xref: /freebsd/sys/kern/kern_fork.c (revision d34048812292b714a0bf99967270d18fe3097c62)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 #include "opt_kstack_pages.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/eventhandler.h>
49 #include <sys/fcntl.h>
50 #include <sys/filedesc.h>
51 #include <sys/jail.h>
52 #include <sys/kernel.h>
53 #include <sys/kthread.h>
54 #include <sys/sysctl.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/procdesc.h>
61 #include <sys/pioctl.h>
62 #include <sys/ptrace.h>
63 #include <sys/racct.h>
64 #include <sys/resourcevar.h>
65 #include <sys/sched.h>
66 #include <sys/syscall.h>
67 #include <sys/vmmeter.h>
68 #include <sys/vnode.h>
69 #include <sys/acct.h>
70 #include <sys/ktr.h>
71 #include <sys/ktrace.h>
72 #include <sys/unistd.h>
73 #include <sys/sdt.h>
74 #include <sys/sx.h>
75 #include <sys/sysent.h>
76 #include <sys/signalvar.h>
77 
78 #include <security/audit/audit.h>
79 #include <security/mac/mac_framework.h>
80 
81 #include <vm/vm.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_extern.h>
85 #include <vm/uma.h>
86 
87 #ifdef KDTRACE_HOOKS
88 #include <sys/dtrace_bsd.h>
89 dtrace_fork_func_t	dtrace_fasttrap_fork;
90 #endif
91 
92 SDT_PROVIDER_DECLARE(proc);
93 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
94 
95 #ifndef _SYS_SYSPROTO_H_
96 struct fork_args {
97 	int     dummy;
98 };
99 #endif
100 
101 EVENTHANDLER_LIST_DECLARE(process_fork);
102 
103 /* ARGSUSED */
104 int
105 sys_fork(struct thread *td, struct fork_args *uap)
106 {
107 	struct fork_req fr;
108 	int error, pid;
109 
110 	bzero(&fr, sizeof(fr));
111 	fr.fr_flags = RFFDG | RFPROC;
112 	fr.fr_pidp = &pid;
113 	error = fork1(td, &fr);
114 	if (error == 0) {
115 		td->td_retval[0] = pid;
116 		td->td_retval[1] = 0;
117 	}
118 	return (error);
119 }
120 
121 /* ARGUSED */
122 int
123 sys_pdfork(struct thread *td, struct pdfork_args *uap)
124 {
125 	struct fork_req fr;
126 	int error, fd, pid;
127 
128 	bzero(&fr, sizeof(fr));
129 	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
130 	fr.fr_pidp = &pid;
131 	fr.fr_pd_fd = &fd;
132 	fr.fr_pd_flags = uap->flags;
133 	/*
134 	 * It is necessary to return fd by reference because 0 is a valid file
135 	 * descriptor number, and the child needs to be able to distinguish
136 	 * itself from the parent using the return value.
137 	 */
138 	error = fork1(td, &fr);
139 	if (error == 0) {
140 		td->td_retval[0] = pid;
141 		td->td_retval[1] = 0;
142 		error = copyout(&fd, uap->fdp, sizeof(fd));
143 	}
144 	return (error);
145 }
146 
147 /* ARGSUSED */
148 int
149 sys_vfork(struct thread *td, struct vfork_args *uap)
150 {
151 	struct fork_req fr;
152 	int error, pid;
153 
154 	bzero(&fr, sizeof(fr));
155 	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
156 	fr.fr_pidp = &pid;
157 	error = fork1(td, &fr);
158 	if (error == 0) {
159 		td->td_retval[0] = pid;
160 		td->td_retval[1] = 0;
161 	}
162 	return (error);
163 }
164 
165 int
166 sys_rfork(struct thread *td, struct rfork_args *uap)
167 {
168 	struct fork_req fr;
169 	int error, pid;
170 
171 	/* Don't allow kernel-only flags. */
172 	if ((uap->flags & RFKERNELONLY) != 0)
173 		return (EINVAL);
174 
175 	AUDIT_ARG_FFLAGS(uap->flags);
176 	bzero(&fr, sizeof(fr));
177 	fr.fr_flags = uap->flags;
178 	fr.fr_pidp = &pid;
179 	error = fork1(td, &fr);
180 	if (error == 0) {
181 		td->td_retval[0] = pid;
182 		td->td_retval[1] = 0;
183 	}
184 	return (error);
185 }
186 
187 int	nprocs = 1;		/* process 0 */
188 int	lastpid = 0;
189 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
190     "Last used PID");
191 
192 /*
193  * Random component to lastpid generation.  We mix in a random factor to make
194  * it a little harder to predict.  We sanity check the modulus value to avoid
195  * doing it in critical paths.  Don't let it be too small or we pointlessly
196  * waste randomness entropy, and don't let it be impossibly large.  Using a
197  * modulus that is too big causes a LOT more process table scans and slows
198  * down fork processing as the pidchecked caching is defeated.
