xref: /freebsd/sys/kern/kern_fork.c (revision b52b9d56d4e96089873a75f9e29062eec19fabba)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
39  * $FreeBSD$
40  */
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysproto.h>
47 #include <sys/filedesc.h>
48 #include <sys/kernel.h>
49 #include <sys/sysctl.h>
50 #include <sys/lock.h>
51 #include <sys/malloc.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/resourcevar.h>
55 #include <sys/syscall.h>
56 #include <sys/vnode.h>
57 #include <sys/acct.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/kthread.h>
61 #include <sys/unistd.h>
62 #include <sys/jail.h>
63 #include <sys/sx.h>
64 
65 #include <vm/vm.h>
66 #include <vm/pmap.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_extern.h>
69 #include <vm/uma.h>
70 
71 #include <sys/vmmeter.h>
72 #include <sys/user.h>
73 #include <machine/critical.h>
74 
75 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
76 
77 /*
78  * These are the stuctures used to create a callout list for things to do
79  * when forking a process
80  */
81 struct forklist {
82 	forklist_fn function;
83 	TAILQ_ENTRY(forklist) next;
84 };
85 
86 static struct sx fork_list_lock;
87 
88 TAILQ_HEAD(forklist_head, forklist);
89 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
90 
91 #ifndef _SYS_SYSPROTO_H_
92 struct fork_args {
93 	int     dummy;
94 };
95 #endif
96 
97 int forksleep; /* Place for fork1() to sleep on. */
98 
99 static void
100 init_fork_list(void *data __unused)
101 {
102 
103 	sx_init(&fork_list_lock, "fork list");
104 }
105 SYSINIT(fork_list, SI_SUB_INTRINSIC, SI_ORDER_ANY, init_fork_list, NULL);
106 
107 /*
108  * MPSAFE
109  */
110 /* ARGSUSED */
111 int
112 fork(td, uap)
113 	struct thread *td;
114 	struct fork_args *uap;
115 {
116 	int error;
117 	struct proc *p2;
118 
119 	mtx_lock(&Giant);
120 	error = fork1(td, RFFDG | RFPROC, &p2);
121 	if (error == 0) {
122 		td->td_retval[0] = p2->p_pid;
123 		td->td_retval[1] = 0;
124 	}
125 	mtx_unlock(&Giant);
126 	return error;
127 }
128 
129 /*
130  * MPSAFE
131  */
132 /* ARGSUSED */
133 int
134 vfork(td, uap)
135 	struct thread *td;
136 	struct vfork_args *uap;
137 {
138 	int error;
139 	struct proc *p2;
140 
141 	mtx_lock(&Giant);
142 	error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, &p2);
143 	if (error == 0) {
144 		td->td_retval[0] = p2->p_pid;
145 		td->td_retval[1] = 0;
146 	}
147 	mtx_unlock(&Giant);
148 	return error;
149 }
150 
151 /*
152  * MPSAFE
153  */
154 int
155 rfork(td, uap)
156 	struct thread *td;
157 	struct rfork_args *uap;
158 {
159 	int error;
160 	struct proc *p2;
161 
162 	/* Don't allow kernel only flags. */
163 	if ((uap->flags & RFKERNELONLY) != 0)
164 		return (EINVAL);
165 	mtx_lock(&Giant);
166 	error = fork1(td, uap->flags, &p2);
167 	if (error == 0) {
168 		td->td_retval[0] = p2 ? p2->p_pid : 0;
169 		td->td_retval[1] = 0;
170 	}
171 	mtx_unlock(&Giant);
172 	return error;
173 }
174 
175 
176 int	nprocs = 1;				/* process 0 */
177 int	lastpid = 0;
178 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
179     "Last used PID");
180 
181 /*
182  * Random component to lastpid generation.  We mix in a random factor to make
183  * it a little harder to predict.  We sanity check the modulus value to avoid
184  * doing it in critical paths.  Don't let it be too small or we pointlessly
185  * waste randomness entropy, and don't let it be impossibly large.  Using a
186  * modulus that is too big causes a LOT more process table scans and slows
187  * down fork processing as the pidchecked caching is defeated.
