid; 393 struct filedesc *fd; 394 struct filedesc_to_leader *fdtol; 395 struct sigacts *newsigacts; 396 397 sx_assert(&proctree_lock, SX_LOCKED); 398 sx_assert(&allproc_lock, SX_XLOCKED); 399 400 p1 = td->td_proc; 401 402 trypid = fork_findpid(fr->fr_flags); 403 404 p2->p_state = PRS_NEW; /* protect against others */ 405 p2->p_pid = trypid; 406 AUDIT_ARG_PID(p2->p_pid); 407 LIST_INSERT_HEAD(&allproc, p2, p_list); 408 allproc_gen++; 409 sx_xlock(PIDHASHLOCK(p2->p_pid)); 410 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); 411 sx_xunlock(PIDHASHLOCK(p2->p_pid)); 412 PROC_LOCK(p2); 413 PROC_LOCK(p1); 414 415 sx_xunlock(&allproc_lock); 416 sx_xunlock(&proctree_lock); 417 418 bcopy(&p1->p_startcopy, &p2->p_startcopy, 419 __rangeof(struct proc, p_startcopy, p_endcopy)); 420 pargs_hold(p2->p_args); 421 422 PROC_UNLOCK(p1); 423 424 bzero(&p2->p_startzero, 425 __rangeof(struct proc, p_startzero, p_endzero)); 426 427 /* Tell the prison that we exist. */ 428 prison_proc_hold(p2->p_ucred->cr_prison); 429 430 PROC_UNLOCK(p2); 431 432 tidhash_add(td2); 433 434 /* 435 * Malloc things while we don't hold any locks. 436 */ 437 if (fr->fr_flags & RFSIGSHARE) 438 newsigacts = NULL; 439 else 440 newsigacts = sigacts_alloc(); 441 442 /* 443 * Copy filedesc. 444 */ 445 if (fr->fr_flags & RFCFDG) { 446 fd = fdinit(p1->p_fd, false); 447 fdtol = NULL; 448 } else if (fr->fr_flags & RFFDG) { 449 fd = fdcopy(p1->p_fd); 450 fdtol = NULL; 451 } else { 452 fd = fdshare(p1->p_fd); 453 if (p1->p_fdtol == NULL) 454 p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL, 455 p1->p_leader); 456 if ((fr->fr_flags & RFTHREAD) != 0) { 457 /* 458 * Shared file descriptor table, and shared 459 * process leaders. 460 */ 461 fdtol = p1->p_fdtol; 462 FILEDESC_XLOCK(p1->p_fd); 463 fdtol->fdl_refcount++; 464 FILEDESC_XUNLOCK(p1->p_fd); 465 } else { 466 /* 467 * Shared file descriptor table, and different 468 * process leaders. 469 */ 470 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, 471 p1->p_fd, p2); 472 } 473 } 474 /* 475 * Make a proc table entry for the new process. 476 * Start by zeroing the section of proc that is zero-initialized, 477 * then copy the section that is copied directly from the parent. 478 */ 479 480 PROC_LOCK(p2); 481 PROC_LOCK(p1); 482 483 bzero(&td2->td_startzero, 484 __rangeof(struct thread, td_startzero, td_endzero)); 485 486 bcopy(&td->td_startcopy, &td2->td_startcopy, 487 __rangeof(struct thread, td_startcopy, td_endcopy)); 488 489 bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name)); 490 td2->td_sigstk = td->td_sigstk; 491 td2->td_flags = TDF_INMEM; 492 td2->td_lend_user_pri = PRI_MAX; 493 494 #ifdef VIMAGE 495 td2->td_vnet = NULL; 496 td2->td_vnet_lpush = NULL; 497 #endif 498 499 /* 500 * Allow the scheduler to initialize the child. 501 */ 502 thread_lock(td); 503 sched_fork(td, td2); 504 thread_unlock(td); 505 506 /* 507 * Duplicate sub-structures as needed. 508 * Increase reference counts on shared objects. 