199  */
200 static int randompid = 0;
201 
202 static int
203 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
204 {
205 	int error, pid;
206 
207 	error = sysctl_wire_old_buffer(req, sizeof(int));
208 	if (error != 0)
209 		return(error);
210 	sx_xlock(&allproc_lock);
211 	pid = randompid;
212 	error = sysctl_handle_int(oidp, &pid, 0, req);
213 	if (error == 0 && req->newptr != NULL) {
214 		if (pid == 0)
215 			randompid = 0;
216 		else if (pid == 1)
217 			/* generate a random PID modulus between 100 and 1123 */
218 			randompid = 100 + arc4random() % 1024;
219 		else if (pid < 0 || pid > pid_max - 100)
220 			/* out of range */
221 			randompid = pid_max - 100;
222 		else if (pid < 100)
223 			/* Make it reasonable */
224 			randompid = 100;
225 		else
226 			randompid = pid;
227 	}
228 	sx_xunlock(&allproc_lock);
229 	return (error);
230 }
231 
232 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
233     0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value");
234 
235 static int
236 fork_findpid(int flags)
237 {
238 	struct proc *p;
239 	int trypid;
240 	static int pidchecked = 0;
241 
242 	/*
243 	 * Requires allproc_lock in order to iterate over the list
244 	 * of processes, and proctree_lock to access p_pgrp.
245 	 */
246 	sx_assert(&allproc_lock, SX_LOCKED);
247 	sx_assert(&proctree_lock, SX_LOCKED);
248 
249 	/*
250 	 * Find an unused process ID.  We remember a range of unused IDs
251 	 * ready to use (from lastpid+1 through pidchecked-1).
252 	 *
253 	 * If RFHIGHPID is set (used during system boot), do not allocate
254 	 * low-numbered pids.
255 	 */
256 	trypid = lastpid + 1;
257 	if (flags & RFHIGHPID) {
258 		if (trypid < 10)
259 			trypid = 10;
260 	} else {
261 		if (randompid)
262 			trypid += arc4random() % randompid;
263 	}
264 retry:
265 	/*
266 	 * If the process ID prototype has wrapped around,
267 	 * restart somewhat above 0, as the low-numbered procs
268 	 * tend to include daemons that don't exit.
269 	 */
270 	if (trypid >= pid_max) {
271 		trypid = trypid % pid_max;
272 		if (trypid < 100)
273 			trypid += 100;
274 		pidchecked = 0;
275 	}
276 	if (trypid >= pidchecked) {
277 		int doingzomb = 0;
278 
279 		pidchecked = PID_MAX;
280 		/*
281 		 * Scan the active and zombie procs to check whether this pid
282 		 * is in use.  Remember the lowest pid that's greater
283 		 * than trypid, so we can avoid checking for a while.
284 		 *
285 		 * Avoid reuse of the process group id, session id or
286 		 * the reaper subtree id.  Note that for process group
287 		 * and sessions, the amount of reserved pids is
288 		 * limited by process limit.  For the subtree ids, the
289 		 * id is kept reserved only while there is a
290 		 * non-reaped process in the subtree, so amount of
291 		 * reserved pids is limited by process limit times
292 		 * two.
293 		 */
294 		p = LIST_FIRST(&allproc);
295 again:
296 		for (; p != NULL; p = LIST_NEXT(p, p_list)) {
297 			while (p->p_pid == trypid ||
298 			    p->p_reapsubtree == trypid ||
299 			    (p->p_pgrp != NULL &&
300 			    (p->p_pgrp->pg_id == trypid ||
301 			    (p->p_session != NULL &&
302 			    p->p_session->s_sid == trypid)))) {
303 				trypid++;
304 				if (trypid >= pidchecked)
305 					goto retry;
306 			}
307 			if (p->p_pid > trypid && pidchecked > p->p_pid)
308 				pidchecked = p->p_pid;
309 			if (p->p_pgrp != NULL) {
310 				if (p->p_pgrp->pg_id > trypid &&
311 				    pidchecked > p->p_pgrp->pg_id)
312 					pidchecked = p->p_pgrp->pg_id;
313 				if (p->p_session != NULL &&
314 				    p->p_session->s_sid > trypid &&
315 				    pidchecked > p->p_session->s_sid)
316 					pidchecked = p->p_session->s_sid;
317 			}
318 		}
319 		if (!doingzomb) {
320 			doingzomb = 1;
321 			p = LIST_FIRST(&zombproc);
322 			goto again;
323 		}
324 	}
325 
326 	/*
327 	 * RFHIGHPID does not mess with the lastpid counter during boot.
