1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ktrace.h" 43 #include "opt_kstack_pages.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/bitstring.h> 48 #include <sys/sysproto.h> 49 #include <sys/eventhandler.h> 50 #include <sys/fcntl.h> 51 #include <sys/filedesc.h> 52 #include <sys/jail.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/sysctl.h> 56 #include <sys/lock.h> 57 #include <sys/malloc.h> 58 #include <sys/msan.h> 59 #include <sys/mutex.h> 60 #include <sys/priv.h> 61 #include <sys/proc.h> 62 #include <sys/procdesc.h> 63 #include <sys/ptrace.h> 64 #include <sys/racct.h> 65 #include <sys/resourcevar.h> 66 #include <sys/sched.h> 67 #include <sys/syscall.h> 68 #include <sys/vmmeter.h> 69 #include <sys/vnode.h> 70 #include <sys/acct.h> 71 #include <sys/ktr.h> 72 #include <sys/ktrace.h> 73 #include <sys/unistd.h> 74 #include <sys/sdt.h> 75 #include <sys/sx.h> 76 #include <sys/sysent.h> 77 #include <sys/signalvar.h> 78 79 #include <security/audit/audit.h> 80 #include <security/mac/mac_framework.h> 81 82 #include <vm/vm.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_extern.h> 86 #include <vm/uma.h> 87 88 #ifdef KDTRACE_HOOKS 89 #include <sys/dtrace_bsd.h> 90 dtrace_fork_func_t dtrace_fasttrap_fork; 91 #endif 92 93 SDT_PROVIDER_DECLARE(proc); 94 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int"); 95 96 #ifndef _SYS_SYSPROTO_H_ 97 struct fork_args { 98 int dummy; 99 }; 100 #endif 101 102 /* ARGSUSED */ 103 int 104 sys_fork(struct thread *td, struct fork_args *uap) 105 { 106 struct fork_req fr; 107 int error, pid; 108 109 bzero(&fr, sizeof(fr)); 110 fr.fr_flags = RFFDG | RFPROC; 111 fr.fr_pidp = &pid; 112 error = fork1(td, &fr); 113 if (error == 0) { 114 td->td_retval[0] = pid; 115 td->td_retval[1] = 0; 116 } 117 return (error); 118 } 119 120 /* ARGUSED */ 121 int 122 sys_pdfork(struct thread *td, struct pdfork_args *uap) 123 { 124 struct fork_req fr; 125 int error, fd, pid; 126 127 bzero(&fr, sizeof(fr)); 128 fr.fr_flags = RFFDG | RFPROC | RFPROCDESC; 129 fr.fr_pidp = &pid; 130 fr.fr_pd_fd = &fd; 131 fr.fr_pd_flags = uap->flags; 132 AUDIT_ARG_FFLAGS(uap->flags); 133 /* 134 * It is necessary to return fd by reference because 0 is a valid file 135 * descriptor number, and the child needs to be able to distinguish 136 * itself from the parent using the return value. 137 */ 138 error = fork1(td, &fr); 139 if (error == 0) { 140 td->td_retval[0] = pid; 141 td->td_retval[1] = 0; 142 error = copyout(&fd, uap->fdp, sizeof(fd)); 143 } 144 return (error); 145 } 146 147 /* ARGSUSED */ 148 int 149 sys_vfork(struct thread *td, struct vfork_args *uap) 150 { 151 struct fork_req fr; 152 int error, pid; 153 154 bzero(&fr, sizeof(fr)); 155 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; 156 fr.fr_pidp = &pid; 157 error = fork1(td, &fr); 158 if (error == 0) { 159 td->td_retval[0] = pid; 160 td->td_retval[1] = 0; 161 } 162 return (error); 163 } 164 165 int 166 sys_rfork(struct thread *td, struct rfork_args *uap) 167 { 168 struct fork_req fr; 169 int error, pid; 170 171 /* Don't allow kernel-only flags. */ 172 if ((uap->flags & RFKERNELONLY) != 0) 173 return (EINVAL); 174 /* RFSPAWN must not appear with others */ 175 if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN) 176 return (EINVAL); 177 178 AUDIT_ARG_FFLAGS(uap->flags); 179 bzero(&fr, sizeof(fr)); 180 if ((uap->flags & RFSPAWN) != 0) { 181 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; 182 fr.fr_flags2 = FR2_DROPSIG_CAUGHT; 183 } else { 184 fr.fr_flags = uap->flags; 185 } 186 fr.fr_pidp = &pid; 187 error = fork1(td, &fr); 188 if (error == 0) { 189 td->td_retval[0] = pid; 190 td->td_retval[1] = 0; 191 } 192 return (error); 193 } 194 195 int __exclusive_cache_line nprocs = 1; /* process 0 */ 196 int lastpid = 0; 197 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 198 "Last used PID"); 199 200 /* 201 * Random component to lastpid generation. We mix in a random factor to make 202 * it a little harder to predict. We sanity check the modulus value to avoid 203 * doing it in critical paths. Don't let it be too small or we pointlessly 204 * waste randomness entropy, and don't let it be impossibly large. Using a 205 * modulus that is too big causes a LOT more process table scans and slows 206 * down fork processing as the pidchecked caching is defeated. 