xref: /freebsd/sys/kern/kern_fork.c (revision c128b2d129a8e305b673ef5e3da76af1fb91ae60)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_mac.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysproto.h>
46 #include <sys/eventhandler.h>
47 #include <sys/filedesc.h>
48 #include <sys/kernel.h>
49 #include <sys/kthread.h>
50 #include <sys/sysctl.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/pioctl.h>
56 #include <sys/resourcevar.h>
57 #include <sys/sched.h>
58 #include <sys/syscall.h>
59 #include <sys/vmmeter.h>
60 #include <sys/vnode.h>
61 #include <sys/acct.h>
62 #include <sys/mac.h>
63 #include <sys/ktr.h>
64 #include <sys/ktrace.h>
65 #include <sys/unistd.h>
66 #include <sys/sx.h>
67 #include <sys/signalvar.h>
68 
69 #include <security/audit/audit.h>
70 
71 #include <vm/vm.h>
72 #include <vm/pmap.h>
73 #include <vm/vm_map.h>
74 #include <vm/vm_extern.h>
75 #include <vm/uma.h>
76 
77 
78 #ifndef _SYS_SYSPROTO_H_
79 struct fork_args {
80 	int     dummy;
81 };
82 #endif
83 
84 static int forksleep; /* Place for fork1() to sleep on. */
85 
86 /*
87  * MPSAFE
88  */
89 /* ARGSUSED */
90 int
91 fork(td, uap)
92 	struct thread *td;
93 	struct fork_args *uap;
94 {
95 	int error;
96 	struct proc *p2;
97 
98 	error = fork1(td, RFFDG | RFPROC, 0, &p2);
99 	if (error == 0) {
100 		td->td_retval[0] = p2->p_pid;
101 		td->td_retval[1] = 0;
102 	}
103 	return (error);
104 }
105 
106 /*
107  * MPSAFE
108  */
109 /* ARGSUSED */
110 int
111 vfork(td, uap)
112 	struct thread *td;
113 	struct vfork_args *uap;
114 {
115 	int error;
116 	struct proc *p2;
117 
118 	error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, 0, &p2);
119 	if (error == 0) {
120 		td->td_retval[0] = p2->p_pid;
121 		td->td_retval[1] = 0;
122 	}
123 	return (error);
124 }
125 
126 /*
127  * MPSAFE
128  */
129 int
130 rfork(td, uap)
131 	struct thread *td;
132 	struct rfork_args *uap;
133 {
134 	struct proc *p2;
135 	int error;
136 
137 	/* Don't allow kernel-only flags. */
138 	if ((uap->flags & RFKERNELONLY) != 0)
139 		return (EINVAL);
140 
141 	AUDIT_ARG(fflags, uap->flags);
142 	error = fork1(td, uap->flags, 0, &p2);
143 	if (error == 0) {
144 		td->td_retval[0] = p2 ? p2->p_pid : 0;
145 		td->td_retval[1] = 0;
146 	}
147 	return (error);
148 }
149 
150 int	nprocs = 1;		/* process 0 */
151 int	lastpid = 0;
152 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
153     "Last used PID");
154 
155 /*
156  * Random component to lastpid generation.  We mix in a random factor to make
157  * it a little harder to predict.  We sanity check the modulus value to avoid
158  * doing it in critical paths.  Don't let it be too small or we pointlessly
159  * waste randomness entropy, and don't let it be impossibly large.  Using a
160  * modulus that is too big causes a LOT more process table scans and slows
161  * down fork processing as the pidchecked caching is defeated.