328 	 */
329 	if (flags & RFHIGHPID)
330 		pidchecked = 0;
331 	else
332 		lastpid = trypid;
333 
334 	return (trypid);
335 }
336 
337 static int
338 fork_norfproc(struct thread *td, int flags)
339 {
340 	int error;
341 	struct proc *p1;
342 
343 	KASSERT((flags & RFPROC) == 0,
344 	    ("fork_norfproc called with RFPROC set"));
345 	p1 = td->td_proc;
346 
347 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
348 	    (flags & (RFCFDG | RFFDG))) {
349 		PROC_LOCK(p1);
350 		if (thread_single(p1, SINGLE_BOUNDARY)) {
351 			PROC_UNLOCK(p1);
352 			return (ERESTART);
353 		}
354 		PROC_UNLOCK(p1);
355 	}
356 
357 	error = vm_forkproc(td, NULL, NULL, NULL, flags);
358 	if (error)
359 		goto fail;
360 
361 	/*
362 	 * Close all file descriptors.
363 	 */
364 	if (flags & RFCFDG) {
365 		struct filedesc *fdtmp;
366 		fdtmp = fdinit(td->td_proc->p_fd, false);
367 		fdescfree(td);
368 		p1->p_fd = fdtmp;
369 	}
370 
371 	/*
372 	 * Unshare file descriptors (from parent).
373 	 */
374 	if (flags & RFFDG)
375 		fdunshare(td);
376 
377 fail:
378 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
379 	    (flags & (RFCFDG | RFFDG))) {
380 		PROC_LOCK(p1);
381 		thread_single_end(p1, SINGLE_BOUNDARY);
382 		PROC_UNLOCK(p1);
383 	}
384 	return (error);
385 }
386 
387 static void
388 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
389     struct vmspace *vm2, struct file *fp_procdesc)
390 {
391 	struct proc *p1, *pptr;
392 	int trypid;
393 	struct filedesc *fd;
394 	struct filedesc_to_leader *fdtol;
395 	struct sigacts *newsigacts;
396 
397 	sx_assert(&proctree_lock, SX_LOCKED);
398 	sx_assert(&allproc_lock, SX_XLOCKED);
399 
400 	p1 = td->td_proc;
401 
402 	trypid = fork_findpid(fr->fr_flags);
403 
404 	p2->p_state = PRS_NEW;		/* protect against others */
405 	p2->p_pid = trypid;
406 	AUDIT_ARG_PID(p2->p_pid);
407 	LIST_INSERT_HEAD(&allproc, p2, p_list);
408 	allproc_gen++;
409 	sx_xlock(PIDHASHLOCK(p2->p_pid));
410 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
411 	sx_xunlock(PIDHASHLOCK(p2->p_pid));
412 	PROC_LOCK(p2);
413 	PROC_LOCK(p1);
414 
415 	sx_xunlock(&allproc_lock);
416 	sx_xunlock(&proctree_lock);
417 
418 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
419 	    __rangeof(struct proc, p_startcopy, p_endcopy));
420 	pargs_hold(p2->p_args);
421 
422 	PROC_UNLOCK(p1);
423 
424 	bzero(&p2->p_startzero,
425 	    __rangeof(struct proc, p_startzero, p_endzero));
426 
427 	/* Tell the prison that we exist. */
428 	prison_proc_hold(p2->p_ucred->cr_prison);
429 
430 	PROC_UNLOCK(p2);
431 
432 	tidhash_add(td2);
433 
434 	/*
435 	 * Malloc things while we don't hold any locks.
436 	 */
437 	if (fr->fr_flags & RFSIGSHARE)
438 		newsigacts = NULL;
439 	else
440 		newsigacts = sigacts_alloc();
441 
442 	/*
443 	 * Copy filedesc.
444 	 */
445 	if (fr->fr_flags & RFCFDG) {
446 		fd = fdinit(p1->p_fd, false);
447 		fdtol = NULL;
448 	} else if (fr->fr_flags & RFFDG) {
449 		fd = fdcopy(p1->p_fd);
450 		fdtol = NULL;
451 	} else {
452 		fd = fdshare(p1->p_fd);
453 		if (p1->p_fdtol == NULL)
454 			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
455 			    p1->p_leader);
456 		if ((fr->fr_flags & RFTHREAD) != 0) {
457 			/*
458 			 * Shared file descriptor table, and shared
459 			 * process leaders.
