xref: /freebsd/sys/kern/kern_fork.c (revision b28624fde638caadd4a89f50c9b7e7da0f98c4d2)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_mac.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysproto.h>
46 #include <sys/eventhandler.h>
47 #include <sys/filedesc.h>
48 #include <sys/kernel.h>
49 #include <sys/kthread.h>
50 #include <sys/sysctl.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/pioctl.h>
57 #include <sys/resourcevar.h>
58 #include <sys/sched.h>
59 #include <sys/syscall.h>
60 #include <sys/vmmeter.h>
61 #include <sys/vnode.h>
62 #include <sys/acct.h>
63 #include <sys/ktr.h>
64 #include <sys/ktrace.h>
65 #include <sys/unistd.h>
66 #include <sys/sx.h>
67 #include <sys/signalvar.h>
68 
69 #include <security/audit/audit.h>
70 #include <security/mac/mac_framework.h>
71 
72 #include <vm/vm.h>
73 #include <vm/pmap.h>
74 #include <vm/vm_map.h>
75 #include <vm/vm_extern.h>
76 #include <vm/uma.h>
77 
78 
79 #ifndef _SYS_SYSPROTO_H_
80 struct fork_args {
81 	int     dummy;
82 };
83 #endif
84 
85 /* ARGSUSED */
86 int
87 fork(td, uap)
88 	struct thread *td;
89 	struct fork_args *uap;
90 {
91 	int error;
92 	struct proc *p2;
93 
94 	error = fork1(td, RFFDG | RFPROC, 0, &p2);
95 	if (error == 0) {
96 		td->td_retval[0] = p2->p_pid;
97 		td->td_retval[1] = 0;
98 	}
99 	return (error);
100 }
101 
102 /* ARGSUSED */
103 int
104 vfork(td, uap)
105 	struct thread *td;
106 	struct vfork_args *uap;
107 {
108 	int error;
109 	struct proc *p2;
110 
111 	error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, 0, &p2);
112 	if (error == 0) {
113 		td->td_retval[0] = p2->p_pid;
114 		td->td_retval[1] = 0;
115 	}
116 	return (error);
117 }
118 
119 int
120 rfork(td, uap)
121 	struct thread *td;
122 	struct rfork_args *uap;
123 {
124 	struct proc *p2;
125 	int error;
126 
127 	/* Don't allow kernel-only flags. */
128 	if ((uap->flags & RFKERNELONLY) != 0)
129 		return (EINVAL);
130 
131 	AUDIT_ARG(fflags, uap->flags);
132 	error = fork1(td, uap->flags, 0, &p2);
133 	if (error == 0) {
134 		td->td_retval[0] = p2 ? p2->p_pid : 0;
135 		td->td_retval[1] = 0;
136 	}
137 	return (error);
138 }
139 
140 int	nprocs = 1;		/* process 0 */
141 int	lastpid = 0;
142 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
143     "Last used PID");
144 
145 /*
146  * Random component to lastpid generation.  We mix in a random factor to make
147  * it a little harder to predict.  We sanity check the modulus value to avoid
148  * doing it in critical paths.  Don't let it be too small or we pointlessly
149  * waste randomness entropy, and don't let it be impossibly large.  Using a
150  * modulus that is too big causes a LOT more process table scans and slows
151  * down fork processing as the pidchecked caching is defeated.