162  */
163 static int randompid = 0;
164 
165 static int
166 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
167 {
168 	int error, pid;
169 
170 	error = sysctl_wire_old_buffer(req, sizeof(int));
171 	if (error != 0)
172 		return(error);
173 	sx_xlock(&allproc_lock);
174 	pid = randompid;
175 	error = sysctl_handle_int(oidp, &pid, 0, req);
176 	if (error == 0 && req->newptr != NULL) {
177 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
178 			pid = PID_MAX - 100;
179 		else if (pid < 2)			/* NOP */
180 			pid = 0;
181 		else if (pid < 100)			/* Make it reasonable */
182 			pid = 100;
183 		randompid = pid;
184 	}
185 	sx_xunlock(&allproc_lock);
186 	return (error);
187 }
188 
189 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
190     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
191 
192 int
193 fork1(td, flags, pages, procp)
194 	struct thread *td;
195 	int flags;
196 	int pages;
197 	struct proc **procp;
198 {
199 	struct proc *p1, *p2, *pptr;
200 	uid_t uid;
201 	struct proc *newproc;
202 	int ok, trypid;
203 	static int curfail, pidchecked = 0;
204 	static struct timeval lastfail;
205 	struct filedesc *fd;
206 	struct filedesc_to_leader *fdtol;
207 	struct thread *td2;
208 	struct ksegrp *kg2;
209 	struct sigacts *newsigacts;
210 	int error;
211 
212 	/* Can't copy and clear. */
213 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
214 		return (EINVAL);
215 
216 	p1 = td->td_proc;
217 
218 	/*
219 	 * Here we don't create a new process, but we divorce
220 	 * certain parts of a process from itself.
221 	 */
222 	if ((flags & RFPROC) == 0) {
223 		vm_forkproc(td, NULL, NULL, flags);
224 
225 		/*
226 		 * Close all file descriptors.
227 		 */
228 		if (flags & RFCFDG) {
229 			struct filedesc *fdtmp;
230 			fdtmp = fdinit(td->td_proc->p_fd);
231 			fdfree(td);
232 			p1->p_fd = fdtmp;
233 		}
234 
235 		/*
236 		 * Unshare file descriptors (from parent).
237 		 */
238 		if (flags & RFFDG)
239 			fdunshare(p1, td);
240 		*procp = NULL;
241 		return (0);
242 	}
243 
244 	/*
245 	 * Note 1:1 allows for forking with one thread coming out on the
246 	 * other side with the expectation that the process is about to
247 	 * exec.
248 	 */
249 	if (p1->p_flag & P_HADTHREADS) {
250 		/*
251 		 * Idle the other threads for a second.
252 		 * Since the user space is copied, it must remain stable.
253 		 * In addition, all threads (from the user perspective)
254 		 * need to either be suspended or in the kernel,
255 		 * where they will try restart in the parent and will
256 		 * be aborted in the child.
257 		 */
258 		PROC_LOCK(p1);
259 		if (thread_single(SINGLE_NO_EXIT)) {
260 			/* Abort. Someone else is single threading before us. */
261 			PROC_UNLOCK(p1);
262 			return (ERESTART);
263 		}
264 		PROC_UNLOCK(p1);
265 		/*
266 		 * All other activity in this process
267 		 * is now suspended at the user boundary,
268 		 * (or other safe places if we think of any).
269 		 */
270 	}
271 
272 	/* Allocate new proc. */
273 	newproc = uma_zalloc(proc_zone, M_WAITOK);
274 #ifdef MAC
275 	mac_init_proc(newproc);
276 #endif
277 #ifdef AUDIT
278 	audit_proc_alloc(newproc);
279 #endif
280 	knlist_init(&newproc->p_klist, &newproc->p_mtx, NULL, NULL, NULL);
281 	STAILQ_INIT(&newproc->p_ktr);
282 
283 	/* We have to lock the process tree while we look for a pid. */
284 	sx_slock(&proctree_lock);
285 
286 	/*
287 	 * Although process entries are dynamically created, we still keep
288 	 * a global limit on the maximum number we will create.  Don't allow
289 	 * a nonprivileged user to use the last ten processes; don't let root
290 	 * exceed the limit. The variable nprocs is the current number of
291 	 * processes, maxproc is the limit.