207 */ 208 static int randompid = 0; 209 210 static int 211 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 212 { 213 int error, pid; 214 215 error = sysctl_wire_old_buffer(req, sizeof(int)); 216 if (error != 0) 217 return(error); 218 sx_xlock(&allproc_lock); 219 pid = randompid; 220 error = sysctl_handle_int(oidp, &pid, 0, req); 221 if (error == 0 && req->newptr != NULL) { 222 if (pid == 0) 223 randompid = 0; 224 else if (pid == 1) 225 /* generate a random PID modulus between 100 and 1123 */ 226 randompid = 100 + arc4random() % 1024; 227 else if (pid < 0 || pid > pid_max - 100) 228 /* out of range */ 229 randompid = pid_max - 100; 230 else if (pid < 100) 231 /* Make it reasonable */ 232 randompid = 100; 233 else 234 randompid = pid; 235 } 236 sx_xunlock(&allproc_lock); 237 return (error); 238 } 239 240 SYSCTL_PROC(_kern, OID_AUTO, randompid, 241 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, 242 sysctl_kern_randompid, "I", 243 "Random PID modulus. Special values: 0: disable, 1: choose random value"); 244 245 extern bitstr_t proc_id_pidmap; 246 extern bitstr_t proc_id_grpidmap; 247 extern bitstr_t proc_id_sessidmap; 248 extern bitstr_t proc_id_reapmap; 249 250 /* 251 * Find an unused process ID 252 * 253 * If RFHIGHPID is set (used during system boot), do not allocate 254 * low-numbered pids. 255 */ 256 static int 257 fork_findpid(int flags) 258 { 259 pid_t result; 260 int trypid, random; 261 262 /* 263 * Avoid calling arc4random with procid_lock held. 264 */ 265 random = 0; 266 if (__predict_false(randompid)) 267 random = arc4random() % randompid; 268 269 mtx_lock(&procid_lock); 270 271 trypid = lastpid + 1; 272 if (flags & RFHIGHPID) { 273 if (trypid < 10) 274 trypid = 10; 275 } else { 276 trypid += random; 277 } 278 retry: 279 if (trypid >= pid_max) 280 trypid = 2; 281 282 bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result); 283 if (result == -1) { 284 KASSERT(trypid != 2, ("unexpectedly ran out of IDs")); 285 trypid = 2; 286 goto retry; 287 } 288 if (bit_test(&proc_id_grpidmap, result) || 289 bit_test(&proc_id_sessidmap, result) || 290 bit_test(&proc_id_reapmap, result)) { 291 trypid = result + 1; 292 goto retry; 293 } 294 295 /* 296 * RFHIGHPID does not mess with the lastpid counter during boot. 297 */ 298 if ((flags & RFHIGHPID) == 0) 299 lastpid = result; 300 301 bit_set(&proc_id_pidmap, result); 302 mtx_unlock(&procid_lock); 303 304 return (result); 305 } 306 307 static int 308 fork_norfproc(struct thread *td, int flags) 309 { 310 struct proc *p1; 311 int error; 312 313 KASSERT((flags & RFPROC) == 0, 314 ("fork_norfproc called with RFPROC set")); 315 p1 = td->td_proc; 316 317 /* 318 * Quiesce other threads if necessary. If RFMEM is not specified we 319 * must ensure that other threads do not concurrently create a second 320 * process sharing the vmspace, see vmspace_unshare(). 321 */ 322 if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS && 323 ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) { 324 PROC_LOCK(p1); 325 if (thread_single(p1, SINGLE_BOUNDARY)) { 326 PROC_UNLOCK(p1); 327 return (ERESTART); 328 } 329 PROC_UNLOCK(p1); 330 } 331 332 error = vm_forkproc(td, NULL, NULL, NULL, flags); 333 if (error != 0) 334 goto fail; 335 336 /* 337 * Close all file descriptors. 338 */ 339 if ((flags & RFCFDG) != 0) { 340 struct filedesc *fdtmp; 341 struct pwddesc *pdtmp; 342 343 pdtmp = pdinit(td->td_proc->p_pd, false); 344 fdtmp = fdinit(); 345 pdescfree(td); 346 fdescfree(td); 347 p1->p_fd = fdtmp; 348 p1->p_pd = pdtmp; 349 } 350 351 /* 352 * Unshare file descriptors (from parent). 