460 			 */
461 			fdtol = p1->p_fdtol;
462 			FILEDESC_XLOCK(p1->p_fd);
463 			fdtol->fdl_refcount++;
464 			FILEDESC_XUNLOCK(p1->p_fd);
465 		} else {
466 			/*
467 			 * Shared file descriptor table, and different
468 			 * process leaders.
469 			 */
470 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
471 			    p1->p_fd, p2);
472 		}
473 	}
474 	/*
475 	 * Make a proc table entry for the new process.
476 	 * Start by zeroing the section of proc that is zero-initialized,
477 	 * then copy the section that is copied directly from the parent.
478 	 */
479 
480 	PROC_LOCK(p2);
481 	PROC_LOCK(p1);
482 
483 	bzero(&td2->td_startzero,
484 	    __rangeof(struct thread, td_startzero, td_endzero));
485 
486 	bcopy(&td->td_startcopy, &td2->td_startcopy,
487 	    __rangeof(struct thread, td_startcopy, td_endcopy));
488 
489 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
490 	td2->td_sigstk = td->td_sigstk;
491 	td2->td_flags = TDF_INMEM;
492 	td2->td_lend_user_pri = PRI_MAX;
493 
494 #ifdef VIMAGE
495 	td2->td_vnet = NULL;
496 	td2->td_vnet_lpush = NULL;
497 #endif
498 
499 	/*
500 	 * Allow the scheduler to initialize the child.
501 	 */
502 	thread_lock(td);
503 	sched_fork(td, td2);
504 	thread_unlock(td);
505 
506 	/*
507 	 * Duplicate sub-structures as needed.
508 	 * Increase reference counts on shared objects.
509 	 */
510 	p2->p_flag = P_INMEM;
511 	p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP);
512 	p2->p_swtick = ticks;
513 	if (p1->p_flag & P_PROFIL)
514 		startprofclock(p2);
515 
516 	if (fr->fr_flags & RFSIGSHARE) {
517 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
518 	} else {
519 		sigacts_copy(newsigacts, p1->p_sigacts);
520 		p2->p_sigacts = newsigacts;
521 	}
522 
523 	if (fr->fr_flags & RFTSIGZMB)
524 	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
525 	else if (fr->fr_flags & RFLINUXTHPN)
526 	        p2->p_sigparent = SIGUSR1;
527 	else
528 	        p2->p_sigparent = SIGCHLD;
529 
530 	p2->p_textvp = p1->p_textvp;
531 	p2->p_fd = fd;
532 	p2->p_fdtol = fdtol;
533 
534 	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
535 		p2->p_flag |= P_PROTECTED;
536 		p2->p_flag2 |= P2_INHERIT_PROTECTED;
537 	}
538 
539 	/*
540 	 * p_limit is copy-on-write.  Bump its refcount.
541 	 */
542 	lim_fork(p1, p2);
543 
544 	thread_cow_get_proc(td2, p2);
545 
546 	pstats_fork(p1->p_stats, p2->p_stats);
547 
548 	PROC_UNLOCK(p1);
549 	PROC_UNLOCK(p2);
550 
551 	/* Bump references to the text vnode (for procfs). */
552 	if (p2->p_textvp)
553 		vrefact(p2->p_textvp);
554 
555 	/*
556 	 * Set up linkage for kernel based threading.
557 	 */
558 	if ((fr->fr_flags & RFTHREAD) != 0) {
559 		mtx_lock(&ppeers_lock);
560 		p2->p_peers = p1->p_peers;
561 		p1->p_peers = p2;
562 		p2->p_leader = p1->p_leader;
563 		mtx_unlock(&ppeers_lock);
564 		PROC_LOCK(p1->p_leader);
565 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
566 			PROC_UNLOCK(p1->p_leader);
567 			/*
568 			 * The task leader is exiting, so process p1 is
569 			 * going to be killed shortly.  Since p1 obviously
570 			 * isn't dead yet, we know that the leader is either
571 			 * sending SIGKILL's to all the processes in this
572 			 * task or is sleeping waiting for all the peers to
573 			 * exit.  We let p1 complete the fork, but we need
574 			 * to go ahead and kill the new process p2 since
575 			 * the task leader may not get a chance to send
576 			 * SIGKILL to it.  We leave it on the list so that
577 			 * the task leader will wait for this new process
578 			 * to commit suicide.