509 */ 510 p2->p_flag = P_INMEM; 511 p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP); 512 p2->p_swtick = ticks; 513 if (p1->p_flag & P_PROFIL) 514 startprofclock(p2); 515 516 if (fr->fr_flags & RFSIGSHARE) { 517 p2->p_sigacts = sigacts_hold(p1->p_sigacts); 518 } else { 519 sigacts_copy(newsigacts, p1->p_sigacts); 520 p2->p_sigacts = newsigacts; 521 } 522 523 if (fr->fr_flags & RFTSIGZMB) 524 p2->p_sigparent = RFTSIGNUM(fr->fr_flags); 525 else if (fr->fr_flags & RFLINUXTHPN) 526 p2->p_sigparent = SIGUSR1; 527 else 528 p2->p_sigparent = SIGCHLD; 529 530 p2->p_textvp = p1->p_textvp; 531 p2->p_fd = fd; 532 p2->p_fdtol = fdtol; 533 534 if (p1->p_flag2 & P2_INHERIT_PROTECTED) { 535 p2->p_flag |= P_PROTECTED; 536 p2->p_flag2 |= P2_INHERIT_PROTECTED; 537 } 538 539 /* 540 * p_limit is copy-on-write. Bump its refcount. 541 */ 542 lim_fork(p1, p2); 543 544 thread_cow_get_proc(td2, p2); 545 546 pstats_fork(p1->p_stats, p2->p_stats); 547 548 PROC_UNLOCK(p1); 549 PROC_UNLOCK(p2); 550 551 /* Bump references to the text vnode (for procfs). */ 552 if (p2->p_textvp) 553 vrefact(p2->p_textvp); 554 555 /* 556 * Set up linkage for kernel based threading. 557 */ 558 if ((fr->fr_flags & RFTHREAD) != 0) { 559 mtx_lock(&ppeers_lock); 560 p2->p_peers = p1->p_peers; 561 p1->p_peers = p2; 562 p2->p_leader = p1->p_leader; 563 mtx_unlock(&ppeers_lock); 564 PROC_LOCK(p1->p_leader); 565 if ((p1->p_leader->p_flag & P_WEXIT) != 0) { 566 PROC_UNLOCK(p1->p_leader); 567 /* 568 * The task leader is exiting, so process p1 is 569 * going to be killed shortly. Since p1 obviously 570 * isn't dead yet, we know that the leader is either 571 * sending SIGKILL's to all the processes in this 572 * task or is sleeping waiting for all the peers to 573 * exit. We let p1 complete the fork, but we need 574 * to go ahead and kill the new process p2 since 575 * the task leader may not get a chance to send 576 * SIGKILL to it. We leave it on the list so that 577 * the task leader will wait for this new process 578 * to commit suicide. 579 */ 580 PROC_LOCK(p2); 581 kern_psignal(p2, SIGKILL); 582 PROC_UNLOCK(p2); 583 } else 584 PROC_UNLOCK(p1->p_leader); 585 } else { 586 p2->p_peers = NULL; 587 p2->p_leader = p2; 588 } 589 590 sx_xlock(&proctree_lock); 591 PGRP_LOCK(p1->p_pgrp); 592 PROC_LOCK(p2); 593 PROC_LOCK(p1); 594 595 /* 596 * Preserve some more flags in subprocess. P_PROFIL has already 597 * been preserved. 598 */ 599 p2->p_flag |= p1->p_flag & P_SUGID; 600 td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING; 601 SESS_LOCK(p1->p_session); 602 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) 603 p2->p_flag |= P_CONTROLT; 604 SESS_UNLOCK(p1->p_session); 605 if (fr->fr_flags & RFPPWAIT) 606 p2->p_flag |= P_PPWAIT; 607 608 p2->p_pgrp = p1->p_pgrp; 609 LIST_INSERT_AFTER(p1, p2, p_pglist); 610 PGRP_UNLOCK(p1->p_pgrp); 611 LIST_INIT(&p2->p_children); 612 LIST_INIT(&p2->p_orphans); 613 614 callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0); 615 616 /* 617 * If PF_FORK is set, the child process inherits the 618 * procfs ioctl flags from its parent. 619 */ 620 if (p1->p_pfsflags & PF_FORK) { 621 p2->p_stops = p1->p_stops; 622 p2->p_pfsflags = p1->p_pfsflags; 623 } 624 625 /* 626 * This begins the section where we must prevent the parent 627 * from being swapped. 628 */ 629 _PHOLD(p1); 630 PROC_UNLOCK(p1); 631 632 /* 633 * Attach the new process to its parent. 634 * 635 * If RFNOWAIT is set, the newly created process becomes a child 636 * of init. This effectively disassociates the child from the 637 * parent. 638 */ 639 if ((fr->fr_flags & RFNOWAIT) != 0) { 640 pptr = p1->p_reaper; 641 p2->p_reaper = pptr; 642 } else { 643 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ? 