152  */
153 static int randompid = 0;
154 
155 static int
156 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
157 {
158 	int error, pid;
159 
160 	error = sysctl_wire_old_buffer(req, sizeof(int));
161 	if (error != 0)
162 		return(error);
163 	sx_xlock(&allproc_lock);
164 	pid = randompid;
165 	error = sysctl_handle_int(oidp, &pid, 0, req);
166 	if (error == 0 && req->newptr != NULL) {
167 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
168 			pid = PID_MAX - 100;
169 		else if (pid < 2)			/* NOP */
170 			pid = 0;
171 		else if (pid < 100)			/* Make it reasonable */
172 			pid = 100;
173 		randompid = pid;
174 	}
175 	sx_xunlock(&allproc_lock);
176 	return (error);
177 }
178 
179 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
180     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
181 
182 int
183 fork1(td, flags, pages, procp)
184 	struct thread *td;
185 	int flags;
186 	int pages;
187 	struct proc **procp;
188 {
189 	struct proc *p1, *p2, *pptr;
190 	struct proc *newproc;
191 	int ok, trypid;
192 	static int curfail, pidchecked = 0;
193 	static struct timeval lastfail;
194 	struct filedesc *fd;
195 	struct filedesc_to_leader *fdtol;
196 	struct thread *td2;
197 	struct sigacts *newsigacts;
198 	int error;
199 
200 	/* Can't copy and clear. */
201 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
202 		return (EINVAL);
203 
204 	p1 = td->td_proc;
205 
206 	/*
207 	 * Here we don't create a new process, but we divorce
208 	 * certain parts of a process from itself.
209 	 */
210 	if ((flags & RFPROC) == 0) {
211 		if ((p1->p_flag & P_HADTHREADS) &&
212 		    (flags & (RFCFDG | RFFDG))) {
213 			PROC_LOCK(p1);
214 			if (thread_single(SINGLE_BOUNDARY)) {
215 				PROC_UNLOCK(p1);
216 				return (ERESTART);
217 			}
218 			PROC_UNLOCK(p1);
219 		}
220 
221 		vm_forkproc(td, NULL, NULL, flags);
222 
223 		/*
224 		 * Close all file descriptors.
225 		 */
226 		if (flags & RFCFDG) {
227 			struct filedesc *fdtmp;
228 			fdtmp = fdinit(td->td_proc->p_fd);
229 			fdfree(td);
230 			p1->p_fd = fdtmp;
231 		}
232 
233 		/*
234 		 * Unshare file descriptors (from parent).
235 		 */
236 		if (flags & RFFDG)
237 			fdunshare(p1, td);
238 
239 		if ((p1->p_flag & P_HADTHREADS) &&
240 		    (flags & (RFCFDG | RFFDG))) {
241 			PROC_LOCK(p1);
242 			thread_single_end();
243 			PROC_UNLOCK(p1);
244 		}
245 		*procp = NULL;
246 		return (0);
247 	}
248 
249 	/*
250 	 * Note 1:1 allows for forking with one thread coming out on the
251 	 * other side with the expectation that the process is about to
252 	 * exec.
253 	 */
254 	if (p1->p_flag & P_HADTHREADS) {
255 		/*
256 		 * Idle the other threads for a second.
257 		 * Since the user space is copied, it must remain stable.
258 		 * In addition, all threads (from the user perspective)
259 		 * need to either be suspended or in the kernel,
260 		 * where they will try restart in the parent and will
261 		 * be aborted in the child.
262 		 */
263 		PROC_LOCK(p1);
264 		if (thread_single(SINGLE_NO_EXIT)) {
265 			/* Abort. Someone else is single threading before us. */
266 			PROC_UNLOCK(p1);
267 			return (ERESTART);
268 		}
269 		PROC_UNLOCK(p1);
270 		/*
271 		 * All other activity in this process
272 		 * is now suspended at the user boundary,
273 		 * (or other safe places if we think of any).
274 		 */
275 	}
276 
277 	/* Allocate new proc. */
278 	newproc = uma_zalloc(proc_zone, M_WAITOK);
279 #ifdef MAC
280 	mac_init_proc(newproc);
281 #endif
282 	knlist_init(&newproc->p_klist, &newproc->p_mtx, NULL, NULL, NULL);
283 	STAILQ_INIT(&newproc->p_ktr);
284 
285 	/* We have to lock the process tree while we look for a pid. */
286 	sx_slock(&proctree_lock);
287 
288 	/*
289 	 * Although process entries are dynamically created, we still keep
290 	 * a global limit on the maximum number we will create.  Don't allow
291 	 * a nonprivileged user to use the last ten processes; don't let root
292 	 * exceed the limit. The variable nprocs is the current number of
293 	 * processes, maxproc is the limit.