353 */ 354 if ((flags & RFFDG) != 0) { 355 fdunshare(td); 356 pdunshare(td); 357 } 358 359 fail: 360 if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS && 361 ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) { 362 PROC_LOCK(p1); 363 thread_single_end(p1, SINGLE_BOUNDARY); 364 PROC_UNLOCK(p1); 365 } 366 return (error); 367 } 368 369 static void 370 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2, 371 struct vmspace *vm2, struct file *fp_procdesc) 372 { 373 struct proc *p1, *pptr; 374 struct filedesc *fd; 375 struct filedesc_to_leader *fdtol; 376 struct pwddesc *pd; 377 struct sigacts *newsigacts; 378 379 p1 = td->td_proc; 380 381 PROC_LOCK(p1); 382 bcopy(&p1->p_startcopy, &p2->p_startcopy, 383 __rangeof(struct proc, p_startcopy, p_endcopy)); 384 pargs_hold(p2->p_args); 385 PROC_UNLOCK(p1); 386 387 bzero(&p2->p_startzero, 388 __rangeof(struct proc, p_startzero, p_endzero)); 389 390 /* Tell the prison that we exist. */ 391 prison_proc_hold(p2->p_ucred->cr_prison); 392 393 p2->p_state = PRS_NEW; /* protect against others */ 394 p2->p_pid = fork_findpid(fr->fr_flags); 395 AUDIT_ARG_PID(p2->p_pid); 396 TSFORK(p2->p_pid, p1->p_pid); 397 398 sx_xlock(&allproc_lock); 399 LIST_INSERT_HEAD(&allproc, p2, p_list); 400 allproc_gen++; 401 sx_xunlock(&allproc_lock); 402 403 sx_xlock(PIDHASHLOCK(p2->p_pid)); 404 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); 405 sx_xunlock(PIDHASHLOCK(p2->p_pid)); 406 407 tidhash_add(td2); 408 409 /* 410 * Malloc things while we don't hold any locks. 411 */ 412 if (fr->fr_flags & RFSIGSHARE) 413 newsigacts = NULL; 414 else 415 newsigacts = sigacts_alloc(); 416 417 /* 418 * Copy filedesc. 419 */ 420 if (fr->fr_flags & RFCFDG) { 421 pd = pdinit(p1->p_pd, false); 422 fd = fdinit(); 423 fdtol = NULL; 424 } else if (fr->fr_flags & RFFDG) { 425 if (fr->fr_flags2 & FR2_SHARE_PATHS) 426 pd = pdshare(p1->p_pd); 427 else 428 pd = pdcopy(p1->p_pd); 429 fd = fdcopy(p1->p_fd); 430 fdtol = NULL; 431 } else { 432 if (fr->fr_flags2 & FR2_SHARE_PATHS) 433 pd = pdcopy(p1->p_pd); 434 else 435 pd = pdshare(p1->p_pd); 436 fd = fdshare(p1->p_fd); 437 if (p1->p_fdtol == NULL) 438 p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL, 439 p1->p_leader); 440 if ((fr->fr_flags & RFTHREAD) != 0) { 441 /* 442 * Shared file descriptor table, and shared 443 * process leaders. 444 */ 445 fdtol = filedesc_to_leader_share(p1->p_fdtol, p1->p_fd); 446 } else { 447 /* 448 * Shared file descriptor table, and different 449 * process leaders. 450 */ 451 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, 452 p1->p_fd, p2); 453 } 454 } 455 /* 456 * Make a proc table entry for the new process. 457 * Start by zeroing the section of proc that is zero-initialized, 458 * then copy the section that is copied directly from the parent. 459 */ 460 461 PROC_LOCK(p2); 462 PROC_LOCK(p1); 463 464 bzero(&td2->td_startzero, 465 __rangeof(struct thread, td_startzero, td_endzero)); 466 467 bcopy(&td->td_startcopy, &td2->td_startcopy, 468 __rangeof(struct thread, td_startcopy, td_endcopy)); 469 470 bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name)); 471 td2->td_sigstk = td->td_sigstk; 472 td2->td_flags = TDF_INMEM; 473 td2->td_lend_user_pri = PRI_MAX; 474 475 #ifdef VIMAGE 476 td2->td_vnet = NULL; 477 td2->td_vnet_lpush = NULL; 478 #endif 479 480 /* 481 * Allow the scheduler to initialize the child. 482 */ 483 thread_lock(td); 484 sched_fork(td, td2); 485 /* 486 * Request AST to check for TDP_RFPPWAIT. Do it here 487 * to avoid calling thread_lock() again. 488 */ 489 if ((fr->fr_flags & RFPPWAIT) != 0) 490 ast_sched_locked(td, TDA_VFORK); 491 thread_unlock(td); 492 493 /* 494 * Duplicate sub-structures as needed. 495 * Increase reference counts on shared objects. 