xref: /freebsd/sys/kern/kern_fork.c (revision a930f272def8f4c8915467084eb0c2222b39c86c)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_mac.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysproto.h>
46 #include <sys/eventhandler.h>
47 #include <sys/filedesc.h>
48 #include <sys/kernel.h>
49 #include <sys/kthread.h>
50 #include <sys/sysctl.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/pioctl.h>
56 #include <sys/resourcevar.h>
57 #include <sys/sched.h>
58 #include <sys/syscall.h>
59 #include <sys/vmmeter.h>
60 #include <sys/vnode.h>
61 #include <sys/acct.h>
62 #include <sys/ktr.h>
63 #include <sys/ktrace.h>
64 #include <sys/unistd.h>
65 #include <sys/sx.h>
66 #include <sys/signalvar.h>
67 
68 #include <security/audit/audit.h>
69 #include <security/mac/mac_framework.h>
70 
71 #include <vm/vm.h>
72 #include <vm/pmap.h>
73 #include <vm/vm_map.h>
74 #include <vm/vm_extern.h>
75 #include <vm/uma.h>
76 
77 
78 #ifndef _SYS_SYSPROTO_H_
79 struct fork_args {
80 	int     dummy;
81 };
82 #endif
83 
84 static int forksleep; /* Place for fork1() to sleep on. */
85 
86 /*
87  * MPSAFE
88  */
89 /* ARGSUSED */
90 int
91 fork(td, uap)
92 	struct thread *td;
93 	struct fork_args *uap;
94 {
95 	int error;
96 	struct proc *p2;
97 
98 	error = fork1(td, RFFDG | RFPROC, 0, &p2);
99 	if (error == 0) {
100 		td->td_retval[0] = p2->p_pid;
101 		td->td_retval[1] = 0;
102 	}
103 	return (error);
104 }
105 
106 /*
107  * MPSAFE
108  */
109 /* ARGSUSED */
110 int
111 vfork(td, uap)
112 	struct thread *td;
113 	struct vfork_args *uap;
114 {
115 	int error;
116 	struct proc *p2;
117 
118 	error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, 0, &p2);
119 	if (error == 0) {
120 		td->td_retval[0] = p2->p_pid;
121 		td->td_retval[1] = 0;
122 	}
123 	return (error);
124 }
125 
126 /*
127  * MPSAFE
128  */
129 int
130 rfork(td, uap)
131 	struct thread *td;
132 	struct rfork_args *uap;
133 {
134 	struct proc *p2;
135 	int error;
136 
137 	/* Don't allow kernel-only flags. */
138 	if ((uap->flags & RFKERNELONLY) != 0)
139 		return (EINVAL);
140 
141 	AUDIT_ARG(fflags, uap->flags);
142 	error = fork1(td, uap->flags, 0, &p2);
143 	if (error == 0) {
144 		td->td_retval[0] = p2 ? p2->p_pid : 0;
145 		td->td_retval[1] = 0;
146 	}
147 	return (error);
148 }
149 
150 int	nprocs = 1;		/* process 0 */
151 int	lastpid = 0;
152 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
153     "Last used PID");
154 
155 /*
156  * Random component to lastpid generation.  We mix in a random factor to make
157  * it a little harder to predict.  We sanity check the modulus value to avoid
158  * doing it in critical paths.  Don't let it be too small or we pointlessly
159  * waste randomness entropy, and don't let it be impossibly large.  Using a
160  * modulus that is too big causes a LOT more process table scans and slows
161  * down fork processing as the pidchecked caching is defeated.