294 	 */
295 	sx_xlock(&allproc_lock);
296 	if ((nprocs >= maxproc - 10 && priv_check_cred(td->td_ucred,
297 	    PRIV_MAXPROC, 0) != 0) || nprocs >= maxproc) {
298 		error = EAGAIN;
299 		goto fail;
300 	}
301 
302 	/*
303 	 * Increment the count of procs running with this uid. Don't allow
304 	 * a nonprivileged user to exceed their current limit.
305 	 *
306 	 * XXXRW: Can we avoid privilege here if it's not needed?
307 	 */
308 	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
309 	if (error == 0)
310 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
311 	else {
312 		PROC_LOCK(p1);
313 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
314 		    lim_cur(p1, RLIMIT_NPROC));
315 		PROC_UNLOCK(p1);
316 	}
317 	if (!ok) {
318 		error = EAGAIN;
319 		goto fail;
320 	}
321 
322 	/*
323 	 * Increment the nprocs resource before blocking can occur.  There
324 	 * are hard-limits as to the number of processes that can run.
325 	 */
326 	nprocs++;
327 
328 	/*
329 	 * Find an unused process ID.  We remember a range of unused IDs
330 	 * ready to use (from lastpid+1 through pidchecked-1).
331 	 *
332 	 * If RFHIGHPID is set (used during system boot), do not allocate
333 	 * low-numbered pids.
334 	 */
335 	trypid = lastpid + 1;
336 	if (flags & RFHIGHPID) {
337 		if (trypid < 10)
338 			trypid = 10;
339 	} else {
340 		if (randompid)
341 			trypid += arc4random() % randompid;
342 	}
343 retry:
344 	/*
345 	 * If the process ID prototype has wrapped around,
346 	 * restart somewhat above 0, as the low-numbered procs
347 	 * tend to include daemons that don't exit.
348 	 */
349 	if (trypid >= PID_MAX) {
350 		trypid = trypid % PID_MAX;
351 		if (trypid < 100)
352 			trypid += 100;
353 		pidchecked = 0;
354 	}
355 	if (trypid >= pidchecked) {
356 		int doingzomb = 0;
357 
358 		pidchecked = PID_MAX;
359 		/*
360 		 * Scan the active and zombie procs to check whether this pid
361 		 * is in use.  Remember the lowest pid that's greater
362 		 * than trypid, so we can avoid checking for a while.
363 		 */
364 		p2 = LIST_FIRST(&allproc);
365 again:
366 		for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
367 			while (p2->p_pid == trypid ||
368 			    (p2->p_pgrp != NULL &&
369 			    (p2->p_pgrp->pg_id == trypid ||
370 			    (p2->p_session != NULL &&
371 			    p2->p_session->s_sid == trypid)))) {
372 				trypid++;
373 				if (trypid >= pidchecked)
374 					goto retry;
375 			}
376 			if (p2->p_pid > trypid && pidchecked > p2->p_pid)
377 				pidchecked = p2->p_pid;
378 			if (p2->p_pgrp != NULL) {
379 				if (p2->p_pgrp->pg_id > trypid &&
380 				    pidchecked > p2->p_pgrp->pg_id)
381 					pidchecked = p2->p_pgrp->pg_id;
382 				if (p2->p_session != NULL &&
383 				    p2->p_session->s_sid > trypid &&
384 				    pidchecked > p2->p_session->s_sid)
385 					pidchecked = p2->p_session->s_sid;
386 			}
387 		}
388 		if (!doingzomb) {
389 			doingzomb = 1;
390 			p2 = LIST_FIRST(&zombproc);
391 			goto again;
392 		}
393 	}
394 	sx_sunlock(&proctree_lock);
395 
396 	/*
397 	 * RFHIGHPID does not mess with the lastpid counter during boot.