496 */ 497 p2->p_flag = P_INMEM; 498 p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE | 499 P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC | 500 P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP | 501 P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC | P2_NO_NEW_PRIVS | 502 P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC); 503 p2->p_swtick = ticks; 504 if (p1->p_flag & P_PROFIL) 505 startprofclock(p2); 506 507 if (fr->fr_flags & RFSIGSHARE) { 508 p2->p_sigacts = sigacts_hold(p1->p_sigacts); 509 } else { 510 sigacts_copy(newsigacts, p1->p_sigacts); 511 p2->p_sigacts = newsigacts; 512 if ((fr->fr_flags2 & (FR2_DROPSIG_CAUGHT | FR2_KPROC)) != 0) { 513 mtx_lock(&p2->p_sigacts->ps_mtx); 514 if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0) 515 sig_drop_caught(p2); 516 if ((fr->fr_flags2 & FR2_KPROC) != 0) 517 p2->p_sigacts->ps_flag |= PS_NOCLDWAIT; 518 mtx_unlock(&p2->p_sigacts->ps_mtx); 519 } 520 } 521 522 if (fr->fr_flags & RFTSIGZMB) 523 p2->p_sigparent = RFTSIGNUM(fr->fr_flags); 524 else if (fr->fr_flags & RFLINUXTHPN) 525 p2->p_sigparent = SIGUSR1; 526 else 527 p2->p_sigparent = SIGCHLD; 528 529 if ((fr->fr_flags2 & FR2_KPROC) != 0) { 530 p2->p_flag |= P_SYSTEM | P_KPROC; 531 td2->td_pflags |= TDP_KTHREAD; 532 } 533 534 p2->p_textvp = p1->p_textvp; 535 p2->p_textdvp = p1->p_textdvp; 536 p2->p_fd = fd; 537 p2->p_fdtol = fdtol; 538 p2->p_pd = pd; 539 540 if (p1->p_flag2 & P2_INHERIT_PROTECTED) { 541 p2->p_flag |= P_PROTECTED; 542 p2->p_flag2 |= P2_INHERIT_PROTECTED; 543 } 544 545 /* 546 * p_limit is copy-on-write. Bump its refcount. 547 */ 548 lim_fork(p1, p2); 549 550 thread_cow_get_proc(td2, p2); 551 552 pstats_fork(p1->p_stats, p2->p_stats); 553 554 PROC_UNLOCK(p1); 555 PROC_UNLOCK(p2); 556 557 /* 558 * Bump references to the text vnode and directory, and copy 559 * the hardlink name. 560 */ 561 if (p2->p_textvp != NULL) 562 vrefact(p2->p_textvp); 563 if (p2->p_textdvp != NULL) 564 vrefact(p2->p_textdvp); 565 p2->p_binname = p1->p_binname == NULL ? NULL : 566 strdup(p1->p_binname, M_PARGS); 567 568 /* 569 * Set up linkage for kernel based threading. 570 */ 571 if ((fr->fr_flags & RFTHREAD) != 0) { 572 mtx_lock(&ppeers_lock); 573 p2->p_peers = p1->p_peers; 574 p1->p_peers = p2; 575 p2->p_leader = p1->p_leader; 576 mtx_unlock(&ppeers_lock); 577 PROC_LOCK(p1->p_leader); 578 if ((p1->p_leader->p_flag & P_WEXIT) != 0) { 579 PROC_UNLOCK(p1->p_leader); 580 /* 581 * The task leader is exiting, so process p1 is 582 * going to be killed shortly. Since p1 obviously 583 * isn't dead yet, we know that the leader is either 584 * sending SIGKILL's to all the processes in this 585 * task or is sleeping waiting for all the peers to 586 * exit. We let p1 complete the fork, but we need 587 * to go ahead and kill the new process p2 since 588 * the task leader may not get a chance to send 589 * SIGKILL to it. We leave it on the list so that 590 * the task leader will wait for this new process 591 * to commit suicide. 592 */ 593 PROC_LOCK(p2); 594 kern_psignal(p2, SIGKILL); 595 PROC_UNLOCK(p2); 596 } else 597 PROC_UNLOCK(p1->p_leader); 598 } else { 599 p2->p_peers = NULL; 600 p2->p_leader = p2; 601 } 602 603 sx_xlock(&proctree_lock); 604 PGRP_LOCK(p1->p_pgrp); 605 PROC_LOCK(p2); 606 PROC_LOCK(p1); 607 608 /* 609 * Preserve some more flags in subprocess. P_PROFIL has already 610 * been preserved. 611 */ 612 p2->p_flag |= p1->p_flag & P_SUGID; 613 td2->td_pflags |= (td->td_pflags & (TDP_ALTSTACK | TDP_SIGFASTBLOCK)); 614 SESS_LOCK(p1->p_session); 615 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) 616 p2->p_flag |= P_CONTROLT; 617 SESS_UNLOCK(p1->p_session); 618 if (fr->fr_flags & RFPPWAIT) 619 p2->p_flag |= P_PPWAIT; 620 621 p2->p_pgrp = p1->p_pgrp; 622 LIST_INSERT_AFTER(p1, p2, p_pglist); 623 PGRP_UNLOCK(p1->p_pgrp); 624 LIST_INIT(&p2->p_children); 625 LIST_INIT(&p2->p_orphans); 626 627 callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0); 628 TAILQ_INIT(&p2->p_kqtim_stop); 629 630 /* 631 * This begins the section where we must prevent the parent 632 * from being swapped. 