579 			 */
580 			PROC_LOCK(p2);
581 			kern_psignal(p2, SIGKILL);
582 			PROC_UNLOCK(p2);
583 		} else
584 			PROC_UNLOCK(p1->p_leader);
585 	} else {
586 		p2->p_peers = NULL;
587 		p2->p_leader = p2;
588 	}
589 
590 	sx_xlock(&proctree_lock);
591 	PGRP_LOCK(p1->p_pgrp);
592 	PROC_LOCK(p2);
593 	PROC_LOCK(p1);
594 
595 	/*
596 	 * Preserve some more flags in subprocess.  P_PROFIL has already
597 	 * been preserved.
598 	 */
599 	p2->p_flag |= p1->p_flag & P_SUGID;
600 	td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING;
601 	SESS_LOCK(p1->p_session);
602 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
603 		p2->p_flag |= P_CONTROLT;
604 	SESS_UNLOCK(p1->p_session);
605 	if (fr->fr_flags & RFPPWAIT)
606 		p2->p_flag |= P_PPWAIT;
607 
608 	p2->p_pgrp = p1->p_pgrp;
609 	LIST_INSERT_AFTER(p1, p2, p_pglist);
610 	PGRP_UNLOCK(p1->p_pgrp);
611 	LIST_INIT(&p2->p_children);
612 	LIST_INIT(&p2->p_orphans);
613 
614 	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
615 
616 	/*
617 	 * If PF_FORK is set, the child process inherits the
618 	 * procfs ioctl flags from its parent.
619 	 */
620 	if (p1->p_pfsflags & PF_FORK) {
621 		p2->p_stops = p1->p_stops;
622 		p2->p_pfsflags = p1->p_pfsflags;
623 	}
624 
625 	/*
626 	 * This begins the section where we must prevent the parent
627 	 * from being swapped.
628 	 */
629 	_PHOLD(p1);
630 	PROC_UNLOCK(p1);
631 
632 	/*
633 	 * Attach the new process to its parent.
634 	 *
635 	 * If RFNOWAIT is set, the newly created process becomes a child
636 	 * of init.  This effectively disassociates the child from the
637 	 * parent.
638 	 */
639 	if ((fr->fr_flags & RFNOWAIT) != 0) {
640 		pptr = p1->p_reaper;
641 		p2->p_reaper = pptr;
642 	} else {
643 		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
644 		    p1 : p1->p_reaper;
645 		pptr = p1;
646 	}
647 	p2->p_pptr = pptr;
648 	p2->p_oppid = pptr->p_pid;
649 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
650 	LIST_INIT(&p2->p_reaplist);
651 	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
652 	if (p2->p_reaper == p1)
653 		p2->p_reapsubtree = p2->p_pid;
654 	sx_xunlock(&proctree_lock);
655 
656 	/* Inform accounting that we have forked. */
657 	p2->p_acflag = AFORK;
658 	PROC_UNLOCK(p2);
659 
660 #ifdef KTRACE
661 	ktrprocfork(p1, p2);
662 #endif
663 
664 	/*
665 	 * Finish creating the child process.  It will return via a different
666 	 * execution path later.  (ie: directly into user mode)
667 	 */
668 	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
669 
670 	if (fr->fr_flags == (RFFDG | RFPROC)) {
671 		VM_CNT_INC(v_forks);
672 		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
673 		    p2->p_vmspace->vm_ssize);
674 	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
675 		VM_CNT_INC(v_vforks);
676 		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
677 		    p2->p_vmspace->vm_ssize);
678 	} else if (p1 == &proc0) {
679 		VM_CNT_INC(v_kthreads);
680 		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
681 		    p2->p_vmspace->vm_ssize);
682 	} else {
683 		VM_CNT_INC(v_rforks);
684 		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
685 		    p2->p_vmspace->vm_ssize);
686 	}
687 
688 	/*
689 	 * Associate the process descriptor with the process before anything
690 	 * can happen that might cause that process to need the descriptor.
691 	 * However, don't do this until after fork(2) can no longer fail.
692 	 */
693 	if (fr->fr_flags & RFPROCDESC)
694 		procdesc_new(p2, fr->fr_pd_flags);
695 
696 	/*
697 	 * Both processes are set up, now check if any loadable modules want
698 	 * to adjust anything.
699 	 */
700 	EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
701 
702 	/*
703 	 * Set the child start time and mark the process as being complete.
704 	 */
705 	PROC_LOCK(p2);
706 	PROC_LOCK(p1);
707 	microuptime(&p2->p_stats->p_start);
708 	PROC_SLOCK(p2);
709 	p2->p_state = PRS_NORMAL;
710 	PROC_SUNLOCK(p2);
711 
712 #ifdef KDTRACE_HOOKS
713 	/*
714 	 * Tell the DTrace fasttrap provider about the new process so that any
715 	 * tracepoints inherited from the parent can be removed. We have to do
716 	 * this only after p_state is PRS_NORMAL since the fasttrap module will
717 	 * use pfind() later on.