398 	 */
399 	if (flags & RFHIGHPID)
400 		pidchecked = 0;
401 	else
402 		lastpid = trypid;
403 
404 	p2 = newproc;
405 	td2 = FIRST_THREAD_IN_PROC(newproc);
406 	p2->p_state = PRS_NEW;		/* protect against others */
407 	p2->p_pid = trypid;
408 	/*
409 	 * Allow the scheduler to initialize the child.
410 	 */
411 	thread_lock(td);
412 	sched_fork(td, td2);
413 	thread_unlock(td);
414 	AUDIT_ARG(pid, p2->p_pid);
415 	LIST_INSERT_HEAD(&allproc, p2, p_list);
416 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
417 
418 	PROC_LOCK(p2);
419 	PROC_LOCK(p1);
420 
421 	sx_xunlock(&allproc_lock);
422 
423 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
424 	    __rangeof(struct proc, p_startcopy, p_endcopy));
425 	PROC_UNLOCK(p1);
426 
427 	bzero(&p2->p_startzero,
428 	    __rangeof(struct proc, p_startzero, p_endzero));
429 
430 	p2->p_ucred = crhold(td->td_ucred);
431 	PROC_UNLOCK(p2);
432 
433 	/*
434 	 * Malloc things while we don't hold any locks.
435 	 */
436 	if (flags & RFSIGSHARE)
437 		newsigacts = NULL;
438 	else
439 		newsigacts = sigacts_alloc();
440 
441 	/*
442 	 * Copy filedesc.
443 	 */
444 	if (flags & RFCFDG) {
445 		fd = fdinit(p1->p_fd);
446 		fdtol = NULL;
447 	} else if (flags & RFFDG) {
448 		fd = fdcopy(p1->p_fd);
449 		fdtol = NULL;
450 	} else {
451 		fd = fdshare(p1->p_fd);
452 		if (p1->p_fdtol == NULL)
453 			p1->p_fdtol =
454 				filedesc_to_leader_alloc(NULL,
455 							 NULL,
456 							 p1->p_leader);
457 		if ((flags & RFTHREAD) != 0) {
458 			/*
459 			 * Shared file descriptor table and
460 			 * shared process leaders.
461 			 */
462 			fdtol = p1->p_fdtol;
463 			FILEDESC_XLOCK(p1->p_fd);
464 			fdtol->fdl_refcount++;
465 			FILEDESC_XUNLOCK(p1->p_fd);
466 		} else {
467 			/*
468 			 * Shared file descriptor table, and
469 			 * different process leaders
470 			 */
471 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
472 							 p1->p_fd,
473 							 p2);
474 		}
475 	}
476 	/*
477 	 * Make a proc table entry for the new process.
478 	 * Start by zeroing the section of proc that is zero-initialized,
479 	 * then copy the section that is copied directly from the parent.
480 	 */
481 	/* Allocate and switch to an alternate kstack if specified. */
482 	if (pages != 0)
483 		vm_thread_new_altkstack(td2, pages);
484 
485 	PROC_LOCK(p2);
486 	PROC_LOCK(p1);
487 
488 	bzero(&td2->td_startzero,
489 	    __rangeof(struct thread, td_startzero, td_endzero));
490 
491 	bcopy(&td->td_startcopy, &td2->td_startcopy,
492 	    __rangeof(struct thread, td_startcopy, td_endcopy));
493 
494 	td2->td_sigstk = td->td_sigstk;
495 	td2->td_sigmask = td->td_sigmask;
496 
497 	/*
498 	 * Duplicate sub-structures as needed.
499 	 * Increase reference counts on shared objects.