633 */ 634 _PHOLD(p1); 635 PROC_UNLOCK(p1); 636 637 /* 638 * Attach the new process to its parent. 639 * 640 * If RFNOWAIT is set, the newly created process becomes a child 641 * of init. This effectively disassociates the child from the 642 * parent. 643 */ 644 if ((fr->fr_flags & RFNOWAIT) != 0) { 645 pptr = p1->p_reaper; 646 p2->p_reaper = pptr; 647 } else { 648 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ? 649 p1 : p1->p_reaper; 650 pptr = p1; 651 } 652 p2->p_pptr = pptr; 653 p2->p_oppid = pptr->p_pid; 654 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); 655 LIST_INIT(&p2->p_reaplist); 656 LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling); 657 if (p2->p_reaper == p1 && p1 != initproc) { 658 p2->p_reapsubtree = p2->p_pid; 659 proc_id_set_cond(PROC_ID_REAP, p2->p_pid); 660 } 661 sx_xunlock(&proctree_lock); 662 663 /* Inform accounting that we have forked. */ 664 p2->p_acflag = AFORK; 665 PROC_UNLOCK(p2); 666 667 #ifdef KTRACE 668 ktrprocfork(p1, p2); 669 #endif 670 671 /* 672 * Finish creating the child process. It will return via a different 673 * execution path later. (ie: directly into user mode) 674 */ 675 vm_forkproc(td, p2, td2, vm2, fr->fr_flags); 676 677 if (fr->fr_flags == (RFFDG | RFPROC)) { 678 VM_CNT_INC(v_forks); 679 VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize + 680 p2->p_vmspace->vm_ssize); 681 } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { 682 VM_CNT_INC(v_vforks); 683 VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize + 684 p2->p_vmspace->vm_ssize); 685 } else if (p1 == &proc0) { 686 VM_CNT_INC(v_kthreads); 687 VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize + 688 p2->p_vmspace->vm_ssize); 689 } else { 690 VM_CNT_INC(v_rforks); 691 VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize + 692 p2->p_vmspace->vm_ssize); 693 } 694 695 /* 696 * Associate the process descriptor with the process before anything 697 * can happen that might cause that process to need the descriptor. 698 * However, don't do this until after fork(2) can no longer fail. 699 */ 700 if (fr->fr_flags & RFPROCDESC) 701 procdesc_new(p2, fr->fr_pd_flags); 702 703 /* 704 * Both processes are set up, now check if any loadable modules want 705 * to adjust anything. 706 */ 707 EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags); 708 709 /* 710 * Set the child start time and mark the process as being complete. 711 */ 712 PROC_LOCK(p2); 713 PROC_LOCK(p1); 714 microuptime(&p2->p_stats->p_start); 715 PROC_SLOCK(p2); 716 p2->p_state = PRS_NORMAL; 717 PROC_SUNLOCK(p2); 718 719 #ifdef KDTRACE_HOOKS 720 /* 721 * Tell the DTrace fasttrap provider about the new process so that any 722 * tracepoints inherited from the parent can be removed. We have to do 723 * this only after p_state is PRS_NORMAL since the fasttrap module will 724 * use pfind() later on. 725 */ 726 if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork) 727 dtrace_fasttrap_fork(p1, p2); 728 #endif 729 if (fr->fr_flags & RFPPWAIT) { 730 td->td_pflags |= TDP_RFPPWAIT; 731 td->td_rfppwait_p = p2; 732 td->td_dbgflags |= TDB_VFORK; 733 } 734 PROC_UNLOCK(p2); 735 736 /* 737 * Tell any interested parties about the new process. 738 */ 739 knote_fork(p1->p_klist, p2->p_pid); 740 741 /* 742 * Now can be swapped. 743 */ 744 _PRELE(p1); 745 PROC_UNLOCK(p1); 746 SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags); 747 748 if (fr->fr_flags & RFPROCDESC) { 749 procdesc_finit(p2->p_procdesc, fp_procdesc); 750 fdrop(fp_procdesc, td); 751 } 752 753 /* 754 * Speculative check for PTRACE_FORK. PTRACE_FORK is not 755 * synced with forks in progress so it is OK if we miss it 756 * if being set atm. 757 */ 758 if ((p1->p_ptevents & PTRACE_FORK) != 0) { 759 sx_xlock(&proctree_lock); 760 PROC_LOCK(p2); 761 762 /* 763 * p1->p_ptevents & p1->p_pptr are protected by both 764 * process and proctree locks for modifications, 765 * so owning proctree_lock allows the race-free read. 766 */ 767 if ((p1->p_ptevents & PTRACE_FORK) != 0) { 768 /* 769 * Arrange for debugger to receive the fork event. 