xref: /freebsd/sys/kern/kern_fork.c (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 #include "opt_kstack_pages.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/bitstring.h>
48 #include <sys/sysproto.h>
49 #include <sys/eventhandler.h>
50 #include <sys/fcntl.h>
51 #include <sys/filedesc.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/sysctl.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/msan.h>
59 #include <sys/mutex.h>
60 #include <sys/priv.h>
61 #include <sys/proc.h>
62 #include <sys/procdesc.h>
63 #include <sys/ptrace.h>
64 #include <sys/racct.h>
65 #include <sys/resourcevar.h>
66 #include <sys/sched.h>
67 #include <sys/syscall.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 #include <sys/acct.h>
71 #include <sys/ktr.h>
72 #include <sys/ktrace.h>
73 #include <sys/unistd.h>
74 #include <sys/sdt.h>
75 #include <sys/sx.h>
76 #include <sys/sysent.h>
77 #include <sys/signalvar.h>
78 
79 #include <security/audit/audit.h>
80 #include <security/mac/mac_framework.h>
81 
82 #include <vm/vm.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_extern.h>
86 #include <vm/uma.h>
87 
88 #ifdef KDTRACE_HOOKS
89 #include <sys/dtrace_bsd.h>
90 dtrace_fork_func_t	dtrace_fasttrap_fork;
91 #endif
92 
93 SDT_PROVIDER_DECLARE(proc);
94 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
95 
96 #ifndef _SYS_SYSPROTO_H_
97 struct fork_args {
98 	int     dummy;
99 };
100 #endif
101 
102 /* ARGSUSED */
103 int
104 sys_fork(struct thread *td, struct fork_args *uap)
105 {
106 	struct fork_req fr;
107 	int error, pid;
108 
109 	bzero(&fr, sizeof(fr));
110 	fr.fr_flags = RFFDG | RFPROC;
111 	fr.fr_pidp = &pid;
112 	error = fork1(td, &fr);
113 	if (error == 0) {
114 		td->td_retval[0] = pid;
115 		td->td_retval[1] = 0;
116 	}
117 	return (error);
118 }
119 
120 /* ARGUSED */
121 int
122 sys_pdfork(struct thread *td, struct pdfork_args *uap)
123 {
124 	struct fork_req fr;
125 	int error, fd, pid;
126 
127 	bzero(&fr, sizeof(fr));
128 	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
129 	fr.fr_pidp = &pid;
130 	fr.fr_pd_fd = &fd;
131 	fr.fr_pd_flags = uap->flags;
132 	AUDIT_ARG_FFLAGS(uap->flags);
133 	/*
134 	 * It is necessary to return fd by reference because 0 is a valid file
135 	 * descriptor number, and the child needs to be able to distinguish
136 	 * itself from the parent using the return value.