500 	 */
501 	p2->p_flag = 0;
502 	if (p1->p_flag & P_PROFIL)
503 		startprofclock(p2);
504 	PROC_SLOCK(p2);
505 	p2->p_sflag = PS_INMEM;
506 	PROC_SUNLOCK(p2);
507 	td2->td_ucred = crhold(p2->p_ucred);
508 	pargs_hold(p2->p_args);
509 
510 	if (flags & RFSIGSHARE) {
511 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
512 	} else {
513 		sigacts_copy(newsigacts, p1->p_sigacts);
514 		p2->p_sigacts = newsigacts;
515 	}
516 	if (flags & RFLINUXTHPN)
517 	        p2->p_sigparent = SIGUSR1;
518 	else
519 	        p2->p_sigparent = SIGCHLD;
520 
521 	p2->p_textvp = p1->p_textvp;
522 	p2->p_fd = fd;
523 	p2->p_fdtol = fdtol;
524 
525 	/*
526 	 * p_limit is copy-on-write.  Bump its refcount.
527 	 */
528 	lim_fork(p1, p2);
529 
530 	pstats_fork(p1->p_stats, p2->p_stats);
531 
532 	PROC_UNLOCK(p1);
533 	PROC_UNLOCK(p2);
534 
535 	/* Bump references to the text vnode (for procfs) */
536 	if (p2->p_textvp)
537 		vref(p2->p_textvp);
538 
539 	/*
540 	 * Set up linkage for kernel based threading.
541 	 */
542 	if ((flags & RFTHREAD) != 0) {
543 		mtx_lock(&ppeers_lock);
544 		p2->p_peers = p1->p_peers;
545 		p1->p_peers = p2;
546 		p2->p_leader = p1->p_leader;
547 		mtx_unlock(&ppeers_lock);
548 		PROC_LOCK(p1->p_leader);
549 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
550 			PROC_UNLOCK(p1->p_leader);
551 			/*
552 			 * The task leader is exiting, so process p1 is
553 			 * going to be killed shortly.  Since p1 obviously
554 			 * isn't dead yet, we know that the leader is either
555 			 * sending SIGKILL's to all the processes in this
556 			 * task or is sleeping waiting for all the peers to
557 			 * exit.  We let p1 complete the fork, but we need
558 			 * to go ahead and kill the new process p2 since
559 			 * the task leader may not get a chance to send
560 			 * SIGKILL to it.  We leave it on the list so that
561 			 * the task leader will wait for this new process
562 			 * to commit suicide.
563 			 */
564 			PROC_LOCK(p2);
565 			psignal(p2, SIGKILL);
566 			PROC_UNLOCK(p2);
567 		} else
568 			PROC_UNLOCK(p1->p_leader);
569 	} else {
570 		p2->p_peers = NULL;
571 		p2->p_leader = p2;
572 	}
573 
574 	sx_xlock(&proctree_lock);
575 	PGRP_LOCK(p1->p_pgrp);
576 	PROC_LOCK(p2);
577 	PROC_LOCK(p1);
578 
579 	/*
580 	 * Preserve some more flags in subprocess.  P_PROFIL has already
581 	 * been preserved.
582 	 */
583 	p2->p_flag |= p1->p_flag & P_SUGID;
584 	td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
585 	SESS_LOCK(p1->p_session);
586 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
587 		p2->p_flag |= P_CONTROLT;
588 	SESS_UNLOCK(p1->p_session);
589 	if (flags & RFPPWAIT)
590 		p2->p_flag |= P_PPWAIT;
591 
592 	p2->p_pgrp = p1->p_pgrp;
593 	LIST_INSERT_AFTER(p1, p2, p_pglist);
594 	PGRP_UNLOCK(p1->p_pgrp);
595 	LIST_INIT(&p2->p_children);
596 
597 	callout_init(&p2->p_itcallout, CALLOUT_MPSAFE);
598 
599 #ifdef KTRACE
600 	/*
601 	 * Copy traceflag and tracefile if enabled.