188  */
189 static int randompid = 0;
190 
191 static int
192 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
193 {
194 	int error, pid;
195 
196 	sysctl_wire_old_buffer(req, sizeof(int));
197 	sx_xlock(&allproc_lock);
198 	pid = randompid;
199 	error = sysctl_handle_int(oidp, &pid, 0, req);
200 	if (error == 0 && req->newptr != NULL) {
201 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
202 			pid = PID_MAX - 100;
203 		else if (pid < 2)			/* NOP */
204 			pid = 0;
205 		else if (pid < 100)			/* Make it reasonable */
206 			pid = 100;
207 		randompid = pid;
208 	}
209 	sx_xunlock(&allproc_lock);
210 	return (error);
211 }
212 
213 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
214     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
215 
216 int
217 fork1(td, flags, procp)
218 	struct thread *td;			/* parent proc */
219 	int flags;
220 	struct proc **procp;			/* child proc */
221 {
222 	struct proc *p2, *pptr;
223 	uid_t uid;
224 	struct proc *newproc;
225 	int trypid;
226 	int ok;
227 	static int pidchecked = 0;
228 	struct forklist *ep;
229 	struct filedesc *fd;
230 	struct proc *p1 = td->td_proc;
231 	struct thread *td2;
232 	struct kse *ke2;
233 	struct ksegrp *kg2;
234 	struct sigacts *newsigacts;
235 	struct procsig *newprocsig;
236 
237 	GIANT_REQUIRED;
238 
239 	/* Can't copy and clear */
240 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
241 		return (EINVAL);
242 
243 	/*
244 	 * Here we don't create a new process, but we divorce
245 	 * certain parts of a process from itself.
246 	 */
247 	if ((flags & RFPROC) == 0) {
248 		vm_forkproc(td, NULL, NULL, flags);
249 
250 		/*
251 		 * Close all file descriptors.
252 		 */
253 		if (flags & RFCFDG) {
254 			struct filedesc *fdtmp;
255 			fdtmp = fdinit(td);	/* XXXKSE */
256 			PROC_LOCK(p1);
257 			fdfree(td);		/* XXXKSE */
258 			p1->p_fd = fdtmp;
259 			PROC_UNLOCK(p1);
260 		}
261 
262 		/*
263 		 * Unshare file descriptors (from parent.)
264 		 */
265 		if (flags & RFFDG) {
266 			FILEDESC_LOCK(p1->p_fd);
267 			if (p1->p_fd->fd_refcnt > 1) {
268 				struct filedesc *newfd;
269 
270 				newfd = fdcopy(td);
271 				FILEDESC_UNLOCK(p1->p_fd);
272 				PROC_LOCK(p1);
273 				fdfree(td);
274 				p1->p_fd = newfd;
275 				PROC_UNLOCK(p1);
276 			} else
277 				FILEDESC_UNLOCK(p1->p_fd);
278 		}
279 		*procp = NULL;
280 		return (0);
281 	}
282 
283 	if (p1->p_flag & P_KSES) {
284 		/*
285 		 * Idle the other threads for a second.
286 		 * Since the user space is copied, it must remain stable.
287 		 * In addition, all threads (from the user perspective)
288 		 * need to either be suspended or in the kernel,
289 		 * where they will try restart in the parent and will
290 		 * be aborted in the child.
291 		 */
292 		PROC_LOCK(p1);
293 		if (thread_single(SNGLE_NO_EXIT)) {
294 			/* Abort.. someone else is single threading before us */
295 			PROC_UNLOCK(p1);
296 			return (ERESTART);
297 		}
298 		PROC_UNLOCK(p1);
299 		/*
300 		 * All other activity in this process
301 		 * is now suspended at the user boundary,
302 		 * (or other safe places if we think of any).