770 * 771 * We can report PL_FLAG_FORKED regardless of 772 * P_FOLLOWFORK settings, but it does not make a sense 773 * for runaway child. 774 */ 775 td->td_dbgflags |= TDB_FORK; 776 td->td_dbg_forked = p2->p_pid; 777 td2->td_dbgflags |= TDB_STOPATFORK; 778 proc_set_traced(p2, true); 779 CTR2(KTR_PTRACE, 780 "do_fork: attaching to new child pid %d: oppid %d", 781 p2->p_pid, p2->p_oppid); 782 proc_reparent(p2, p1->p_pptr, false); 783 } 784 PROC_UNLOCK(p2); 785 sx_xunlock(&proctree_lock); 786 } 787 788 racct_proc_fork_done(p2); 789 790 if ((fr->fr_flags & RFSTOPPED) == 0) { 791 if (fr->fr_pidp != NULL) 792 *fr->fr_pidp = p2->p_pid; 793 /* 794 * If RFSTOPPED not requested, make child runnable and 795 * add to run queue. 796 */ 797 thread_lock(td2); 798 TD_SET_CAN_RUN(td2); 799 sched_add(td2, SRQ_BORING); 800 } else { 801 *fr->fr_procp = p2; 802 } 803 } 804 805 static void 806 ast_vfork(struct thread *td, int tda __unused) 807 { 808 struct proc *p, *p2; 809 810 MPASS(td->td_pflags & TDP_RFPPWAIT); 811 812 p = td->td_proc; 813 /* 814 * Preserve synchronization semantics of vfork. If 815 * waiting for child to exec or exit, fork set 816 * P_PPWAIT on child, and there we sleep on our proc 817 * (in case of exit). 818 * 819 * Do it after the ptracestop() above is finished, to 820 * not block our debugger until child execs or exits 821 * to finish vfork wait. 822 */ 823 td->td_pflags &= ~TDP_RFPPWAIT; 824 p2 = td->td_rfppwait_p; 825 again: 826 PROC_LOCK(p2); 827 while (p2->p_flag & P_PPWAIT) { 828 PROC_LOCK(p); 829 if (thread_suspend_check_needed()) { 830 PROC_UNLOCK(p2); 831 thread_suspend_check(0); 832 PROC_UNLOCK(p); 833 goto again; 834 } else { 835 PROC_UNLOCK(p); 836 } 837 cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz); 838 } 839 PROC_UNLOCK(p2); 840 841 if (td->td_dbgflags & TDB_VFORK) { 842 PROC_LOCK(p); 843 if (p->p_ptevents & PTRACE_VFORK) 844 ptracestop(td, SIGTRAP, NULL); 845 td->td_dbgflags &= ~TDB_VFORK; 846 PROC_UNLOCK(p); 847 } 848 } 849 850 int 851 fork1(struct thread *td, struct fork_req *fr) 852 { 853 struct proc *p1, *newproc; 854 struct thread *td2; 855 struct vmspace *vm2; 856 struct ucred *cred; 857 struct file *fp_procdesc; 858 vm_ooffset_t mem_charged; 859 int error, nprocs_new; 860 static int curfail; 861 static struct timeval lastfail; 862 int flags, pages; 863 864 flags = fr->fr_flags; 865 pages = fr->fr_pages; 866 867 if ((flags & RFSTOPPED) != 0) 868 MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL); 869 else 870 MPASS(fr->fr_procp == NULL); 871 872 /* Check for the undefined or unimplemented flags. */ 873 if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0) 874 return (EINVAL); 875 876 /* Signal value requires RFTSIGZMB. */ 877 if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0) 878 return (EINVAL); 879 880 /* Can't copy and clear. */ 881 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) 882 return (EINVAL); 883 884 /* Check the validity of the signal number. */ 885 if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG) 886 return (EINVAL); 887 888 if ((flags & RFPROCDESC) != 0) { 889 /* Can't not create a process yet get a process descriptor. */ 890 if ((flags & RFPROC) == 0) 891 return (EINVAL); 892 893 /* Must provide a place to put a procdesc if creating one. */ 894 if (fr->fr_pd_fd == NULL) 895 return (EINVAL); 896 897 /* Check if we are using supported flags. */ 898 if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0) 899 return (EINVAL); 900 } 901 902 p1 = td->td_proc; 903 904 /* 905 * Here we don't create a new process, but we divorce 906 * certain parts of a process from itself. 