292 	 */
293 	sx_xlock(&allproc_lock);
294 	uid = td->td_ucred->cr_ruid;
295 	if ((nprocs >= maxproc - 10 &&
296 	    suser_cred(td->td_ucred, SUSER_RUID) != 0) ||
297 	    nprocs >= maxproc) {
298 		error = EAGAIN;
299 		goto fail;
300 	}
301 
302 	/*
303 	 * Increment the count of procs running with this uid. Don't allow
304 	 * a nonprivileged user to exceed their current limit.
305 	 */
306 	PROC_LOCK(p1);
307 	ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
308 		(uid != 0) ? lim_cur(p1, RLIMIT_NPROC) : 0);
309 	PROC_UNLOCK(p1);
310 	if (!ok) {
311 		error = EAGAIN;
312 		goto fail;
313 	}
314 
315 	/*
316 	 * Increment the nprocs resource before blocking can occur.  There
317 	 * are hard-limits as to the number of processes that can run.
318 	 */
319 	nprocs++;
320 
321 	/*
322 	 * Find an unused process ID.  We remember a range of unused IDs
323 	 * ready to use (from lastpid+1 through pidchecked-1).
324 	 *
325 	 * If RFHIGHPID is set (used during system boot), do not allocate
326 	 * low-numbered pids.
327 	 */
328 	trypid = lastpid + 1;
329 	if (flags & RFHIGHPID) {
330 		if (trypid < 10)
331 			trypid = 10;
332 	} else {
333 		if (randompid)
334 			trypid += arc4random() % randompid;
335 	}
336 retry:
337 	/*
338 	 * If the process ID prototype has wrapped around,
339 	 * restart somewhat above 0, as the low-numbered procs
340 	 * tend to include daemons that don't exit.
341 	 */
342 	if (trypid >= PID_MAX) {
343 		trypid = trypid % PID_MAX;
344 		if (trypid < 100)
345 			trypid += 100;
346 		pidchecked = 0;
347 	}
348 	if (trypid >= pidchecked) {
349 		int doingzomb = 0;
350 
351 		pidchecked = PID_MAX;
352 		/*
353 		 * Scan the active and zombie procs to check whether this pid
354 		 * is in use.  Remember the lowest pid that's greater
355 		 * than trypid, so we can avoid checking for a while.
356 		 */
357 		p2 = LIST_FIRST(&allproc);
358 again:
359 		for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
360 			PROC_LOCK(p2);
361 			while (p2->p_pid == trypid ||
362 			    (p2->p_pgrp != NULL &&
363 			    (p2->p_pgrp->pg_id == trypid ||
364 			    (p2->p_session != NULL &&
365 			    p2->p_session->s_sid == trypid)))) {
366 				trypid++;
367 				if (trypid >= pidchecked) {
368 					PROC_UNLOCK(p2);
369 					goto retry;
370 				}
371 			}
372 			if (p2->p_pid > trypid && pidchecked > p2->p_pid)
373 				pidchecked = p2->p_pid;
374 			if (p2->p_pgrp != NULL) {
375 				if (p2->p_pgrp->pg_id > trypid &&
376 				    pidchecked > p2->p_pgrp->pg_id)
377 					pidchecked = p2->p_pgrp->pg_id;
378 				if (p2->p_session != NULL &&
379 				    p2->p_session->s_sid > trypid &&
380 				    pidchecked > p2->p_session->s_sid)
381 					pidchecked = p2->p_session->s_sid;
382 			}
383 			PROC_UNLOCK(p2);
384 		}
385 		if (!doingzomb) {
386 			doingzomb = 1;
387 			p2 = LIST_FIRST(&zombproc);
388 			goto again;
389 		}
390 	}
391 	sx_sunlock(&proctree_lock);
392 
393 	/*
394 	 * RFHIGHPID does not mess with the lastpid counter during boot.