162  */
163 static int randompid = 0;
164 
165 static int
166 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
167 {
168 	int error, pid;
169 
170 	error = sysctl_wire_old_buffer(req, sizeof(int));
171 	if (error != 0)
172 		return(error);
173 	sx_xlock(&allproc_lock);
174 	pid = randompid;
175 	error = sysctl_handle_int(oidp, &pid, 0, req);
176 	if (error == 0 && req->newptr != NULL) {
177 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
178 			pid = PID_MAX - 100;
179 		else if (pid < 2)			/* NOP */
180 			pid = 0;
181 		else if (pid < 100)			/* Make it reasonable */
182 			pid = 100;
183 		randompid = pid;
184 	}
185 	sx_xunlock(&allproc_lock);
186 	return (error);
187 }
188 
189 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
190     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
191 
192 int
193 fork1(td, flags, pages, procp)
194 	struct thread *td;
195 	int flags;
196 	int pages;
197 	struct proc **procp;
198 {
199 	struct proc *p1, *p2, *pptr;
200 	struct proc *newproc;
201 	int ok, trypid;
202 	static int curfail, pidchecked = 0;
203 	static struct timeval lastfail;
204 	struct filedesc *fd;
205 	struct filedesc_to_leader *fdtol;
206 	struct thread *td2;
207 #ifdef KSE
208 	struct ksegrp *kg2;
209 #endif
210 	struct sigacts *newsigacts;
211 	int error;
212 
213 	/* Can't copy and clear. */
214 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
215 		return (EINVAL);
216 
217 	p1 = td->td_proc;
218 
219 	/*
220 	 * Here we don't create a new process, but we divorce
221 	 * certain parts of a process from itself.
222 	 */
223 	if ((flags & RFPROC) == 0) {
224 		if ((p1->p_flag & P_HADTHREADS) &&
225 		    (flags & (RFCFDG | RFFDG))) {
226 			PROC_LOCK(p1);
227 			if (thread_single(SINGLE_BOUNDARY)) {
228 				PROC_UNLOCK(p1);
229 				return (ERESTART);
230 			}
231 			PROC_UNLOCK(p1);
232 		}
233 
234 		vm_forkproc(td, NULL, NULL, flags);
235 
236 		/*
237 		 * Close all file descriptors.
238 		 */
239 		if (flags & RFCFDG) {
240 			struct filedesc *fdtmp;
241 			fdtmp = fdinit(td->td_proc->p_fd);
242 			fdfree(td);
243 			p1->p_fd = fdtmp;
244 		}
245 
246 		/*
247 		 * Unshare file descriptors (from parent).
248 		 */
249 		if (flags & RFFDG)
250 			fdunshare(p1, td);
251 
252 		if ((p1->p_flag & P_HADTHREADS) &&
253 		    (flags & (RFCFDG | RFFDG))) {
254 			PROC_LOCK(p1);
255 			thread_single_end();
256 			PROC_UNLOCK(p1);
257 		}
258 		*procp = NULL;
259 		return (0);
260 	}
261 
262 	/*
263 	 * Note 1:1 allows for forking with one thread coming out on the
264 	 * other side with the expectation that the process is about to
265 	 * exec.
266 	 */
267 	if (p1->p_flag & P_HADTHREADS) {
268 		/*
269 		 * Idle the other threads for a second.
270 		 * Since the user space is copied, it must remain stable.
271 		 * In addition, all threads (from the user perspective)
272 		 * need to either be suspended or in the kernel,
273 		 * where they will try restart in the parent and will
274 		 * be aborted in the child.
275 		 */
276 		PROC_LOCK(p1);
277 		if (thread_single(SINGLE_NO_EXIT)) {
278 			/* Abort. Someone else is single threading before us. */
279 			PROC_UNLOCK(p1);
280 			return (ERESTART);
281 		}
282 		PROC_UNLOCK(p1);
283 		/*
284 		 * All other activity in this process
285 		 * is now suspended at the user boundary,
286 		 * (or other safe places if we think of any).
287 		 */
288 	}
289 
290 	/* Allocate new proc. */
291 	newproc = uma_zalloc(proc_zone, M_WAITOK);
292 #ifdef MAC
293 	mac_init_proc(newproc);
294 #endif
295 #ifdef AUDIT
296 	audit_proc_alloc(newproc);
297 #endif
298 	knlist_init(&newproc->p_klist, &newproc->p_mtx, NULL, NULL, NULL);
299 	STAILQ_INIT(&newproc->p_ktr);
300 
301 	/* We have to lock the process tree while we look for a pid. */
302 	sx_slock(&proctree_lock);
303 
304 	/*
305 	 * Although process entries are dynamically created, we still keep
306 	 * a global limit on the maximum number we will create.  Don't allow
307 	 * a nonprivileged user to use the last ten processes; don't let root
308 	 * exceed the limit. The variable nprocs is the current number of
309 	 * processes, maxproc is the limit.