137 	 */
138 	error = fork1(td, &fr);
139 	if (error == 0) {
140 		td->td_retval[0] = pid;
141 		td->td_retval[1] = 0;
142 		error = copyout(&fd, uap->fdp, sizeof(fd));
143 	}
144 	return (error);
145 }
146 
147 /* ARGSUSED */
148 int
149 sys_vfork(struct thread *td, struct vfork_args *uap)
150 {
151 	struct fork_req fr;
152 	int error, pid;
153 
154 	bzero(&fr, sizeof(fr));
155 	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
156 	fr.fr_pidp = &pid;
157 	error = fork1(td, &fr);
158 	if (error == 0) {
159 		td->td_retval[0] = pid;
160 		td->td_retval[1] = 0;
161 	}
162 	return (error);
163 }
164 
165 int
166 sys_rfork(struct thread *td, struct rfork_args *uap)
167 {
168 	struct fork_req fr;
169 	int error, pid;
170 
171 	/* Don't allow kernel-only flags. */
172 	if ((uap->flags & RFKERNELONLY) != 0)
173 		return (EINVAL);
174 	/* RFSPAWN must not appear with others */
175 	if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN)
176 		return (EINVAL);
177 
178 	AUDIT_ARG_FFLAGS(uap->flags);
179 	bzero(&fr, sizeof(fr));
180 	if ((uap->flags & RFSPAWN) != 0) {
181 		fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
182 		fr.fr_flags2 = FR2_DROPSIG_CAUGHT;
183 	} else {
184 		fr.fr_flags = uap->flags;
185 	}
186 	fr.fr_pidp = &pid;
187 	error = fork1(td, &fr);
188 	if (error == 0) {
189 		td->td_retval[0] = pid;
190 		td->td_retval[1] = 0;
191 	}
192 	return (error);
193 }
194 
195 int __exclusive_cache_line	nprocs = 1;		/* process 0 */
196 int	lastpid = 0;
197 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
198     "Last used PID");
199 
200 /*
201  * Random component to lastpid generation.  We mix in a random factor to make
202  * it a little harder to predict.  We sanity check the modulus value to avoid
203  * doing it in critical paths.  Don't let it be too small or we pointlessly
204  * waste randomness entropy, and don't let it be impossibly large.  Using a
205  * modulus that is too big causes a LOT more process table scans and slows
206  * down fork processing as the pidchecked caching is defeated.
207  */
208 static int randompid = 0;
209 
210 static int
211 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
212 {
213 	int error, pid;
214 
215 	error = sysctl_wire_old_buffer(req, sizeof(int));
216 	if (error != 0)
217 		return(error);
218 	sx_xlock(&allproc_lock);
219 	pid = randompid;
220 	error = sysctl_handle_int(oidp, &pid, 0, req);
221 	if (error == 0 && req->newptr != NULL) {
222 		if (pid == 0)
223 			randompid = 0;
224 		else if (pid == 1)
225 			/* generate a random PID modulus between 100 and 1123 */
226 			randompid = 100 + arc4random() % 1024;
227 		else if (pid < 0 || pid > pid_max - 100)
228 			/* out of range */
229 			randompid = pid_max - 100;
230 		else if (pid < 100)
231 			/* Make it reasonable */
232 			randompid = 100;
233 		else
234 			randompid = pid;
235 	}
236 	sx_xunlock(&allproc_lock);
237 	return (error);
238 }
239 
240 SYSCTL_PROC(_kern, OID_AUTO, randompid,
241     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
242     sysctl_kern_randompid, "I",
243     "Random PID modulus. Special values: 0: disable, 1: choose random value");
244 
245 extern bitstr_t proc_id_pidmap;
246 extern bitstr_t proc_id_grpidmap;
247 extern bitstr_t proc_id_sessidmap;
248 extern bitstr_t proc_id_reapmap;
249 
250 /*
251  * Find an unused process ID
252  *
253  * If RFHIGHPID is set (used during system boot), do not allocate
254  * low-numbered pids.
255  */
256 static int
257 fork_findpid(int flags)
258 {
259 	pid_t result;
260 	int trypid, random;
261 
262 	/*
263 	 * Avoid calling arc4random with procid_lock held.
264 	 */
265 	random = 0;
266 	if (__predict_false(randompid))
267 		random = arc4random() % randompid;
268 
269 	mtx_lock(&procid_lock);
270 
271 	trypid = lastpid + 1;
272 	if (flags & RFHIGHPID) {
273 		if (trypid < 10)
274 			trypid = 10;
275 	} else {
276 		trypid += random;
277 	}
278 retry:
279 	if (trypid >= pid_max)
280 		trypid = 2;
281 
282 	bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result);
283 	if (result == -1) {
284 		KASSERT(trypid != 2, ("unexpectedly ran out of IDs"));
285 		trypid = 2;
286 		goto retry;
287 	}
288 	if (bit_test(&proc_id_grpidmap, result) ||
289 	    bit_test(&proc_id_sessidmap, result) ||
290 	    bit_test(&proc_id_reapmap, result)) {
291 		trypid = result + 1;
292 		goto retry;
293 	}
294 
295 	/*
296 	 * RFHIGHPID does not mess with the lastpid counter during boot.