395 	 */
396 	if (flags & RFHIGHPID)
397 		pidchecked = 0;
398 	else
399 		lastpid = trypid;
400 
401 	p2 = newproc;
402 	p2->p_state = PRS_NEW;		/* protect against others */
403 	p2->p_pid = trypid;
404 	AUDIT_ARG(pid, p2->p_pid);
405 	LIST_INSERT_HEAD(&allproc, p2, p_list);
406 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
407 	sx_xunlock(&allproc_lock);
408 
409 	/*
410 	 * Malloc things while we don't hold any locks.
411 	 */
412 	if (flags & RFSIGSHARE)
413 		newsigacts = NULL;
414 	else
415 		newsigacts = sigacts_alloc();
416 
417 	/*
418 	 * Copy filedesc.
419 	 */
420 	if (flags & RFCFDG) {
421 		fd = fdinit(p1->p_fd);
422 		fdtol = NULL;
423 	} else if (flags & RFFDG) {
424 		fd = fdcopy(p1->p_fd);
425 		fdtol = NULL;
426 	} else {
427 		fd = fdshare(p1->p_fd);
428 		if (p1->p_fdtol == NULL)
429 			p1->p_fdtol =
430 				filedesc_to_leader_alloc(NULL,
431 							 NULL,
432 							 p1->p_leader);
433 		if ((flags & RFTHREAD) != 0) {
434 			/*
435 			 * Shared file descriptor table and
436 			 * shared process leaders.
437 			 */
438 			fdtol = p1->p_fdtol;
439 			FILEDESC_LOCK_FAST(p1->p_fd);
440 			fdtol->fdl_refcount++;
441 			FILEDESC_UNLOCK_FAST(p1->p_fd);
442 		} else {
443 			/*
444 			 * Shared file descriptor table, and
445 			 * different process leaders
446 			 */
447 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
448 							 p1->p_fd,
449 							 p2);
450 		}
451 	}
452 	/*
453 	 * Make a proc table entry for the new process.
454 	 * Start by zeroing the section of proc that is zero-initialized,
455 	 * then copy the section that is copied directly from the parent.
456 	 */
457 	td2 = FIRST_THREAD_IN_PROC(p2);
458 	kg2 = FIRST_KSEGRP_IN_PROC(p2);
459 
460 	/* Allocate and switch to an alternate kstack if specified. */
461 	if (pages != 0)
462 		vm_thread_new_altkstack(td2, pages);
463 
464 	PROC_LOCK(p2);
465 	PROC_LOCK(p1);
466 
467 	bzero(&p2->p_startzero,
468 	    __rangeof(struct proc, p_startzero, p_endzero));
469 	bzero(&td2->td_startzero,
470 	    __rangeof(struct thread, td_startzero, td_endzero));
471 	bzero(&kg2->kg_startzero,
472 	    __rangeof(struct ksegrp, kg_startzero, kg_endzero));
473 
474 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
475 	    __rangeof(struct proc, p_startcopy, p_endcopy));
476 	bcopy(&td->td_startcopy, &td2->td_startcopy,
477 	    __rangeof(struct thread, td_startcopy, td_endcopy));
478 	bcopy(&td->td_ksegrp->kg_startcopy, &kg2->kg_startcopy,
479 	    __rangeof(struct ksegrp, kg_startcopy, kg_endcopy));
480 
481 	td2->td_sigstk = td->td_sigstk;
482 	td2->td_sigmask = td->td_sigmask;
483 
484 	/*
485 	 * Duplicate sub-structures as needed.
486 	 * Increase reference counts on shared objects.
487 	 */
488 	p2->p_flag = 0;
489 	if (p1->p_flag & P_PROFIL)
490 		startprofclock(p2);
491 	mtx_lock_spin(&sched_lock);
492 	p2->p_sflag = PS_INMEM;
493 	/*
494 	 * Allow the scheduler to adjust the priority of the child and
495 	 * parent while we hold the sched_lock.