310 	 */
311 	sx_xlock(&allproc_lock);
312 	if ((nprocs >= maxproc - 10 &&
313 	    suser_cred(td->td_ucred, SUSER_RUID) != 0) ||
314 	    nprocs >= maxproc) {
315 		error = EAGAIN;
316 		goto fail;
317 	}
318 
319 	/*
320 	 * Increment the count of procs running with this uid. Don't allow
321 	 * a nonprivileged user to exceed their current limit.
322 	 */
323 	error = suser_cred(td->td_ucred, SUSER_RUID | SUSER_ALLOWJAIL);
324 	if (error == 0)
325 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
326 	else {
327 		PROC_LOCK(p1);
328 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
329 		    lim_cur(p1, RLIMIT_NPROC));
330 		PROC_UNLOCK(p1);
331 	}
332 	if (!ok) {
333 		error = EAGAIN;
334 		goto fail;
335 	}
336 
337 	/*
338 	 * Increment the nprocs resource before blocking can occur.  There
339 	 * are hard-limits as to the number of processes that can run.
340 	 */
341 	nprocs++;
342 
343 	/*
344 	 * Find an unused process ID.  We remember a range of unused IDs
345 	 * ready to use (from lastpid+1 through pidchecked-1).
346 	 *
347 	 * If RFHIGHPID is set (used during system boot), do not allocate
348 	 * low-numbered pids.
349 	 */
350 	trypid = lastpid + 1;
351 	if (flags & RFHIGHPID) {
352 		if (trypid < 10)
353 			trypid = 10;
354 	} else {
355 		if (randompid)
356 			trypid += arc4random() % randompid;
357 	}
358 retry:
359 	/*
360 	 * If the process ID prototype has wrapped around,
361 	 * restart somewhat above 0, as the low-numbered procs
362 	 * tend to include daemons that don't exit.
363 	 */
364 	if (trypid >= PID_MAX) {
365 		trypid = trypid % PID_MAX;
366 		if (trypid < 100)
367 			trypid += 100;
368 		pidchecked = 0;
369 	}
370 	if (trypid >= pidchecked) {
371 		int doingzomb = 0;
372 
373 		pidchecked = PID_MAX;
374 		/*
375 		 * Scan the active and zombie procs to check whether this pid
376 		 * is in use.  Remember the lowest pid that's greater
377 		 * than trypid, so we can avoid checking for a while.
378 		 */
379 		p2 = LIST_FIRST(&allproc);
380 again:
381 		for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
382 			while (p2->p_pid == trypid ||
383 			    (p2->p_pgrp != NULL &&
384 			    (p2->p_pgrp->pg_id == trypid ||
385 			    (p2->p_session != NULL &&
386 			    p2->p_session->s_sid == trypid)))) {
387 				trypid++;
388 				if (trypid >= pidchecked)
389 					goto retry;
390 			}
391 			if (p2->p_pid > trypid && pidchecked > p2->p_pid)
392 				pidchecked = p2->p_pid;
393 			if (p2->p_pgrp != NULL) {
394 				if (p2->p_pgrp->pg_id > trypid &&
395 				    pidchecked > p2->p_pgrp->pg_id)
396 					pidchecked = p2->p_pgrp->pg_id;
397 				if (p2->p_session != NULL &&
398 				    p2->p_session->s_sid > trypid &&
399 				    pidchecked > p2->p_session->s_sid)
400 					pidchecked = p2->p_session->s_sid;
401 			}
402 		}
403 		if (!doingzomb) {
404 			doingzomb = 1;
405 			p2 = LIST_FIRST(&zombproc);
406 			goto again;
407 		}
408 	}
409 	sx_sunlock(&proctree_lock);
410 
411 	/*
412 	 * RFHIGHPID does not mess with the lastpid counter during boot.