907 */ 908 if ((flags & RFPROC) == 0) { 909 if (fr->fr_procp != NULL) 910 *fr->fr_procp = NULL; 911 else if (fr->fr_pidp != NULL) 912 *fr->fr_pidp = 0; 913 return (fork_norfproc(td, flags)); 914 } 915 916 fp_procdesc = NULL; 917 newproc = NULL; 918 vm2 = NULL; 919 920 /* 921 * Increment the nprocs resource before allocations occur. 922 * Although process entries are dynamically created, we still 923 * keep a global limit on the maximum number we will 924 * create. There are hard-limits as to the number of processes 925 * that can run, established by the KVA and memory usage for 926 * the process data. 927 * 928 * Don't allow a nonprivileged user to use the last ten 929 * processes; don't let root exceed the limit. 930 */ 931 nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1; 932 if (nprocs_new >= maxproc - 10) { 933 if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 || 934 nprocs_new >= maxproc) { 935 error = EAGAIN; 936 sx_xlock(&allproc_lock); 937 if (ppsratecheck(&lastfail, &curfail, 1)) { 938 printf("maxproc limit exceeded by uid %u " 939 "(pid %d); see tuning(7) and " 940 "login.conf(5)\n", 941 td->td_ucred->cr_ruid, p1->p_pid); 942 } 943 sx_xunlock(&allproc_lock); 944 goto fail2; 945 } 946 } 947 948 /* 949 * If required, create a process descriptor in the parent first; we 950 * will abandon it if something goes wrong. We don't finit() until 951 * later. 952 */ 953 if (flags & RFPROCDESC) { 954 error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd, 955 fr->fr_pd_flags, fr->fr_pd_fcaps); 956 if (error != 0) 957 goto fail2; 958 AUDIT_ARG_FD(*fr->fr_pd_fd); 959 } 960 961 mem_charged = 0; 962 if (pages == 0) 963 pages = kstack_pages; 964 /* Allocate new proc. */ 965 newproc = uma_zalloc(proc_zone, M_WAITOK); 966 td2 = FIRST_THREAD_IN_PROC(newproc); 967 if (td2 == NULL) { 968 td2 = thread_alloc(pages); 969 if (td2 == NULL) { 970 error = ENOMEM; 971 goto fail2; 972 } 973 proc_linkup(newproc, td2); 974 } else { 975 kmsan_thread_alloc(td2); 976 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) { 977 if (td2->td_kstack != 0) 978 vm_thread_dispose(td2); 979 if (!thread_alloc_stack(td2, pages)) { 980 error = ENOMEM; 981 goto fail2; 982 } 983 } 984 } 985 986 if ((flags & RFMEM) == 0) { 987 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged); 988 if (vm2 == NULL) { 989 error = ENOMEM; 990 goto fail2; 991 } 992 if (!swap_reserve(mem_charged)) { 993 /* 994 * The swap reservation failed. The accounting 995 * from the entries of the copied vm2 will be 996 * subtracted in vmspace_free(), so force the 997 * reservation there. 998 */ 999 swap_reserve_force(mem_charged); 1000 error = ENOMEM; 1001 goto fail2; 1002 } 1003 } else 1004 vm2 = NULL; 1005 1006 /* 1007 * XXX: This is ugly; when we copy resource usage, we need to bump 1008 * per-cred resource counters. 1009 */ 1010 proc_set_cred_init(newproc, td->td_ucred); 1011 1012 /* 1013 * Initialize resource accounting for the child process. 1014 */ 1015 error = racct_proc_fork(p1, newproc); 1016 if (error != 0) { 1017 error = EAGAIN; 1018 goto fail1; 1019 } 1020 1021 #ifdef MAC 1022 mac_proc_init(newproc); 1023 #endif 1024 newproc->p_klist = knlist_alloc(&newproc->p_mtx); 1025 STAILQ_INIT(&newproc->p_ktr); 1026 1027 /* 1028 * Increment the count of procs running with this uid. Don't allow 1029 * a nonprivileged user to exceed their current limit. 