496 	 */
497 	sched_fork(td, td2);
498 
499 	mtx_unlock_spin(&sched_lock);
500 	p2->p_ucred = crhold(td->td_ucred);
501 	td2->td_ucred = crhold(p2->p_ucred);	/* XXXKSE */
502 #ifdef AUDIT
503 	audit_proc_fork(p1, p2);
504 #endif
505 	pargs_hold(p2->p_args);
506 
507 	if (flags & RFSIGSHARE) {
508 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
509 	} else {
510 		sigacts_copy(newsigacts, p1->p_sigacts);
511 		p2->p_sigacts = newsigacts;
512 	}
513 	if (flags & RFLINUXTHPN)
514 	        p2->p_sigparent = SIGUSR1;
515 	else
516 	        p2->p_sigparent = SIGCHLD;
517 
518 	p2->p_textvp = p1->p_textvp;
519 	p2->p_fd = fd;
520 	p2->p_fdtol = fdtol;
521 
522 	/*
523 	 * p_limit is copy-on-write.  Bump its refcount.
524 	 */
525 	p2->p_limit = lim_hold(p1->p_limit);
526 
527 	pstats_fork(p1->p_stats, p2->p_stats);
528 
529 	PROC_UNLOCK(p1);
530 	PROC_UNLOCK(p2);
531 
532 	/* Bump references to the text vnode (for procfs) */
533 	if (p2->p_textvp)
534 		vref(p2->p_textvp);
535 
536 	/*
537 	 * Set up linkage for kernel based threading.
538 	 */
539 	if ((flags & RFTHREAD) != 0) {
540 		mtx_lock(&ppeers_lock);
541 		p2->p_peers = p1->p_peers;
542 		p1->p_peers = p2;
543 		p2->p_leader = p1->p_leader;
544 		mtx_unlock(&ppeers_lock);
545 		PROC_LOCK(p1->p_leader);
546 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
547 			PROC_UNLOCK(p1->p_leader);
548 			/*
549 			 * The task leader is exiting, so process p1 is
550 			 * going to be killed shortly.  Since p1 obviously
551 			 * isn't dead yet, we know that the leader is either
552 			 * sending SIGKILL's to all the processes in this
553 			 * task or is sleeping waiting for all the peers to
554 			 * exit.  We let p1 complete the fork, but we need
555 			 * to go ahead and kill the new process p2 since
556 			 * the task leader may not get a chance to send
557 			 * SIGKILL to it.  We leave it on the list so that
558 			 * the task leader will wait for this new process
559 			 * to commit suicide.
560 			 */
561 			PROC_LOCK(p2);
562 			psignal(p2, SIGKILL);
563 			PROC_UNLOCK(p2);
564 		} else
565 			PROC_UNLOCK(p1->p_leader);
566 	} else {
567 		p2->p_peers = NULL;
568 		p2->p_leader = p2;
569 	}
570 
571 	sx_xlock(&proctree_lock);
572 	PGRP_LOCK(p1->p_pgrp);
573 	PROC_LOCK(p2);
574 	PROC_LOCK(p1);
575 
576 	/*
577 	 * Preserve some more flags in subprocess.  P_PROFIL has already
578 	 * been preserved.
579 	 */
580 	p2->p_flag |= p1->p_flag & P_SUGID;
581 	td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
582 	SESS_LOCK(p1->p_session);
583 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
584 		p2->p_flag |= P_CONTROLT;
585 	SESS_UNLOCK(p1->p_session);
586 	if (flags & RFPPWAIT)
587 		p2->p_flag |= P_PPWAIT;
588 
589 	p2->p_pgrp = p1->p_pgrp;
590 	LIST_INSERT_AFTER(p1, p2, p_pglist);
591 	PGRP_UNLOCK(p1->p_pgrp);
592 	LIST_INIT(&p2->p_children);
593 
594 	callout_init(&p2->p_itcallout, CALLOUT_MPSAFE);
595 
596 #ifdef KTRACE
597 	/*
598 	 * Copy traceflag and tracefile if enabled.