413 	 */
414 	if (flags & RFHIGHPID)
415 		pidchecked = 0;
416 	else
417 		lastpid = trypid;
418 
419 	p2 = newproc;
420 	p2->p_state = PRS_NEW;		/* protect against others */
421 	p2->p_pid = trypid;
422 	AUDIT_ARG(pid, p2->p_pid);
423 	LIST_INSERT_HEAD(&allproc, p2, p_list);
424 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
425 	sx_xunlock(&allproc_lock);
426 
427 	/*
428 	 * Malloc things while we don't hold any locks.
429 	 */
430 	if (flags & RFSIGSHARE)
431 		newsigacts = NULL;
432 	else
433 		newsigacts = sigacts_alloc();
434 
435 	/*
436 	 * Copy filedesc.
437 	 */
438 	if (flags & RFCFDG) {
439 		fd = fdinit(p1->p_fd);
440 		fdtol = NULL;
441 	} else if (flags & RFFDG) {
442 		fd = fdcopy(p1->p_fd);
443 		fdtol = NULL;
444 	} else {
445 		fd = fdshare(p1->p_fd);
446 		if (p1->p_fdtol == NULL)
447 			p1->p_fdtol =
448 				filedesc_to_leader_alloc(NULL,
449 							 NULL,
450 							 p1->p_leader);
451 		if ((flags & RFTHREAD) != 0) {
452 			/*
453 			 * Shared file descriptor table and
454 			 * shared process leaders.
455 			 */
456 			fdtol = p1->p_fdtol;
457 			FILEDESC_LOCK_FAST(p1->p_fd);
458 			fdtol->fdl_refcount++;
459 			FILEDESC_UNLOCK_FAST(p1->p_fd);
460 		} else {
461 			/*
462 			 * Shared file descriptor table, and
463 			 * different process leaders
464 			 */
465 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
466 							 p1->p_fd,
467 							 p2);
468 		}
469 	}
470 	/*
471 	 * Make a proc table entry for the new process.
472 	 * Start by zeroing the section of proc that is zero-initialized,
473 	 * then copy the section that is copied directly from the parent.
474 	 */
475 	td2 = FIRST_THREAD_IN_PROC(p2);
476 #ifdef KSE
477 	kg2 = FIRST_KSEGRP_IN_PROC(p2);
478 #endif
479 
480 	/* Allocate and switch to an alternate kstack if specified. */
481 	if (pages != 0)
482 		vm_thread_new_altkstack(td2, pages);
483 
484 	PROC_LOCK(p2);
485 	PROC_LOCK(p1);
486 
487 	bzero(&p2->p_startzero,
488 	    __rangeof(struct proc, p_startzero, p_endzero));
489 	bzero(&td2->td_startzero,
490 	    __rangeof(struct thread, td_startzero, td_endzero));
491 #ifdef KSE
492 	bzero(&kg2->kg_startzero,
493 	    __rangeof(struct ksegrp, kg_startzero, kg_endzero));
494 #endif
495 
496 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
497 	    __rangeof(struct proc, p_startcopy, p_endcopy));
498 	bcopy(&td->td_startcopy, &td2->td_startcopy,
499 	    __rangeof(struct thread, td_startcopy, td_endcopy));
500 #ifdef KSE
501 	bcopy(&td->td_ksegrp->kg_startcopy, &kg2->kg_startcopy,
502 	    __rangeof(struct ksegrp, kg_startcopy, kg_endcopy));
503 #endif
504 
505 	td2->td_sigstk = td->td_sigstk;
506 	td2->td_sigmask = td->td_sigmask;
507 
508 	/*
509 	 * Duplicate sub-structures as needed.
510 	 * Increase reference counts on shared objects.
511 	 */
512 	p2->p_flag = 0;
513 	if (p1->p_flag & P_PROFIL)
514 		startprofclock(p2);
515 	mtx_lock_spin(&sched_lock);
516 	p2->p_sflag = PS_INMEM;
517 	/*
518 	 * Allow the scheduler to adjust the priority of the child and
519 	 * parent while we hold the sched_lock.