644 p1 : p1->p_reaper; 645 pptr = p1; 646 } 647 p2->p_pptr = pptr; 648 p2->p_oppid = pptr->p_pid; 649 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); 650 LIST_INIT(&p2->p_reaplist); 651 LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling); 652 if (p2->p_reaper == p1) 653 p2->p_reapsubtree = p2->p_pid; 654 sx_xunlock(&proctree_lock); 655 656 /* Inform accounting that we have forked. */ 657 p2->p_acflag = AFORK; 658 PROC_UNLOCK(p2); 659 660 #ifdef KTRACE 661 ktrprocfork(p1, p2); 662 #endif 663 664 /* 665 * Finish creating the child process. It will return via a different 666 * execution path later. (ie: directly into user mode) 667 */ 668 vm_forkproc(td, p2, td2, vm2, fr->fr_flags); 669 670 if (fr->fr_flags == (RFFDG | RFPROC)) { 671 VM_CNT_INC(v_forks); 672 VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize + 673 p2->p_vmspace->vm_ssize); 674 } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { 675 VM_CNT_INC(v_vforks); 676 VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize + 677 p2->p_vmspace->vm_ssize); 678 } else if (p1 == &proc0) { 679 VM_CNT_INC(v_kthreads); 680 VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize + 681 p2->p_vmspace->vm_ssize); 682 } else { 683 VM_CNT_INC(v_rforks); 684 VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize + 685 p2->p_vmspace->vm_ssize); 686 } 687 688 /* 689 * Associate the process descriptor with the process before anything 690 * can happen that might cause that process to need the descriptor. 691 * However, don't do this until after fork(2) can no longer fail. 692 */ 693 if (fr->fr_flags & RFPROCDESC) 694 procdesc_new(p2, fr->fr_pd_flags); 695 696 /* 697 * Both processes are set up, now check if any loadable modules want 698 * to adjust anything. 699 */ 700 EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags); 701 702 /* 703 * Set the child start time and mark the process as being complete. 704 */ 705 PROC_LOCK(p2); 706 PROC_LOCK(p1); 707 microuptime(&p2->p_stats->p_start); 708 PROC_SLOCK(p2); 709 p2->p_state = PRS_NORMAL; 710 PROC_SUNLOCK(p2); 711 712 #ifdef KDTRACE_HOOKS 713 /* 714 * Tell the DTrace fasttrap provider about the new process so that any 715 * tracepoints inherited from the parent can be removed. We have to do 716 * this only after p_state is PRS_NORMAL since the fasttrap module will 717 * use pfind() later on. 718 */ 719 if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork) 720 dtrace_fasttrap_fork(p1, p2); 721 #endif 722 if (fr->fr_flags & RFPPWAIT) { 723 td->td_pflags |= TDP_RFPPWAIT; 724 td->td_rfppwait_p = p2; 725 td->td_dbgflags |= TDB_VFORK; 726 } 727 PROC_UNLOCK(p2); 728 729 /* 730 * Now can be swapped. 731 */ 732 _PRELE(p1); 733 PROC_UNLOCK(p1); 734 735 /* 736 * Tell any interested parties about the new process. 737 */ 738 knote_fork(p1->p_klist, p2->p_pid); 739 SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags); 740 741 if (fr->fr_flags & RFPROCDESC) { 742 procdesc_finit(p2->p_procdesc, fp_procdesc); 743 fdrop(fp_procdesc, td); 744 } 745 746 /* 747 * Speculative check for PTRACE_FORK. PTRACE_FORK is not 748 * synced with forks in progress so it is OK if we miss it 749 * if being set atm. 750 */ 751 if ((p1->p_ptevents & PTRACE_FORK) != 0) { 752 sx_xlock(&proctree_lock); 753 PROC_LOCK(p2); 754 755 /* 756 * p1->p_ptevents & p1->p_pptr are protected by both 757 * process and proctree locks for modifications, 758 * so owning proctree_lock allows the race-free read. 759 */ 760 if ((p1->p_ptevents & PTRACE_FORK) != 0) { 761 /* 762 * Arrange for debugger to receive the fork event. 