718 	 */
719 	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
720 		dtrace_fasttrap_fork(p1, p2);
721 #endif
722 	if (fr->fr_flags & RFPPWAIT) {
723 		td->td_pflags |= TDP_RFPPWAIT;
724 		td->td_rfppwait_p = p2;
725 		td->td_dbgflags |= TDB_VFORK;
726 	}
727 	PROC_UNLOCK(p2);
728 
729 	/*
730 	 * Now can be swapped.
731 	 */
732 	_PRELE(p1);
733 	PROC_UNLOCK(p1);
734 
735 	/*
736 	 * Tell any interested parties about the new process.
737 	 */
738 	knote_fork(p1->p_klist, p2->p_pid);
739 	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
740 
741 	if (fr->fr_flags & RFPROCDESC) {
742 		procdesc_finit(p2->p_procdesc, fp_procdesc);
743 		fdrop(fp_procdesc, td);
744 	}
745 
746 	/*
747 	 * Speculative check for PTRACE_FORK. PTRACE_FORK is not
748 	 * synced with forks in progress so it is OK if we miss it
749 	 * if being set atm.
750 	 */
751 	if ((p1->p_ptevents & PTRACE_FORK) != 0) {
752 		sx_xlock(&proctree_lock);
753 		PROC_LOCK(p2);
754 
755 		/*
756 		 * p1->p_ptevents & p1->p_pptr are protected by both
757 		 * process and proctree locks for modifications,
758 		 * so owning proctree_lock allows the race-free read.
759 		 */
760 		if ((p1->p_ptevents & PTRACE_FORK) != 0) {
761 			/*
762 			 * Arrange for debugger to receive the fork event.
763 			 *
764 			 * We can report PL_FLAG_FORKED regardless of
765 			 * P_FOLLOWFORK settings, but it does not make a sense
766 			 * for runaway child.
767 			 */
768 			td->td_dbgflags |= TDB_FORK;
769 			td->td_dbg_forked = p2->p_pid;
770 			td2->td_dbgflags |= TDB_STOPATFORK;
771 			proc_set_traced(p2, true);
772 			CTR2(KTR_PTRACE,
773 			    "do_fork: attaching to new child pid %d: oppid %d",
774 			    p2->p_pid, p2->p_oppid);
775 			proc_reparent(p2, p1->p_pptr, false);
776 		}
777 		PROC_UNLOCK(p2);
778 		sx_xunlock(&proctree_lock);
779 	}
780 
781 	racct_proc_fork_done(p2);
782 
783 	if ((fr->fr_flags & RFSTOPPED) == 0) {
784 		if (fr->fr_pidp != NULL)
785 			*fr->fr_pidp = p2->p_pid;
786 		/*
787 		 * If RFSTOPPED not requested, make child runnable and
788 		 * add to run queue.
789 		 */
790 		thread_lock(td2);
791 		TD_SET_CAN_RUN(td2);
792 		sched_add(td2, SRQ_BORING);
793 		thread_unlock(td2);
794 	} else {
795 		*fr->fr_procp = p2;
796 	}
797 }
798 
799 int
800 fork1(struct thread *td, struct fork_req *fr)
801 {
802 	struct proc *p1, *newproc;
803 	struct thread *td2;
804 	struct vmspace *vm2;
805 	struct file *fp_procdesc;
806 	vm_ooffset_t mem_charged;
807 	int error, nprocs_new, ok;
808 	static int curfail;
809 	static struct timeval lastfail;
810 	int flags, pages;
811 
812 	flags = fr->fr_flags;
813 	pages = fr->fr_pages;
814 
815 	if ((flags & RFSTOPPED) != 0)
816 		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
817 	else
818 		MPASS(fr->fr_procp == NULL);
819 
820 	/* Check for the undefined or unimplemented flags. */
821 	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
822 		return (EINVAL);
823 
824 	/* Signal value requires RFTSIGZMB. */
825 	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
826 		return (EINVAL);
827 
828 	/* Can't copy and clear. */
829 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
830 		return (EINVAL);
831 
832 	/* Check the validity of the signal number. */
833 	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
834 		return (EINVAL);
835 
836 	if ((flags & RFPROCDESC) != 0) {
837 		/* Can't not create a process yet get a process descriptor. */
838 		if ((flags & RFPROC) == 0)
839 			return (EINVAL);
840 
841 		/* Must provide a place to put a procdesc if creating one. */
842 		if (fr->fr_pd_fd == NULL)
843 			return (EINVAL);
844 
845 		/* Check if we are using supported flags. */
846 		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
847 			return (EINVAL);
848 	}
849 
850 	p1 = td->td_proc;
851 
852 	/*
853 	 * Here we don't create a new process, but we divorce
854 	 * certain parts of a process from itself.