303 		 */
304 	}
305 
306 	/* Allocate new proc. */
307 	newproc = uma_zalloc(proc_zone, M_WAITOK);
308 
309 	/*
310 	 * Although process entries are dynamically created, we still keep
311 	 * a global limit on the maximum number we will create.  Don't allow
312 	 * a nonprivileged user to use the last process; don't let root
313 	 * exceed the limit. The variable nprocs is the current number of
314 	 * processes, maxproc is the limit.
315 	 */
316 	sx_xlock(&allproc_lock);
317 	uid = td->td_ucred->cr_ruid;
318 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
319 		sx_xunlock(&allproc_lock);
320 		uma_zfree(proc_zone, newproc);
321 		if (p1->p_flag & P_KSES) {
322 			PROC_LOCK(p1);
323 			thread_single_end();
324 			PROC_UNLOCK(p1);
325 		}
326 		tsleep(&forksleep, PUSER, "fork", hz / 2);
327 		return (EAGAIN);
328 	}
329 	/*
330 	 * Increment the count of procs running with this uid. Don't allow
331 	 * a nonprivileged user to exceed their current limit.
332 	 */
333 	PROC_LOCK(p1);
334 	ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
335 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
336 	PROC_UNLOCK(p1);
337 	if (!ok) {
338 		sx_xunlock(&allproc_lock);
339 		uma_zfree(proc_zone, newproc);
340 		if (p1->p_flag & P_KSES) {
341 			PROC_LOCK(p1);
342 			thread_single_end();
343 			PROC_UNLOCK(p1);
344 		}
345 		tsleep(&forksleep, PUSER, "fork", hz / 2);
346 		return (EAGAIN);
347 	}
348 
349 	/*
350 	 * Increment the nprocs resource before blocking can occur.  There
351 	 * are hard-limits as to the number of processes that can run.
352 	 */
353 	nprocs++;
354 
355 	/*
356 	 * Find an unused process ID.  We remember a range of unused IDs
357 	 * ready to use (from lastpid+1 through pidchecked-1).
358 	 *
359 	 * If RFHIGHPID is set (used during system boot), do not allocate
360 	 * low-numbered pids.
361 	 */
362 	trypid = lastpid + 1;
363 	if (flags & RFHIGHPID) {
364 		if (trypid < 10) {
365 			trypid = 10;
366 		}
367 	} else {
368 		if (randompid)
369 			trypid += arc4random() % randompid;
370 	}
371 retry:
372 	/*
373 	 * If the process ID prototype has wrapped around,
374 	 * restart somewhat above 0, as the low-numbered procs
375 	 * tend to include daemons that don't exit.
376 	 */
377 	if (trypid >= PID_MAX) {
378 		trypid = trypid % PID_MAX;
379 		if (trypid < 100)
380 			trypid += 100;
381 		pidchecked = 0;
382 	}
383 	if (trypid >= pidchecked) {
384 		int doingzomb = 0;
385 
386 		pidchecked = PID_MAX;
387 		/*
388 		 * Scan the active and zombie procs to check whether this pid
389 		 * is in use.  Remember the lowest pid that's greater
390 		 * than trypid, so we can avoid checking for a while.