602 	 */
603 	mtx_lock(&ktrace_mtx);
604 	KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
605 	if (p1->p_traceflag & KTRFAC_INHERIT) {
606 		p2->p_traceflag = p1->p_traceflag;
607 		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
608 			VREF(p2->p_tracevp);
609 			KASSERT(p1->p_tracecred != NULL,
610 			    ("ktrace vnode with no cred"));
611 			p2->p_tracecred = crhold(p1->p_tracecred);
612 		}
613 	}
614 	mtx_unlock(&ktrace_mtx);
615 #endif
616 
617 	/*
618 	 * If PF_FORK is set, the child process inherits the
619 	 * procfs ioctl flags from its parent.
620 	 */
621 	if (p1->p_pfsflags & PF_FORK) {
622 		p2->p_stops = p1->p_stops;
623 		p2->p_pfsflags = p1->p_pfsflags;
624 	}
625 
626 	/*
627 	 * This begins the section where we must prevent the parent
628 	 * from being swapped.
629 	 */
630 	_PHOLD(p1);
631 	PROC_UNLOCK(p1);
632 
633 	/*
634 	 * Attach the new process to its parent.
635 	 *
636 	 * If RFNOWAIT is set, the newly created process becomes a child
637 	 * of init.  This effectively disassociates the child from the
638 	 * parent.
639 	 */
640 	if (flags & RFNOWAIT)
641 		pptr = initproc;
642 	else
643 		pptr = p1;
644 	p2->p_pptr = pptr;
645 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
646 	sx_xunlock(&proctree_lock);
647 
648 	/* Inform accounting that we have forked. */
649 	p2->p_acflag = AFORK;
650 	PROC_UNLOCK(p2);
651 
652 	/*
653 	 * Finish creating the child process.  It will return via a different
654 	 * execution path later.  (ie: directly into user mode)
655 	 */
656 	vm_forkproc(td, p2, td2, flags);
657 
658 	if (flags == (RFFDG | RFPROC)) {
659 		PCPU_INC(cnt.v_forks);
660 		PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize +
661 		    p2->p_vmspace->vm_ssize);
662 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
663 		PCPU_INC(cnt.v_vforks);
664 		PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
665 		    p2->p_vmspace->vm_ssize);
666 	} else if (p1 == &proc0) {
667 		PCPU_INC(cnt.v_kthreads);
668 		PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
669 		    p2->p_vmspace->vm_ssize);
670 	} else {
671 		PCPU_INC(cnt.v_rforks);
672 		PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
673 		    p2->p_vmspace->vm_ssize);
674 	}
675 
676 	/*
677 	 * Both processes are set up, now check if any loadable modules want
678 	 * to adjust anything.
679 	 *   What if they have an error? XXX
680 	 */
681 	EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
682 
683 	/*
684 	 * Set the child start time and mark the process as being complete.
685 	 */
686 	microuptime(&p2->p_stats->p_start);
687 	PROC_SLOCK(p2);
688 	p2->p_state = PRS_NORMAL;
689 	PROC_SUNLOCK(p2);
690 
691 	/*
692 	 * If RFSTOPPED not requested, make child runnable and add to
693 	 * run queue.
694 	 */
695 	if ((flags & RFSTOPPED) == 0) {
696 		thread_lock(td2);
697 		TD_SET_CAN_RUN(td2);
698 		sched_add(td2, SRQ_BORING);
699 		thread_unlock(td2);
700 	}
701 
702 	/*
703 	 * Now can be swapped.
704 	 */
705 	PROC_LOCK(p1);
706 	_PRELE(p1);
707 
708 	/*
709 	 * Tell any interested parties about the new process.
710 	 */
711 	KNOTE_LOCKED(&p1->p_klist, NOTE_FORK | p2->p_pid);
712 
713 	PROC_UNLOCK(p1);
714 
715 	/*
716 	 * Preserve synchronization semantics of vfork.  If waiting for
717 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
718 	 * proc (in case of exit).