1030 */ 1031 cred = td->td_ucred; 1032 if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) { 1033 if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0) 1034 goto fail0; 1035 chgproccnt(cred->cr_ruidinfo, 1, 0); 1036 } 1037 1038 do_fork(td, fr, newproc, td2, vm2, fp_procdesc); 1039 return (0); 1040 fail0: 1041 error = EAGAIN; 1042 #ifdef MAC 1043 mac_proc_destroy(newproc); 1044 #endif 1045 racct_proc_exit(newproc); 1046 fail1: 1047 proc_unset_cred(newproc); 1048 fail2: 1049 if (vm2 != NULL) 1050 vmspace_free(vm2); 1051 uma_zfree(proc_zone, newproc); 1052 if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) { 1053 fdclose(td, fp_procdesc, *fr->fr_pd_fd); 1054 fdrop(fp_procdesc, td); 1055 } 1056 atomic_add_int(&nprocs, -1); 1057 pause("fork", hz / 2); 1058 return (error); 1059 } 1060 1061 /* 1062 * Handle the return of a child process from fork1(). This function 1063 * is called from the MD fork_trampoline() entry point. 1064 */ 1065 void 1066 fork_exit(void (*callout)(void *, struct trapframe *), void *arg, 1067 struct trapframe *frame) 1068 { 1069 struct proc *p; 1070 struct thread *td; 1071 struct thread *dtd; 1072 1073 kmsan_mark(frame, sizeof(*frame), KMSAN_STATE_INITED); 1074 1075 td = curthread; 1076 p = td->td_proc; 1077 KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new")); 1078 1079 CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)", 1080 td, td_get_sched(td), p->p_pid, td->td_name); 1081 1082 sched_fork_exit(td); 1083 1084 /* 1085 * Processes normally resume in mi_switch() after being 1086 * cpu_switch()'ed to, but when children start up they arrive here 1087 * instead, so we must do much the same things as mi_switch() would. 1088 */ 1089 if ((dtd = PCPU_GET(deadthread))) { 1090 PCPU_SET(deadthread, NULL); 1091 thread_stash(dtd); 1092 } 1093 thread_unlock(td); 1094 1095 /* 1096 * cpu_fork_kthread_handler intercepts this function call to 1097 * have this call a non-return function to stay in kernel mode. 1098 * initproc has its own fork handler, but it does return. 1099 */ 1100 KASSERT(callout != NULL, ("NULL callout in fork_exit")); 1101 callout(arg, frame); 1102 1103 /* 1104 * Check if a kernel thread misbehaved and returned from its main 1105 * function. 1106 */ 1107 if (p->p_flag & P_KPROC) { 1108 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n", 1109 td->td_name, p->p_pid); 1110 kthread_exit(); 1111 } 1112 mtx_assert(&Giant, MA_NOTOWNED); 1113 1114 if (p->p_sysent->sv_schedtail != NULL) 1115 (p->p_sysent->sv_schedtail)(td); 1116 } 1117 1118 /* 1119 * Simplified back end of syscall(), used when returning from fork() 1120 * directly into user mode. This function is passed in to fork_exit() 1121 * as the first parameter and is called when returning to a new 1122 * userland process. 1123 */ 1124 void 1125 fork_return(struct thread *td, struct trapframe *frame) 1126 { 1127 struct proc *p; 1128 1129 p = td->td_proc; 1130 if (td->td_dbgflags & TDB_STOPATFORK) { 1131 PROC_LOCK(p); 1132 if ((p->p_flag & P_TRACED) != 0) { 1133 /* 1134 * Inform the debugger if one is still present. 1135 */ 1136 td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP; 1137 ptracestop(td, SIGSTOP, NULL); 1138 td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX); 1139 } else { 1140 /* 1141 * ... otherwise clear the request. 1142 */ 1143 td->td_dbgflags &= ~TDB_STOPATFORK; 1144 } 1145 PROC_UNLOCK(p); 1146 } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) { 1147 /* 1148 * This is the start of a new thread in a traced 1149 * process. Report a system call exit event. 1150 */ 1151 PROC_LOCK(p); 1152 td->td_dbgflags |= TDB_SCX; 1153 if ((p->p_ptevents & PTRACE_SCX) != 0 || 1154 (td->td_dbgflags & TDB_BORN) != 0) 1155 ptracestop(td, SIGTRAP, NULL); 1156 td->td_dbgflags &= ~(TDB_SCX | TDB_BORN); 1157 PROC_UNLOCK(p); 1158 } 1159 1160 /* 1161 * If the prison was killed mid-fork, die along with it. 1162 */ 1163 if (!prison_isalive(td->td_ucred->cr_prison)) 1164 exit1(td, 0, SIGKILL); 1165 1166 userret(td, frame); 1167 1168 #ifdef KTRACE 1169 if (KTRPOINT(td, KTR_SYSRET)) 1170 ktrsysret(SYS_fork, 0, 0); 1171 #endif 1172 } 1173 1174 static void 1175 fork_init(void *arg __unused) 1176 { 1177 ast_register(TDA_VFORK, ASTR_ASTF_REQUIRED | ASTR_TDP, TDP_RFPPWAIT, 1178 ast_vfork); 1179 } 1180 SYSINIT(fork, SI_SUB_INTRINSIC, SI_ORDER_ANY, fork_init, NULL); 1181