391 		 */
392 		p2 = LIST_FIRST(&allproc);
393 again:
394 		for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
395 			PROC_LOCK(p2);
396 			while (p2->p_pid == trypid ||
397 			    p2->p_pgrp->pg_id == trypid ||
398 			    p2->p_session->s_sid == trypid) {
399 				trypid++;
400 				if (trypid >= pidchecked) {
401 					PROC_UNLOCK(p2);
402 					goto retry;
403 				}
404 			}
405 			if (p2->p_pid > trypid && pidchecked > p2->p_pid)
406 				pidchecked = p2->p_pid;
407 			if (p2->p_pgrp->pg_id > trypid &&
408 			    pidchecked > p2->p_pgrp->pg_id)
409 				pidchecked = p2->p_pgrp->pg_id;
410 			if (p2->p_session->s_sid > trypid &&
411 			    pidchecked > p2->p_session->s_sid)
412 				pidchecked = p2->p_session->s_sid;
413 			PROC_UNLOCK(p2);
414 		}
415 		if (!doingzomb) {
416 			doingzomb = 1;
417 			p2 = LIST_FIRST(&zombproc);
418 			goto again;
419 		}
420 	}
421 
422 	/*
423 	 * RFHIGHPID does not mess with the lastpid counter during boot.
424 	 */
425 	if (flags & RFHIGHPID)
426 		pidchecked = 0;
427 	else
428 		lastpid = trypid;
429 
430 	p2 = newproc;
431 	p2->p_state = PRS_NEW;		/* protect against others */
432 	p2->p_pid = trypid;
433 	LIST_INSERT_HEAD(&allproc, p2, p_list);
434 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
435 	sx_xunlock(&allproc_lock);
436 
437 	/*
438 	 * Malloc things while we don't hold any locks.
439 	 */
440 	if (flags & RFSIGSHARE) {
441 		MALLOC(newsigacts, struct sigacts *,
442 		    sizeof(struct sigacts), M_SUBPROC, M_WAITOK);
443 		newprocsig = NULL;
444 	} else {
445 		newsigacts = NULL;
446 		MALLOC(newprocsig, struct procsig *, sizeof(struct procsig),
447 		    M_SUBPROC, M_WAITOK);
448 	}
449 
450 	/*
451 	 * Copy filedesc.
452 	 * XXX: This is busted.  fd*() need to not take proc
453 	 * arguments or something.
454 	 */
455 	if (flags & RFCFDG)
456 		fd = fdinit(td);
457 	else if (flags & RFFDG) {
458 		FILEDESC_LOCK(p1->p_fd);
459 		fd = fdcopy(td);
460 		FILEDESC_UNLOCK(p1->p_fd);
461 	} else
462 		fd = fdshare(p1);
463 
464 	/*
465 	 * Make a proc table entry for the new process.
466 	 * Start by zeroing the section of proc that is zero-initialized,
467 	 * then copy the section that is copied directly from the parent.
468 	 */
469 	td2 = thread_alloc();
470 	ke2 = &p2->p_kse;
471 	kg2 = &p2->p_ksegrp;
472 
473 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
474 
475 	bzero(&p2->p_startzero,
476 	    (unsigned) RANGEOF(struct proc, p_startzero, p_endzero));
477 	bzero(&ke2->ke_startzero,
478 	    (unsigned) RANGEOF(struct kse, ke_startzero, ke_endzero));
479 #if 0 /* bzero'd by the thread allocator */
480 	bzero(&td2->td_startzero,
481 	    (unsigned) RANGEOF(struct thread, td_startzero, td_endzero));
482 #endif
483 	bzero(&kg2->kg_startzero,
484 	    (unsigned) RANGEOF(struct ksegrp, kg_startzero, kg_endzero));
485 
486 	mtx_init(&p2->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
487 	PROC_LOCK(p2);
488 	PROC_LOCK(p1);
489 
490 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
491 	    (unsigned) RANGEOF(struct proc, p_startcopy, p_endcopy));
492 	bcopy(&td->td_kse->ke_startcopy, &ke2->ke_startcopy,
493 	    (unsigned) RANGEOF(struct kse, ke_startcopy, ke_endcopy));
494 	bcopy(&td->td_startcopy, &td2->td_startcopy,
495 	    (unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy));
496 	bcopy(&td->td_ksegrp->kg_startcopy, &kg2->kg_startcopy,
497 	    (unsigned) RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy));
498 #undef RANGEOF
499 
500 	/*
501 	 * XXXKSE Theoretically only the running thread would get copied
502 	 * Others in the kernel would be 'aborted' in the child.