599 	 */
600 	mtx_lock(&ktrace_mtx);
601 	KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
602 	if (p1->p_traceflag & KTRFAC_INHERIT) {
603 		p2->p_traceflag = p1->p_traceflag;
604 		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
605 			VREF(p2->p_tracevp);
606 			KASSERT(p1->p_tracecred != NULL,
607 			    ("ktrace vnode with no cred"));
608 			p2->p_tracecred = crhold(p1->p_tracecred);
609 		}
610 	}
611 	mtx_unlock(&ktrace_mtx);
612 #endif
613 
614 	/*
615 	 * If PF_FORK is set, the child process inherits the
616 	 * procfs ioctl flags from its parent.
617 	 */
618 	if (p1->p_pfsflags & PF_FORK) {
619 		p2->p_stops = p1->p_stops;
620 		p2->p_pfsflags = p1->p_pfsflags;
621 	}
622 
623 	/*
624 	 * This begins the section where we must prevent the parent
625 	 * from being swapped.
626 	 */
627 	_PHOLD(p1);
628 	PROC_UNLOCK(p1);
629 
630 	/*
631 	 * Attach the new process to its parent.
632 	 *
633 	 * If RFNOWAIT is set, the newly created process becomes a child
634 	 * of init.  This effectively disassociates the child from the
635 	 * parent.
636 	 */
637 	if (flags & RFNOWAIT)
638 		pptr = initproc;
639 	else
640 		pptr = p1;
641 	p2->p_pptr = pptr;
642 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
643 	sx_xunlock(&proctree_lock);
644 
645 	/* Inform accounting that we have forked. */
646 	p2->p_acflag = AFORK;
647 	PROC_UNLOCK(p2);
648 
649 	/*
650 	 * Finish creating the child process.  It will return via a different
651 	 * execution path later.  (ie: directly into user mode)
652 	 */
653 	vm_forkproc(td, p2, td2, flags);
654 
655 	if (flags == (RFFDG | RFPROC)) {
656 		atomic_add_int(&cnt.v_forks, 1);
657 		atomic_add_int(&cnt.v_forkpages, p2->p_vmspace->vm_dsize +
658 		    p2->p_vmspace->vm_ssize);
659 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
660 		atomic_add_int(&cnt.v_vforks, 1);
661 		atomic_add_int(&cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
662 		    p2->p_vmspace->vm_ssize);
663 	} else if (p1 == &proc0) {
664 		atomic_add_int(&cnt.v_kthreads, 1);
665 		atomic_add_int(&cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
666 		    p2->p_vmspace->vm_ssize);
667 	} else {
668 		atomic_add_int(&cnt.v_rforks, 1);
669 		atomic_add_int(&cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
670 		    p2->p_vmspace->vm_ssize);
671 	}
672 
673 	/*
674 	 * Both processes are set up, now check if any loadable modules want
675 	 * to adjust anything.
676 	 *   What if they have an error? XXX
677 	 */
678 	EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
679 
680 	/*
681 	 * Set the child start time and mark the process as being complete.
682 	 */
683 	microuptime(&p2->p_stats->p_start);
684 	mtx_lock_spin(&sched_lock);
685 	p2->p_state = PRS_NORMAL;
686 
687 	/*
688 	 * If RFSTOPPED not requested, make child runnable and add to
689 	 * run queue.
690 	 */
691 	if ((flags & RFSTOPPED) == 0) {
692 		TD_SET_CAN_RUN(td2);
693 		setrunqueue(td2, SRQ_BORING);
694 	}
695 	mtx_unlock_spin(&sched_lock);
696 
697 	/*
698 	 * Now can be swapped.
699 	 */
700 	PROC_LOCK(p1);
701 	_PRELE(p1);
702 
703 	/*
704 	 * Tell any interested parties about the new process.
705 	 */
706 	KNOTE_LOCKED(&p1->p_klist, NOTE_FORK | p2->p_pid);
707 
708 	PROC_UNLOCK(p1);
709 
710 	/*
711 	 * Preserve synchronization semantics of vfork.  If waiting for
712 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
713 	 * proc (in case of exit).