855 	 */
856 	if ((flags & RFPROC) == 0) {
857 		if (fr->fr_procp != NULL)
858 			*fr->fr_procp = NULL;
859 		else if (fr->fr_pidp != NULL)
860 			*fr->fr_pidp = 0;
861 		return (fork_norfproc(td, flags));
862 	}
863 
864 	fp_procdesc = NULL;
865 	newproc = NULL;
866 	vm2 = NULL;
867 
868 	/*
869 	 * Increment the nprocs resource before allocations occur.
870 	 * Although process entries are dynamically created, we still
871 	 * keep a global limit on the maximum number we will
872 	 * create. There are hard-limits as to the number of processes
873 	 * that can run, established by the KVA and memory usage for
874 	 * the process data.
875 	 *
876 	 * Don't allow a nonprivileged user to use the last ten
877 	 * processes; don't let root exceed the limit.
878 	 */
879 	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
880 	if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred,
881 	    PRIV_MAXPROC, 0) != 0) || nprocs_new >= maxproc) {
882 		error = EAGAIN;
883 		sx_xlock(&allproc_lock);
884 		if (ppsratecheck(&lastfail, &curfail, 1)) {
885 			printf("maxproc limit exceeded by uid %u (pid %d); "
886 			    "see tuning(7) and login.conf(5)\n",
887 			    td->td_ucred->cr_ruid, p1->p_pid);
888 		}
889 		sx_xunlock(&allproc_lock);
890 		goto fail2;
891 	}
892 
893 	/*
894 	 * If required, create a process descriptor in the parent first; we
895 	 * will abandon it if something goes wrong. We don't finit() until
896 	 * later.
897 	 */
898 	if (flags & RFPROCDESC) {
899 		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
900 		    fr->fr_pd_flags, fr->fr_pd_fcaps);
901 		if (error != 0)
902 			goto fail2;
903 	}
904 
905 	mem_charged = 0;
906 	if (pages == 0)
907 		pages = kstack_pages;
908 	/* Allocate new proc. */
909 	newproc = uma_zalloc(proc_zone, M_WAITOK);
910 	td2 = FIRST_THREAD_IN_PROC(newproc);
911 	if (td2 == NULL) {
912 		td2 = thread_alloc(pages);
913 		if (td2 == NULL) {
914 			error = ENOMEM;
915 			goto fail2;
916 		}
917 		proc_linkup(newproc, td2);
918 	} else {
919 		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
920 			if (td2->td_kstack != 0)
921 				vm_thread_dispose(td2);
922 			if (!thread_alloc_stack(td2, pages)) {
923 				error = ENOMEM;
924 				goto fail2;
925 			}
926 		}
927 	}
928 
929 	if ((flags & RFMEM) == 0) {
930 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
931 		if (vm2 == NULL) {
932 			error = ENOMEM;
933 			goto fail2;
934 		}
935 		if (!swap_reserve(mem_charged)) {
936 			/*
937 			 * The swap reservation failed. The accounting
938 			 * from the entries of the copied vm2 will be
939 			 * subtracted in vmspace_free(), so force the
940 			 * reservation there.
941 			 */
942 			swap_reserve_force(mem_charged);
943 			error = ENOMEM;
944 			goto fail2;
945 		}
946 	} else
947 		vm2 = NULL;
948 
949 	/*
950 	 * XXX: This is ugly; when we copy resource usage, we need to bump
951 	 *      per-cred resource counters.
952 	 */
953 	proc_set_cred_init(newproc, crhold(td->td_ucred));
954 
955 	/*
956 	 * Initialize resource accounting for the child process.
957 	 */
958 	error = racct_proc_fork(p1, newproc);
959 	if (error != 0) {
960 		error = EAGAIN;
961 		goto fail1;
962 	}
963 
964 #ifdef MAC
965 	mac_proc_init(newproc);
966 #endif
967 	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
968 	STAILQ_INIT(&newproc->p_ktr);
969 
970 	/* We have to lock the process tree while we look for a pid. */
971 	sx_xlock(&proctree_lock);
972 	sx_xlock(&allproc_lock);
973 
974 	/*
975 	 * Increment the count of procs running with this uid. Don't allow
976 	 * a nonprivileged user to exceed their current limit.
977 	 *
978 	 * XXXRW: Can we avoid privilege here if it's not needed?