719 	 */
720 	PROC_LOCK(p2);
721 	while (p2->p_flag & P_PPWAIT)
722 		msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
723 	PROC_UNLOCK(p2);
724 
725 	/*
726 	 * If other threads are waiting, let them continue now.
727 	 */
728 	if (p1->p_flag & P_HADTHREADS) {
729 		PROC_LOCK(p1);
730 		thread_single_end();
731 		PROC_UNLOCK(p1);
732 	}
733 
734 	/*
735 	 * Return child proc pointer to parent.
736 	 */
737 	*procp = p2;
738 	return (0);
739 fail:
740 	sx_sunlock(&proctree_lock);
741 	if (ppsratecheck(&lastfail, &curfail, 1))
742 		printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n",
743 		    td->td_ucred->cr_ruid);
744 	sx_xunlock(&allproc_lock);
745 #ifdef MAC
746 	mac_destroy_proc(newproc);
747 #endif
748 	uma_zfree(proc_zone, newproc);
749 	if (p1->p_flag & P_HADTHREADS) {
750 		PROC_LOCK(p1);
751 		thread_single_end();
752 		PROC_UNLOCK(p1);
753 	}
754 	pause("fork", hz / 2);
755 	return (error);
756 }
757 
758 /*
759  * Handle the return of a child process from fork1().  This function
760  * is called from the MD fork_trampoline() entry point.
761  */
762 void
763 fork_exit(callout, arg, frame)
764 	void (*callout)(void *, struct trapframe *);
765 	void *arg;
766 	struct trapframe *frame;
767 {
768 	struct proc *p;
769 	struct thread *td;
770 	struct thread *dtd;
771 
772 	td = curthread;
773 	p = td->td_proc;
774 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
775 
776 	CTR4(KTR_PROC, "fork_exit: new thread %p (kse %p, pid %d, %s)",
777 		td, td->td_sched, p->p_pid, p->p_comm);
778 
779 	sched_fork_exit(td);
780 	/*
781 	* Processes normally resume in mi_switch() after being
782 	* cpu_switch()'ed to, but when children start up they arrive here
783 	* instead, so we must do much the same things as mi_switch() would.
784 	*/
785 	if ((dtd = PCPU_GET(deadthread))) {
786 		PCPU_SET(deadthread, NULL);
787 		thread_stash(dtd);
788 	}
789 	thread_unlock(td);
790 
791 	/*
792 	 * cpu_set_fork_handler intercepts this function call to
793 	 * have this call a non-return function to stay in kernel mode.
794 	 * initproc has its own fork handler, but it does return.
795 	 */
796 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
797 	callout(arg, frame);
798 
799 	/*
800 	 * Check if a kernel thread misbehaved and returned from its main
801 	 * function.
802 	 */
803 	if (p->p_flag & P_KTHREAD) {
804 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
805 		    p->p_comm, p->p_pid);
806 		kthread_exit(0);
807 	}
808 	mtx_assert(&Giant, MA_NOTOWNED);
809 
810 	EVENTHANDLER_INVOKE(schedtail, p);
811 }
812 
813 /*
814  * Simplified back end of syscall(), used when returning from fork()
815  * directly into user mode.  Giant is not held on entry, and must not
816  * be held on return.  This function is passed in to fork_exit() as the
817  * first parameter and is called when returning to a new userland process.
818  */
819 void
820 fork_return(td, frame)
821 	struct thread *td;
822 	struct trapframe *frame;
823 {
824 
825 	userret(td, frame);
826 #ifdef KTRACE
827 	if (KTRPOINT(td, KTR_SYSRET))
828 		ktrsysret(SYS_fork, 0, 0);
829 #endif
830 	mtx_assert(&Giant, MA_NOTOWNED);
831 }
832