763 * 764 * We can report PL_FLAG_FORKED regardless of 765 * P_FOLLOWFORK settings, but it does not make a sense 766 * for runaway child. 767 */ 768 td->td_dbgflags |= TDB_FORK; 769 td->td_dbg_forked = p2->p_pid; 770 td2->td_dbgflags |= TDB_STOPATFORK; 771 proc_set_traced(p2, true); 772 CTR2(KTR_PTRACE, 773 "do_fork: attaching to new child pid %d: oppid %d", 774 p2->p_pid, p2->p_oppid); 775 proc_reparent(p2, p1->p_pptr, false); 776 } 777 PROC_UNLOCK(p2); 778 sx_xunlock(&proctree_lock); 779 } 780 781 racct_proc_fork_done(p2); 782 783 if ((fr->fr_flags & RFSTOPPED) == 0) { 784 if (fr->fr_pidp != NULL) 785 *fr->fr_pidp = p2->p_pid; 786 /* 787 * If RFSTOPPED not requested, make child runnable and 788 * add to run queue. 789 */ 790 thread_lock(td2); 791 TD_SET_CAN_RUN(td2); 792 sched_add(td2, SRQ_BORING); 793 thread_unlock(td2); 794 } else { 795 *fr->fr_procp = p2; 796 } 797 } 798 799 int 800 fork1(struct thread *td, struct fork_req *fr) 801 { 802 struct proc *p1, *newproc; 803 struct thread *td2; 804 struct vmspace *vm2; 805 struct file *fp_procdesc; 806 vm_ooffset_t mem_charged; 807 int error, nprocs_new, ok; 808 static int curfail; 809 static struct timeval lastfail; 810 int flags, pages; 811 812 flags = fr->fr_flags; 813 pages = fr->fr_pages; 814 815 if ((flags & RFSTOPPED) != 0) 816 MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL); 817 else 818 MPASS(fr->fr_procp == NULL); 819 820 /* Check for the undefined or unimplemented flags. */ 821 if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0) 822 return (EINVAL); 823 824 /* Signal value requires RFTSIGZMB. */ 825 if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0) 826 return (EINVAL); 827 828 /* Can't copy and clear. */ 829 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) 830 return (EINVAL); 831 832 /* Check the validity of the signal number. */ 833 if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG) 834 return (EINVAL); 835 836 if ((flags & RFPROCDESC) != 0) { 837 /* Can't not create a process yet get a process descriptor. */ 838 if ((flags & RFPROC) == 0) 839 return (EINVAL); 840 841 /* Must provide a place to put a procdesc if creating one. */ 842 if (fr->fr_pd_fd == NULL) 843 return (EINVAL); 844 845 /* Check if we are using supported flags. */ 846 if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0) 847 return (EINVAL); 848 } 849 850 p1 = td->td_proc; 851 852 /* 853 * Here we don't create a new process, but we divorce 854 * certain parts of a process from itself. 855 */ 856 if ((flags & RFPROC) == 0) { 857 if (fr->fr_procp != NULL) 858 *fr->fr_procp = NULL; 859 else if (fr->fr_pidp != NULL) 860 *fr->fr_pidp = 0; 861 return (fork_norfproc(td, flags)); 862 } 863 864 fp_procdesc = NULL; 865 newproc = NULL; 866 vm2 = NULL; 867 868 /* 869 * Increment the nprocs resource before allocations occur. 870 * Although process entries are dynamically created, we still 871 * keep a global limit on the maximum number we will 872 * create. There are hard-limits as to the number of processes 873 * that can run, established by the KVA and memory usage for 874 * the process data. 875 * 876 * Don't allow a nonprivileged user to use the last ten 877 * processes; don't let root exceed the limit. 