503 	 * i.e return E*something*
504 	 * On SMP we would have to stop them running on
505 	 * other CPUs! (set a flag in the proc that stops
506 	 * all returns to userland until completed)
507 	 * This is wrong but ok for 1:1.
508 	 */
509 	proc_linkup(p2, kg2, ke2, td2);
510 
511 	/* Set up the thread as an active thread (as if runnable). */
512 	TAILQ_REMOVE(&kg2->kg_iq, ke2, ke_kgrlist);
513 	kg2->kg_idle_kses--;
514 	ke2->ke_state = KES_THREAD;
515 	ke2->ke_thread = td2;
516 	td2->td_kse = ke2;
517 	td2->td_flags &= ~TDF_UNBOUND; /* For the rest of this syscall. */
518 
519 	/* note.. XXXKSE no pcb or u-area yet */
520 
521 	/*
522 	 * Duplicate sub-structures as needed.
523 	 * Increase reference counts on shared objects.
524 	 * The p_stats and p_sigacts substructs are set in vm_forkproc.
525 	 */
526 	p2->p_flag = 0;
527 	mtx_lock_spin(&sched_lock);
528 	p2->p_sflag = PS_INMEM;
529 	if (p1->p_sflag & PS_PROFIL)
530 		startprofclock(p2);
531 	mtx_unlock_spin(&sched_lock);
532 	p2->p_ucred = crhold(td->td_ucred);
533 	td2->td_ucred = crhold(p2->p_ucred);	/* XXXKSE */
534 
535 	/*
536 	 * Setup linkage for kernel based threading
537 	 */
538 	if((flags & RFTHREAD) != 0) {
539 		/*
540 		 * XXX: This assumes a leader is a parent or grandparent of
541 		 * all processes in a task.
542 		 */
543 		if (p1->p_leader != p1)
544 			PROC_LOCK(p1->p_leader);
545 		p2->p_peers = p1->p_peers;
546 		p1->p_peers = p2;
547 		p2->p_leader = p1->p_leader;
548 		if (p1->p_leader != p1)
549 			PROC_UNLOCK(p1->p_leader);
550 	} else {
551 		p2->p_peers = NULL;
552 		p2->p_leader = p2;
553 	}
554 
555 	pargs_hold(p2->p_args);
556 
557 	if (flags & RFSIGSHARE) {
558 		p2->p_procsig = p1->p_procsig;
559 		p2->p_procsig->ps_refcnt++;
560 		if (p1->p_sigacts == &p1->p_uarea->u_sigacts) {
561 			/*
562 			 * Set p_sigacts to the new shared structure.
563 			 * Note that this is updating p1->p_sigacts at the
564 			 * same time, since p_sigacts is just a pointer to
565 			 * the shared p_procsig->ps_sigacts.
566 			 */
567 			p2->p_sigacts  = newsigacts;
568 			newsigacts = NULL;
569 			*p2->p_sigacts = p1->p_uarea->u_sigacts;
570 		}
571 	} else {
572 		p2->p_procsig = newprocsig;
573 		newprocsig = NULL;
574 		bcopy(p1->p_procsig, p2->p_procsig, sizeof(*p2->p_procsig));
575 		p2->p_procsig->ps_refcnt = 1;
576 		p2->p_sigacts = NULL;	/* finished in vm_forkproc() */
577 	}
578 	if (flags & RFLINUXTHPN)
579 	        p2->p_sigparent = SIGUSR1;
580 	else
581 	        p2->p_sigparent = SIGCHLD;
582 
583 	/* Bump references to the text vnode (for procfs) */
584 	p2->p_textvp = p1->p_textvp;
585 	if (p2->p_textvp)
586 		VREF(p2->p_textvp);
587 	p2->p_fd = fd;
588 	PROC_UNLOCK(p1);
589 	PROC_UNLOCK(p2);
590 
591 	/*
592 	 * If p_limit is still copy-on-write, bump refcnt,
593 	 * otherwise get a copy that won't be modified.