297 	 */
298 	if ((flags & RFHIGHPID) == 0)
299 		lastpid = result;
300 
301 	bit_set(&proc_id_pidmap, result);
302 	mtx_unlock(&procid_lock);
303 
304 	return (result);
305 }
306 
307 static int
308 fork_norfproc(struct thread *td, int flags)
309 {
310 	struct proc *p1;
311 	int error;
312 
313 	KASSERT((flags & RFPROC) == 0,
314 	    ("fork_norfproc called with RFPROC set"));
315 	p1 = td->td_proc;
316 
317 	/*
318 	 * Quiesce other threads if necessary.  If RFMEM is not specified we
319 	 * must ensure that other threads do not concurrently create a second
320 	 * process sharing the vmspace, see vmspace_unshare().
321 	 */
322 	if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
323 	    ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
324 		PROC_LOCK(p1);
325 		if (thread_single(p1, SINGLE_BOUNDARY)) {
326 			PROC_UNLOCK(p1);
327 			return (ERESTART);
328 		}
329 		PROC_UNLOCK(p1);
330 	}
331 
332 	error = vm_forkproc(td, NULL, NULL, NULL, flags);
333 	if (error != 0)
334 		goto fail;
335 
336 	/*
337 	 * Close all file descriptors.
338 	 */
339 	if ((flags & RFCFDG) != 0) {
340 		struct filedesc *fdtmp;
341 		struct pwddesc *pdtmp;
342 
343 		pdtmp = pdinit(td->td_proc->p_pd, false);
344 		fdtmp = fdinit();
345 		pdescfree(td);
346 		fdescfree(td);
347 		p1->p_fd = fdtmp;
348 		p1->p_pd = pdtmp;
349 	}
350 
351 	/*
352 	 * Unshare file descriptors (from parent).
353 	 */
354 	if ((flags & RFFDG) != 0) {
355 		fdunshare(td);
356 		pdunshare(td);
357 	}
358 
359 fail:
360 	if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
361 	    ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
362 		PROC_LOCK(p1);
363 		thread_single_end(p1, SINGLE_BOUNDARY);
364 		PROC_UNLOCK(p1);
365 	}
366 	return (error);
367 }
368 
369 static void
370 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
371     struct vmspace *vm2, struct file *fp_procdesc)
372 {
373 	struct proc *p1, *pptr;
374 	struct filedesc *fd;
375 	struct filedesc_to_leader *fdtol;
376 	struct pwddesc *pd;
377 	struct sigacts *newsigacts;
378 
379 	p1 = td->td_proc;
380 
381 	PROC_LOCK(p1);
382 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
383 	    __rangeof(struct proc, p_startcopy, p_endcopy));
384 	pargs_hold(p2->p_args);
385 	PROC_UNLOCK(p1);
386 
387 	bzero(&p2->p_startzero,
388 	    __rangeof(struct proc, p_startzero, p_endzero));
389 
390 	/* Tell the prison that we exist. */
391 	prison_proc_hold(p2->p_ucred->cr_prison);
392 
393 	p2->p_state = PRS_NEW;		/* protect against others */
394 	p2->p_pid = fork_findpid(fr->fr_flags);
395 	AUDIT_ARG_PID(p2->p_pid);
396 	TSFORK(p2->p_pid, p1->p_pid);
397 
398 	sx_xlock(&allproc_lock);
399 	LIST_INSERT_HEAD(&allproc, p2, p_list);
400 	allproc_gen++;
401 	prison_proc_link(p2->p_ucred->cr_prison, p2);
402 	sx_xunlock(&allproc_lock);
403 
404 	sx_xlock(PIDHASHLOCK(p2->p_pid));
405 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
406 	sx_xunlock(PIDHASHLOCK(p2->p_pid));
407 
408 	tidhash_add(td2);
409 
410 	/*
411 	 * Malloc things while we don't hold any locks.