520 	 */
521 	sched_fork(td, td2);
522 
523 	mtx_unlock_spin(&sched_lock);
524 	p2->p_ucred = crhold(td->td_ucred);
525 #ifdef KSE
526 	td2->td_ucred = crhold(p2->p_ucred);	/* XXXKSE */
527 #else
528 	td2->td_ucred = crhold(p2->p_ucred);
529 #endif
530 #ifdef AUDIT
531 	audit_proc_fork(p1, p2);
532 #endif
533 	pargs_hold(p2->p_args);
534 
535 	if (flags & RFSIGSHARE) {
536 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
537 	} else {
538 		sigacts_copy(newsigacts, p1->p_sigacts);
539 		p2->p_sigacts = newsigacts;
540 	}
541 	if (flags & RFLINUXTHPN)
542 	        p2->p_sigparent = SIGUSR1;
543 	else
544 	        p2->p_sigparent = SIGCHLD;
545 
546 	p2->p_textvp = p1->p_textvp;
547 	p2->p_fd = fd;
548 	p2->p_fdtol = fdtol;
549 
550 	/*
551 	 * p_limit is copy-on-write.  Bump its refcount.
552 	 */
553 	p2->p_limit = lim_hold(p1->p_limit);
554 
555 	pstats_fork(p1->p_stats, p2->p_stats);
556 
557 	PROC_UNLOCK(p1);
558 	PROC_UNLOCK(p2);
559 
560 	/* Bump references to the text vnode (for procfs) */
561 	if (p2->p_textvp)
562 		vref(p2->p_textvp);
563 
564 	/*
565 	 * Set up linkage for kernel based threading.
566 	 */
567 	if ((flags & RFTHREAD) != 0) {
568 		mtx_lock(&ppeers_lock);
569 		p2->p_peers = p1->p_peers;
570 		p1->p_peers = p2;
571 		p2->p_leader = p1->p_leader;
572 		mtx_unlock(&ppeers_lock);
573 		PROC_LOCK(p1->p_leader);
574 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
575 			PROC_UNLOCK(p1->p_leader);
576 			/*
577 			 * The task leader is exiting, so process p1 is
578 			 * going to be killed shortly.  Since p1 obviously
579 			 * isn't dead yet, we know that the leader is either
580 			 * sending SIGKILL's to all the processes in this
581 			 * task or is sleeping waiting for all the peers to
582 			 * exit.  We let p1 complete the fork, but we need
583 			 * to go ahead and kill the new process p2 since
584 			 * the task leader may not get a chance to send
585 			 * SIGKILL to it.  We leave it on the list so that
586 			 * the task leader will wait for this new process
587 			 * to commit suicide.
588 			 */
589 			PROC_LOCK(p2);
590 			psignal(p2, SIGKILL);
591 			PROC_UNLOCK(p2);
592 		} else
593 			PROC_UNLOCK(p1->p_leader);
594 	} else {
595 		p2->p_peers = NULL;
596 		p2->p_leader = p2;
597 	}
598 
599 	sx_xlock(&proctree_lock);
600 	PGRP_LOCK(p1->p_pgrp);
601 	PROC_LOCK(p2);
602 	PROC_LOCK(p1);
603 
604 	/*
605 	 * Preserve some more flags in subprocess.  P_PROFIL has already
606 	 * been preserved.
607 	 */
608 	p2->p_flag |= p1->p_flag & P_SUGID;
609 	td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
610 	SESS_LOCK(p1->p_session);
611 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
612 		p2->p_flag |= P_CONTROLT;
613 	SESS_UNLOCK(p1->p_session);
614 	if (flags & RFPPWAIT)
615 		p2->p_flag |= P_PPWAIT;
616 
617 	p2->p_pgrp = p1->p_pgrp;
618 	LIST_INSERT_AFTER(p1, p2, p_pglist);
619 	PGRP_UNLOCK(p1->p_pgrp);
620 	LIST_INIT(&p2->p_children);
621 
622 	callout_init(&p2->p_itcallout, CALLOUT_MPSAFE);
623 
624 #ifdef KTRACE
625 	/*
626 	 * Copy traceflag and tracefile if enabled.