594 	 * (If PL_SHAREMOD is clear, the structure is shared
595 	 * copy-on-write.)
596 	 */
597 	if (p1->p_limit->p_lflags & PL_SHAREMOD)
598 		p2->p_limit = limcopy(p1->p_limit);
599 	else {
600 		p2->p_limit = p1->p_limit;
601 		p2->p_limit->p_refcnt++;
602 	}
603 
604 	sx_xlock(&proctree_lock);
605 	PGRP_LOCK(p1->p_pgrp);
606 	PROC_LOCK(p2);
607 	PROC_LOCK(p1);
608 
609 	/*
610 	 * Preserve some more flags in subprocess.  PS_PROFIL has already
611 	 * been preserved.
612 	 */
613 	p2->p_flag |= p1->p_flag & (P_SUGID | P_ALTSTACK);
614 	SESS_LOCK(p1->p_session);
615 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
616 		p2->p_flag |= P_CONTROLT;
617 	SESS_UNLOCK(p1->p_session);
618 	if (flags & RFPPWAIT)
619 		p2->p_flag |= P_PPWAIT;
620 
621 	LIST_INSERT_AFTER(p1, p2, p_pglist);
622 	PGRP_UNLOCK(p1->p_pgrp);
623 	LIST_INIT(&p2->p_children);
624 	LIST_INIT(&td2->td_contested); /* XXXKSE only 1 thread? */
625 
626 	callout_init(&p2->p_itcallout, 0);
627 	callout_init(&td2->td_slpcallout, 1); /* XXXKSE */
628 
629 #ifdef KTRACE
630 	/*
631 	 * Copy traceflag and tracefile if enabled.
632 	 */
633 	mtx_lock(&ktrace_mtx);
634 	KASSERT(p2->p_tracep == NULL, ("new process has a ktrace vnode"));
635 	if (p1->p_traceflag & KTRFAC_INHERIT) {
636 		p2->p_traceflag = p1->p_traceflag;
637 		if ((p2->p_tracep = p1->p_tracep) != NULL)
638 			VREF(p2->p_tracep);
639 	}
640 	mtx_unlock(&ktrace_mtx);
641 #endif
642 
643 	/*
644 	 * set priority of child to be that of parent
645 	 * XXXKSE hey! copying the estcpu seems dodgy.. should split it..
646 	 */
647 	mtx_lock_spin(&sched_lock);
648 	p2->p_ksegrp.kg_estcpu = p1->p_ksegrp.kg_estcpu;
649 	mtx_unlock_spin(&sched_lock);
650 
651 	/*
652 	 * This begins the section where we must prevent the parent
653 	 * from being swapped.
654 	 */
655 	_PHOLD(p1);
656 	PROC_UNLOCK(p1);
657 
658 	/*
659 	 * Attach the new process to its parent.
660 	 *
661 	 * If RFNOWAIT is set, the newly created process becomes a child
662 	 * of init.  This effectively disassociates the child from the
663 	 * parent.
664 	 */
665 	if (flags & RFNOWAIT)
666 		pptr = initproc;
667 	else
668 		pptr = p1;
669 	p2->p_pptr = pptr;
670 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
671 	PROC_UNLOCK(p2);
672 	sx_xunlock(&proctree_lock);
673 
674 	/*
675 	 * XXXKSE: In KSE, there would be a race here if one thread was
676 	 * dieing due to a signal (or calling exit1() for that matter) while
677 	 * another thread was calling fork1().  Not sure how KSE wants to work
678 	 * around that.  The problem is that up until the point above, if p1
679 	 * gets killed, it won't find p2 in its list in order for it to be
680 	 * reparented.  Alternatively, we could add a new p_flag that gets set
681 	 * before we reparent all the children that we check above and just
682 	 * use init as our parent if that if that flag is set.  (Either that
683 	 * or abort the fork if the flag is set since our parent died trying
684 	 * to fork us (which is evil)).