878 */ 879 nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1; 880 if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred, 881 PRIV_MAXPROC, 0) != 0) || nprocs_new >= maxproc) { 882 error = EAGAIN; 883 sx_xlock(&allproc_lock); 884 if (ppsratecheck(&lastfail, &curfail, 1)) { 885 printf("maxproc limit exceeded by uid %u (pid %d); " 886 "see tuning(7) and login.conf(5)\n", 887 td->td_ucred->cr_ruid, p1->p_pid); 888 } 889 sx_xunlock(&allproc_lock); 890 goto fail2; 891 } 892 893 /* 894 * If required, create a process descriptor in the parent first; we 895 * will abandon it if something goes wrong. We don't finit() until 896 * later. 897 */ 898 if (flags & RFPROCDESC) { 899 error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd, 900 fr->fr_pd_flags, fr->fr_pd_fcaps); 901 if (error != 0) 902 goto fail2; 903 } 904 905 mem_charged = 0; 906 if (pages == 0) 907 pages = kstack_pages; 908 /* Allocate new proc. */ 909 newproc = uma_zalloc(proc_zone, M_WAITOK); 910 td2 = FIRST_THREAD_IN_PROC(newproc); 911 if (td2 == NULL) { 912 td2 = thread_alloc(pages); 913 if (td2 == NULL) { 914 error = ENOMEM; 915 goto fail2; 916 } 917 proc_linkup(newproc, td2); 918 } else { 919 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) { 920 if (td2->td_kstack != 0) 921 vm_thread_dispose(td2); 922 if (!thread_alloc_stack(td2, pages)) { 923 error = ENOMEM; 924 goto fail2; 925 } 926 } 927 } 928 929 if ((flags & RFMEM) == 0) { 930 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged); 931 if (vm2 == NULL) { 932 error = ENOMEM; 933 goto fail2; 934 } 935 if (!swap_reserve(mem_charged)) { 936 /* 937 * The swap reservation failed. The accounting 938 * from the entries of the copied vm2 will be 939 * subtracted in vmspace_free(), so force the 940 * reservation there. 941 */ 942 swap_reserve_force(mem_charged); 943 error = ENOMEM; 944 goto fail2; 945 } 946 } else 947 vm2 = NULL; 948 949 /* 950 * XXX: This is ugly; when we copy resource usage, we need to bump 951 * per-cred resource counters. 952 */ 953 proc_set_cred_init(newproc, crhold(td->td_ucred)); 954 955 /* 956 * Initialize resource accounting for the child process. 957 */ 958 error = racct_proc_fork(p1, newproc); 959 if (error != 0) { 960 error = EAGAIN; 961 goto fail1; 962 } 963 964 #ifdef MAC 965 mac_proc_init(newproc); 966 #endif 967 newproc->p_klist = knlist_alloc(&newproc->p_mtx); 968 STAILQ_INIT(&newproc->p_ktr); 969 970 /* We have to lock the process tree while we look for a pid. */ 971 sx_xlock(&proctree_lock); 972 sx_xlock(&allproc_lock); 973 974 /* 975 * Increment the count of procs running with this uid. Don't allow 976 * a nonprivileged user to exceed their current limit. 977 * 978 * XXXRW: Can we avoid privilege here if it's not needed? 979 */ 980 error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0); 981 if (error == 0) 982 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0); 983 else { 984 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 985 lim_cur(td, RLIMIT_NPROC)); 986 } 987 if (ok) { 988 do_fork(td, fr, newproc, td2, vm2, fp_procdesc); 989 return (0); 990 } 991 992 error = EAGAIN; 993 sx_xunlock(&allproc_lock); 994 sx_xunlock(&proctree_lock); 995 #ifdef MAC 996 mac_proc_destroy(newproc); 997 #endif 998 racct_proc_exit(newproc); 999 fail1: 1000 crfree(newproc->p_ucred); 1001 newproc->p_ucred = NULL; 1002 fail2: 1003 if (vm2 != NULL) 1004 vmspace_free(vm2); 1005 uma_zfree(proc_zone, newproc); 1006 if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) { 1007 fdclose(td, fp_procdesc, *fr->fr_pd_fd); 1008 fdrop(fp_procdesc, td); 1009 } 1010 atomic_add_int(&nprocs, -1); 1011 pause("fork", hz / 2); 1012 return (error); 1013 } 1014 1015 /* 1016 * Handle the return of a child process from fork1(). This function 1017 * is called from the MD fork_trampoline() entry point. 