714 	 */
715 	PROC_LOCK(p2);
716 	while (p2->p_flag & P_PPWAIT)
717 		msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
718 	PROC_UNLOCK(p2);
719 
720 	/*
721 	 * If other threads are waiting, let them continue now.
722 	 */
723 	if (p1->p_flag & P_HADTHREADS) {
724 		PROC_LOCK(p1);
725 		thread_single_end();
726 		PROC_UNLOCK(p1);
727 	}
728 
729 	/*
730 	 * Return child proc pointer to parent.
731 	 */
732 	*procp = p2;
733 	return (0);
734 fail:
735 	sx_sunlock(&proctree_lock);
736 	if (ppsratecheck(&lastfail, &curfail, 1))
737 		printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n",
738 			uid);
739 	sx_xunlock(&allproc_lock);
740 #ifdef MAC
741 	mac_destroy_proc(newproc);
742 #endif
743 #ifdef AUDIT
744 	audit_proc_free(newproc);
745 #endif
746 	uma_zfree(proc_zone, newproc);
747 	if (p1->p_flag & P_HADTHREADS) {
748 		PROC_LOCK(p1);
749 		thread_single_end();
750 		PROC_UNLOCK(p1);
751 	}
752 	tsleep(&forksleep, PUSER, "fork", hz / 2);
753 	return (error);
754 }
755 
756 /*
757  * Handle the return of a child process from fork1().  This function
758  * is called from the MD fork_trampoline() entry point.
759  */
760 void
761 fork_exit(callout, arg, frame)
762 	void (*callout)(void *, struct trapframe *);
763 	void *arg;
764 	struct trapframe *frame;
765 {
766 	struct proc *p;
767 	struct thread *td;
768 
769 	/*
770 	 * Finish setting up thread glue so that it begins execution in a
771 	 * non-nested critical section with sched_lock held but not recursed.
772 	 */
773 	td = curthread;
774 	p = td->td_proc;
775 	td->td_oncpu = PCPU_GET(cpuid);
776 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
777 
778 	sched_lock.mtx_lock = (uintptr_t)td;
779 	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
780 	CTR4(KTR_PROC, "fork_exit: new thread %p (kse %p, pid %d, %s)",
781 		td, td->td_sched, p->p_pid, p->p_comm);
782 
783 	/*
784 	 * Processes normally resume in mi_switch() after being
785 	 * cpu_switch()'ed to, but when children start up they arrive here
786 	 * instead, so we must do much the same things as mi_switch() would.
787 	 */
788 
789 	if ((td = PCPU_GET(deadthread))) {
790 		PCPU_SET(deadthread, NULL);
791 		thread_stash(td);
792 	}
793 	td = curthread;
794 	mtx_unlock_spin(&sched_lock);
795 
796 	/*
797 	 * cpu_set_fork_handler intercepts this function call to
798 	 * have this call a non-return function to stay in kernel mode.
799 	 * initproc has its own fork handler, but it does return.
800 	 */
801 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
802 	callout(arg, frame);
803 
804 	/*
805 	 * Check if a kernel thread misbehaved and returned from its main
806 	 * function.
807 	 */
808 	if (p->p_flag & P_KTHREAD) {
809 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
810 		    p->p_comm, p->p_pid);
811 		kthread_exit(0);
812 	}
813 	mtx_assert(&Giant, MA_NOTOWNED);
814 }
815 
816 /*
817  * Simplified back end of syscall(), used when returning from fork()
818  * directly into user mode.  Giant is not held on entry, and must not
819  * be held on return.  This function is passed in to fork_exit() as the
820  * first parameter and is called when returning to a new userland process.
821  */
822 void
823 fork_return(td, frame)
824 	struct thread *td;
825 	struct trapframe *frame;
826 {
827 
828 	userret(td, frame);
829 #ifdef KTRACE
830 	if (KTRPOINT(td, KTR_SYSRET))
831 		ktrsysret(SYS_fork, 0, 0);
832 #endif
833 	mtx_assert(&Giant, MA_NOTOWNED);
834 }
835