685 	 */
686 
687 	KASSERT(newprocsig == NULL, ("unused newprocsig"));
688 	if (newsigacts != NULL)
689 		FREE(newsigacts, M_SUBPROC);
690 	/*
691 	 * Finish creating the child process.  It will return via a different
692 	 * execution path later.  (ie: directly into user mode)
693 	 */
694 	vm_forkproc(td, p2, td2, flags);
695 
696 	if (flags == (RFFDG | RFPROC)) {
697 		cnt.v_forks++;
698 		cnt.v_forkpages += p2->p_vmspace->vm_dsize +
699 		    p2->p_vmspace->vm_ssize;
700 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
701 		cnt.v_vforks++;
702 		cnt.v_vforkpages += p2->p_vmspace->vm_dsize +
703 		    p2->p_vmspace->vm_ssize;
704 	} else if (p1 == &proc0) {
705 		cnt.v_kthreads++;
706 		cnt.v_kthreadpages += p2->p_vmspace->vm_dsize +
707 		    p2->p_vmspace->vm_ssize;
708 	} else {
709 		cnt.v_rforks++;
710 		cnt.v_rforkpages += p2->p_vmspace->vm_dsize +
711 		    p2->p_vmspace->vm_ssize;
712 	}
713 
714 	/*
715 	 * Both processes are set up, now check if any loadable modules want
716 	 * to adjust anything.
717 	 *   What if they have an error? XXX
718 	 */
719 	sx_slock(&fork_list_lock);
720 	TAILQ_FOREACH(ep, &fork_list, next) {
721 		(*ep->function)(p1, p2, flags);
722 	}
723 	sx_sunlock(&fork_list_lock);
724 
725 	/*
726 	 * If RFSTOPPED not requested, make child runnable and add to
727 	 * run queue.
728 	 */
729 	microtime(&(p2->p_stats->p_start));
730 	p2->p_acflag = AFORK;
731 	if ((flags & RFSTOPPED) == 0) {
732 		mtx_lock_spin(&sched_lock);
733 		p2->p_state = PRS_NORMAL;
734 		setrunqueue(td2);
735 		mtx_unlock_spin(&sched_lock);
736 	}
737 
738 	/*
739 	 * Now can be swapped.
740 	 */
741 	PROC_LOCK(p1);
742 	_PRELE(p1);
743 
744 	/*
745 	 * tell any interested parties about the new process
746 	 */
747 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
748 	PROC_UNLOCK(p1);
749 
750 	/*
751 	 * Preserve synchronization semantics of vfork.  If waiting for
752 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
753 	 * proc (in case of exit).
754 	 */
755 	PROC_LOCK(p2);
756 	while (p2->p_flag & P_PPWAIT)
757 		msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
758 	PROC_UNLOCK(p2);
759 
760 	/*
761 	 * Return child proc pointer to parent.
762 	 */
763 	*procp = p2;
764 	return (0);
765 }
766 
767 /*
768  * The next two functionms are general routines to handle adding/deleting
769  * items on the fork callout list.
770  *
771  * at_fork():
772  * Take the arguments given and put them onto the fork callout list,
773  * However first make sure that it's not already there.
774  * Returns 0 on success or a standard error number.
775  */
776 
777 int
778 at_fork(function)
779 	forklist_fn function;
780 {
781 	struct forklist *ep;
782 
783 #ifdef INVARIANTS
784 	/* let the programmer know if he's been stupid */
785 	if (rm_at_fork(function))
786 		printf("WARNING: fork callout entry (%p) already present\n",
787 		    function);
788 #endif
789 	ep = malloc(sizeof(*ep), M_ATFORK, M_NOWAIT);
790 	if (ep == NULL)
791 		return (ENOMEM);
792 	ep->function = function;
793 	sx_xlock(&fork_list_lock);
794 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
795 	sx_xunlock(&fork_list_lock);
796 	return (0);
797 }
798 
799 /*
800  * Scan the exit callout list for the given item and remove it..