627 	 */
628 	mtx_lock(&ktrace_mtx);
629 	KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
630 	if (p1->p_traceflag & KTRFAC_INHERIT) {
631 		p2->p_traceflag = p1->p_traceflag;
632 		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
633 			VREF(p2->p_tracevp);
634 			KASSERT(p1->p_tracecred != NULL,
635 			    ("ktrace vnode with no cred"));
636 			p2->p_tracecred = crhold(p1->p_tracecred);
637 		}
638 	}
639 	mtx_unlock(&ktrace_mtx);
640 #endif
641 
642 	/*
643 	 * If PF_FORK is set, the child process inherits the
644 	 * procfs ioctl flags from its parent.
645 	 */
646 	if (p1->p_pfsflags & PF_FORK) {
647 		p2->p_stops = p1->p_stops;
648 		p2->p_pfsflags = p1->p_pfsflags;
649 	}
650 
651 	/*
652 	 * This begins the section where we must prevent the parent
653 	 * from being swapped.
654 	 */
655 	_PHOLD(p1);
656 	PROC_UNLOCK(p1);
657 
658 	/*
659 	 * Attach the new process to its parent.
660 	 *
661 	 * If RFNOWAIT is set, the newly created process becomes a child
662 	 * of init.  This effectively disassociates the child from the
663 	 * parent.
664 	 */
665 	if (flags & RFNOWAIT)
666 		pptr = initproc;
667 	else
668 		pptr = p1;
669 	p2->p_pptr = pptr;
670 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
671 	sx_xunlock(&proctree_lock);
672 
673 	/* Inform accounting that we have forked. */
674 	p2->p_acflag = AFORK;
675 	PROC_UNLOCK(p2);
676 
677 	/*
678 	 * Finish creating the child process.  It will return via a different
679 	 * execution path later.  (ie: directly into user mode)
680 	 */
681 	vm_forkproc(td, p2, td2, flags);
682 
683 	if (flags == (RFFDG | RFPROC)) {
684 		atomic_add_int(&cnt.v_forks, 1);
685 		atomic_add_int(&cnt.v_forkpages, p2->p_vmspace->vm_dsize +
686 		    p2->p_vmspace->vm_ssize);
687 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
688 		atomic_add_int(&cnt.v_vforks, 1);
689 		atomic_add_int(&cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
690 		    p2->p_vmspace->vm_ssize);
691 	} else if (p1 == &proc0) {
692 		atomic_add_int(&cnt.v_kthreads, 1);
693 		atomic_add_int(&cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
694 		    p2->p_vmspace->vm_ssize);
695 	} else {
696 		atomic_add_int(&cnt.v_rforks, 1);
697 		atomic_add_int(&cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
698 		    p2->p_vmspace->vm_ssize);
699 	}
700 
701 	/*
702 	 * Both processes are set up, now check if any loadable modules want
703 	 * to adjust anything.
704 	 *   What if they have an error? XXX
705 	 */
706 	EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
707 
708 	/*
709 	 * Set the child start time and mark the process as being complete.
710 	 */
711 	microuptime(&p2->p_stats->p_start);
712 	mtx_lock_spin(&sched_lock);
713 	p2->p_state = PRS_NORMAL;
714 
715 	/*
716 	 * If RFSTOPPED not requested, make child runnable and add to
717 	 * run queue.
718 	 */
719 	if ((flags & RFSTOPPED) == 0) {
720 		TD_SET_CAN_RUN(td2);
721 		setrunqueue(td2, SRQ_BORING);
722 	}
723 	mtx_unlock_spin(&sched_lock);
724 
725 	/*
726 	 * Now can be swapped.
727 	 */
728 	PROC_LOCK(p1);
729 	_PRELE(p1);
730 
731 	/*
732 	 * Tell any interested parties about the new process.
733 	 */
734 	KNOTE_LOCKED(&p1->p_klist, NOTE_FORK | p2->p_pid);
735 
736 	PROC_UNLOCK(p1);
737 
738 	/*
739 	 * Preserve synchronization semantics of vfork.  If waiting for
740 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
741 	 * proc (in case of exit).