1018 */ 1019 void 1020 fork_exit(void (*callout)(void *, struct trapframe *), void *arg, 1021 struct trapframe *frame) 1022 { 1023 struct proc *p; 1024 struct thread *td; 1025 struct thread *dtd; 1026 1027 td = curthread; 1028 p = td->td_proc; 1029 KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new")); 1030 1031 CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)", 1032 td, td_get_sched(td), p->p_pid, td->td_name); 1033 1034 sched_fork_exit(td); 1035 /* 1036 * Processes normally resume in mi_switch() after being 1037 * cpu_switch()'ed to, but when children start up they arrive here 1038 * instead, so we must do much the same things as mi_switch() would. 1039 */ 1040 if ((dtd = PCPU_GET(deadthread))) { 1041 PCPU_SET(deadthread, NULL); 1042 thread_stash(dtd); 1043 } 1044 thread_unlock(td); 1045 1046 /* 1047 * cpu_fork_kthread_handler intercepts this function call to 1048 * have this call a non-return function to stay in kernel mode. 1049 * initproc has its own fork handler, but it does return. 1050 */ 1051 KASSERT(callout != NULL, ("NULL callout in fork_exit")); 1052 callout(arg, frame); 1053 1054 /* 1055 * Check if a kernel thread misbehaved and returned from its main 1056 * function. 1057 */ 1058 if (p->p_flag & P_KPROC) { 1059 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n", 1060 td->td_name, p->p_pid); 1061 kthread_exit(); 1062 } 1063 mtx_assert(&Giant, MA_NOTOWNED); 1064 1065 if (p->p_sysent->sv_schedtail != NULL) 1066 (p->p_sysent->sv_schedtail)(td); 1067 td->td_pflags &= ~TDP_FORKING; 1068 } 1069 1070 /* 1071 * Simplified back end of syscall(), used when returning from fork() 1072 * directly into user mode. This function is passed in to fork_exit() 1073 * as the first parameter and is called when returning to a new 1074 * userland process. 1075 */ 1076 void 1077 fork_return(struct thread *td, struct trapframe *frame) 1078 { 1079 struct proc *p; 1080 1081 p = td->td_proc; 1082 if (td->td_dbgflags & TDB_STOPATFORK) { 1083 PROC_LOCK(p); 1084 if ((p->p_flag & P_TRACED) != 0) { 1085 /* 1086 * Inform the debugger if one is still present. 1087 */ 1088 td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP; 1089 ptracestop(td, SIGSTOP, NULL); 1090 td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX); 1091 } else { 1092 /* 1093 * ... otherwise clear the request. 1094 */ 1095 td->td_dbgflags &= ~TDB_STOPATFORK; 1096 } 1097 PROC_UNLOCK(p); 1098 } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) { 1099 /* 1100 * This is the start of a new thread in a traced 1101 * process. Report a system call exit event. 1102 */ 1103 PROC_LOCK(p); 1104 td->td_dbgflags |= TDB_SCX; 1105 _STOPEVENT(p, S_SCX, td->td_sa.code); 1106 if ((p->p_ptevents & PTRACE_SCX) != 0 || 1107 (td->td_dbgflags & TDB_BORN) != 0) 1108 ptracestop(td, SIGTRAP, NULL); 1109 td->td_dbgflags &= ~(TDB_SCX | TDB_BORN); 1110 PROC_UNLOCK(p); 1111 } 1112 1113 userret(td, frame); 1114 1115 #ifdef KTRACE 1116 if (KTRPOINT(td, KTR_SYSRET)) 1117 ktrsysret(SYS_fork, 0, 0); 1118 #endif 1119 } 1120