801  * Returns the number of items removed (0 or 1)
802  */
803 
804 int
805 rm_at_fork(function)
806 	forklist_fn function;
807 {
808 	struct forklist *ep;
809 
810 	sx_xlock(&fork_list_lock);
811 	TAILQ_FOREACH(ep, &fork_list, next) {
812 		if (ep->function == function) {
813 			TAILQ_REMOVE(&fork_list, ep, next);
814 			sx_xunlock(&fork_list_lock);
815 			free(ep, M_ATFORK);
816 			return(1);
817 		}
818 	}
819 	sx_xunlock(&fork_list_lock);
820 	return (0);
821 }
822 
823 /*
824  * Handle the return of a child process from fork1().  This function
825  * is called from the MD fork_trampoline() entry point.
826  */
827 void
828 fork_exit(callout, arg, frame)
829 	void (*callout)(void *, struct trapframe *);
830 	void *arg;
831 	struct trapframe *frame;
832 {
833 	struct thread *td = curthread;
834 	struct proc *p = td->td_proc;
835 
836 	td->td_kse->ke_oncpu = PCPU_GET(cpuid);
837 	p->p_state = PRS_NORMAL;
838 	/*
839 	 * Finish setting up thread glue.  We need to initialize
840 	 * the thread into a td_critnest=1 state.  Some platforms
841 	 * may have already partially or fully initialized td_critnest
842 	 * and/or td_md.md_savecrit (when applciable).
843 	 *
844 	 * see <arch>/<arch>/critical.c
845 	 */
846 	sched_lock.mtx_lock = (uintptr_t)td;
847 	sched_lock.mtx_recurse = 0;
848 	cpu_critical_fork_exit();
849 	CTR3(KTR_PROC, "fork_exit: new thread %p (pid %d, %s)", td, p->p_pid,
850 	    p->p_comm);
851 	if (PCPU_GET(switchtime.sec) == 0)
852 		binuptime(PCPU_PTR(switchtime));
853 	PCPU_SET(switchticks, ticks);
854 	mtx_unlock_spin(&sched_lock);
855 
856 	/*
857 	 * cpu_set_fork_handler intercepts this function call to
858          * have this call a non-return function to stay in kernel mode.
859          * initproc has its own fork handler, but it does return.
860          */
861 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
862 	callout(arg, frame);
863 
864 	/*
865 	 * Check if a kernel thread misbehaved and returned from its main
866 	 * function.
867 	 */
868 	PROC_LOCK(p);
869 	if (p->p_flag & P_KTHREAD) {
870 		PROC_UNLOCK(p);
871 		mtx_lock(&Giant);
872 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
873 		    p->p_comm, p->p_pid);
874 		kthread_exit(0);
875 	}
876 	PROC_UNLOCK(p);
877 #ifdef DIAGNOSTIC
878 	cred_free_thread(td);
879 #endif
880 	mtx_assert(&Giant, MA_NOTOWNED);
881 }
882 
883 /*
884  * Simplified back end of syscall(), used when returning from fork()
885  * directly into user mode.  Giant is not held on entry, and must not
886  * be held on return.  This function is passed in to fork_exit() as the
887  * first parameter and is called when returning to a new userland process.
888  */
889 void
890 fork_return(td, frame)
891 	struct thread *td;
892 	struct trapframe *frame;
893 {
894 
895 	userret(td, frame, 0);
896 #ifdef KTRACE
897 	if (KTRPOINT(td, KTR_SYSRET))
898 		ktrsysret(SYS_fork, 0, 0);
899 #endif
900 	mtx_assert(&Giant, MA_NOTOWNED);
901 }
902