979 	 */
980 	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
981 	if (error == 0)
982 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
983 	else {
984 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
985 		    lim_cur(td, RLIMIT_NPROC));
986 	}
987 	if (ok) {
988 		do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
989 		return (0);
990 	}
991 
992 	error = EAGAIN;
993 	sx_xunlock(&allproc_lock);
994 	sx_xunlock(&proctree_lock);
995 #ifdef MAC
996 	mac_proc_destroy(newproc);
997 #endif
998 	racct_proc_exit(newproc);
999 fail1:
1000 	crfree(newproc->p_ucred);
1001 	newproc->p_ucred = NULL;
1002 fail2:
1003 	if (vm2 != NULL)
1004 		vmspace_free(vm2);
1005 	uma_zfree(proc_zone, newproc);
1006 	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
1007 		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1008 		fdrop(fp_procdesc, td);
1009 	}
1010 	atomic_add_int(&nprocs, -1);
1011 	pause("fork", hz / 2);
1012 	return (error);
1013 }
1014 
1015 /*
1016  * Handle the return of a child process from fork1().  This function
1017  * is called from the MD fork_trampoline() entry point.
1018  */
1019 void
1020 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1021     struct trapframe *frame)
1022 {
1023 	struct proc *p;
1024 	struct thread *td;
1025 	struct thread *dtd;
1026 
1027 	td = curthread;
1028 	p = td->td_proc;
1029 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1030 
1031 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1032 	    td, td_get_sched(td), p->p_pid, td->td_name);
1033 
1034 	sched_fork_exit(td);
1035 	/*
1036 	* Processes normally resume in mi_switch() after being
1037 	* cpu_switch()'ed to, but when children start up they arrive here
1038 	* instead, so we must do much the same things as mi_switch() would.
1039 	*/
1040 	if ((dtd = PCPU_GET(deadthread))) {
1041 		PCPU_SET(deadthread, NULL);
1042 		thread_stash(dtd);
1043 	}
1044 	thread_unlock(td);
1045 
1046 	/*
1047 	 * cpu_fork_kthread_handler intercepts this function call to
1048 	 * have this call a non-return function to stay in kernel mode.
1049 	 * initproc has its own fork handler, but it does return.
1050 	 */
1051 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1052 	callout(arg, frame);
1053 
1054 	/*
1055 	 * Check if a kernel thread misbehaved and returned from its main
1056 	 * function.
1057 	 */
1058 	if (p->p_flag & P_KPROC) {
1059 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1060 		    td->td_name, p->p_pid);
1061 		kthread_exit();
1062 	}
1063 	mtx_assert(&Giant, MA_NOTOWNED);
1064 
1065 	if (p->p_sysent->sv_schedtail != NULL)
1066 		(p->p_sysent->sv_schedtail)(td);
1067 	td->td_pflags &= ~TDP_FORKING;
1068 }
1069 
1070 /*
1071  * Simplified back end of syscall(), used when returning from fork()
1072  * directly into user mode.  This function is passed in to fork_exit()
1073  * as the first parameter and is called when returning to a new
1074  * userland process.
1075  */
1076 void
1077 fork_return(struct thread *td, struct trapframe *frame)
1078 {
1079 	struct proc *p;
1080 
1081 	p = td->td_proc;
1082 	if (td->td_dbgflags & TDB_STOPATFORK) {
1083 		PROC_LOCK(p);
1084 		if ((p->p_flag & P_TRACED) != 0) {
1085 			/*
1086 			 * Inform the debugger if one is still present.
1087 			 */
1088 			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1089 			ptracestop(td, SIGSTOP, NULL);
1090 			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1091 		} else {
1092 			/*
1093 			 * ... otherwise clear the request.
1094 			 */
1095 			td->td_dbgflags &= ~TDB_STOPATFORK;
1096 		}
1097 		PROC_UNLOCK(p);
1098 	} else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
1099  		/*
1100 		 * This is the start of a new thread in a traced
1101 		 * process.  Report a system call exit event.
1102 		 */
1103 		PROC_LOCK(p);
1104 		td->td_dbgflags |= TDB_SCX;
1105 		_STOPEVENT(p, S_SCX, td->td_sa.code);
1106 		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1107 		    (td->td_dbgflags & TDB_BORN) != 0)
1108 			ptracestop(td, SIGTRAP, NULL);
1109 		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1110 		PROC_UNLOCK(p);
1111 	}
1112 
1113 	userret(td, frame);
1114 
1115 #ifdef KTRACE
1116 	if (KTRPOINT(td, KTR_SYSRET))
1117 		ktrsysret(SYS_fork, 0, 0);
1118 #endif
1119 }
1120