742 	 */
743 	PROC_LOCK(p2);
744 	while (p2->p_flag & P_PPWAIT)
745 		msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
746 	PROC_UNLOCK(p2);
747 
748 	/*
749 	 * If other threads are waiting, let them continue now.
750 	 */
751 	if (p1->p_flag & P_HADTHREADS) {
752 		PROC_LOCK(p1);
753 		thread_single_end();
754 		PROC_UNLOCK(p1);
755 	}
756 
757 	/*
758 	 * Return child proc pointer to parent.
759 	 */
760 	*procp = p2;
761 	return (0);
762 fail:
763 	sx_sunlock(&proctree_lock);
764 	if (ppsratecheck(&lastfail, &curfail, 1))
765 		printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n",
766 		    td->td_ucred->cr_ruid);
767 	sx_xunlock(&allproc_lock);
768 #ifdef MAC
769 	mac_destroy_proc(newproc);
770 #endif
771 #ifdef AUDIT
772 	audit_proc_free(newproc);
773 #endif
774 	uma_zfree(proc_zone, newproc);
775 	if (p1->p_flag & P_HADTHREADS) {
776 		PROC_LOCK(p1);
777 		thread_single_end();
778 		PROC_UNLOCK(p1);
779 	}
780 	tsleep(&forksleep, PUSER, "fork", hz / 2);
781 	return (error);
782 }
783 
784 /*
785  * Handle the return of a child process from fork1().  This function
786  * is called from the MD fork_trampoline() entry point.
787  */
788 void
789 fork_exit(callout, arg, frame)
790 	void (*callout)(void *, struct trapframe *);
791 	void *arg;
792 	struct trapframe *frame;
793 {
794 	struct proc *p;
795 	struct thread *td;
796 
797 	/*
798 	 * Finish setting up thread glue so that it begins execution in a
799 	 * non-nested critical section with sched_lock held but not recursed.
800 	 */
801 	td = curthread;
802 	p = td->td_proc;
803 	td->td_oncpu = PCPU_GET(cpuid);
804 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
805 
806 	sched_lock.mtx_lock = (uintptr_t)td;
807 	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
808 	CTR4(KTR_PROC, "fork_exit: new thread %p (kse %p, pid %d, %s)",
809 		td, td->td_sched, p->p_pid, p->p_comm);
810 
811 	/*
812 	 * Processes normally resume in mi_switch() after being
813 	 * cpu_switch()'ed to, but when children start up they arrive here
814 	 * instead, so we must do much the same things as mi_switch() would.
815 	 */
816 
817 	if ((td = PCPU_GET(deadthread))) {
818 		PCPU_SET(deadthread, NULL);
819 		thread_stash(td);
820 	}
821 	td = curthread;
822 	mtx_unlock_spin(&sched_lock);
823 
824 	/*
825 	 * cpu_set_fork_handler intercepts this function call to
826 	 * have this call a non-return function to stay in kernel mode.
827 	 * initproc has its own fork handler, but it does return.
828 	 */
829 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
830 	callout(arg, frame);
831 
832 	/*
833 	 * Check if a kernel thread misbehaved and returned from its main
834 	 * function.
835 	 */
836 	if (p->p_flag & P_KTHREAD) {
837 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
838 		    p->p_comm, p->p_pid);
839 		kthread_exit(0);
840 	}
841 	mtx_assert(&Giant, MA_NOTOWNED);
842 
843 	EVENTHANDLER_INVOKE(schedtail, p);
844 }
845 
846 /*
847  * Simplified back end of syscall(), used when returning from fork()
848  * directly into user mode.  Giant is not held on entry, and must not
849  * be held on return.  This function is passed in to fork_exit() as the
850  * first parameter and is called when returning to a new userland process.
851  */
852 void
853 fork_return(td, frame)
854 	struct thread *td;
855 	struct trapframe *frame;
856 {
857 
858 	userret(td, frame);
859 #ifdef KTRACE
860 	if (KTRPOINT(td, KTR_SYSRET))
861 		ktrsysret(SYS_fork, 0, 0);
862 #endif
863 	mtx_assert(&Giant, MA_NOTOWNED);
864 }
865