412 	 */
413 	if (fr->fr_flags & RFSIGSHARE)
414 		newsigacts = NULL;
415 	else
416 		newsigacts = sigacts_alloc();
417 
418 	/*
419 	 * Copy filedesc.
420 	 */
421 	if (fr->fr_flags & RFCFDG) {
422 		pd = pdinit(p1->p_pd, false);
423 		fd = fdinit();
424 		fdtol = NULL;
425 	} else if (fr->fr_flags & RFFDG) {
426 		if (fr->fr_flags2 & FR2_SHARE_PATHS)
427 			pd = pdshare(p1->p_pd);
428 		else
429 			pd = pdcopy(p1->p_pd);
430 		fd = fdcopy(p1->p_fd);
431 		fdtol = NULL;
432 	} else {
433 		if (fr->fr_flags2 & FR2_SHARE_PATHS)
434 			pd = pdcopy(p1->p_pd);
435 		else
436 			pd = pdshare(p1->p_pd);
437 		fd = fdshare(p1->p_fd);
438 		if (p1->p_fdtol == NULL)
439 			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
440 			    p1->p_leader);
441 		if ((fr->fr_flags & RFTHREAD) != 0) {
442 			/*
443 			 * Shared file descriptor table, and shared
444 			 * process leaders.
445 			 */
446 			fdtol = filedesc_to_leader_share(p1->p_fdtol, p1->p_fd);
447 		} else {
448 			/*
449 			 * Shared file descriptor table, and different
450 			 * process leaders.
451 			 */
452 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
453 			    p1->p_fd, p2);
454 		}
455 	}
456 	/*
457 	 * Make a proc table entry for the new process.
458 	 * Start by zeroing the section of proc that is zero-initialized,
459 	 * then copy the section that is copied directly from the parent.
460 	 */
461 
462 	PROC_LOCK(p2);
463 	PROC_LOCK(p1);
464 
465 	bzero(&td2->td_startzero,
466 	    __rangeof(struct thread, td_startzero, td_endzero));
467 
468 	bcopy(&td->td_startcopy, &td2->td_startcopy,
469 	    __rangeof(struct thread, td_startcopy, td_endcopy));
470 
471 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
472 	td2->td_sigstk = td->td_sigstk;
473 	td2->td_flags = TDF_INMEM;
474 	td2->td_lend_user_pri = PRI_MAX;
475 
476 #ifdef VIMAGE
477 	td2->td_vnet = NULL;
478 	td2->td_vnet_lpush = NULL;
479 #endif
480 
481 	/*
482 	 * Allow the scheduler to initialize the child.
483 	 */
484 	thread_lock(td);
485 	sched_fork(td, td2);
486 	/*
487 	 * Request AST to check for TDP_RFPPWAIT.  Do it here
488 	 * to avoid calling thread_lock() again.
489 	 */
490 	if ((fr->fr_flags & RFPPWAIT) != 0)
491 		ast_sched_locked(td, TDA_VFORK);
492 	thread_unlock(td);
493 
494 	/*
495 	 * Duplicate sub-structures as needed.
496 	 * Increase reference counts on shared objects.
497 	 */
498 	p2->p_flag = P_INMEM;
499 	p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE |
500 	    P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC |
501 	    P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP |
502 	    P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC | P2_NO_NEW_PRIVS |
503 	    P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
504 	p2->p_swtick = ticks;
505 	if (p1->p_flag & P_PROFIL)
506 		startprofclock(p2);
507 
508 	if (fr->fr_flags & RFSIGSHARE) {
509 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
510 	} else {
511 		sigacts_copy(newsigacts, p1->p_sigacts);
512 		p2->p_sigacts = newsigacts;
513 		if ((fr->fr_flags2 & (FR2_DROPSIG_CAUGHT | FR2_KPROC)) != 0) {
514 			mtx_lock(&p2->p_sigacts->ps_mtx);
515 			if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0)
516 				sig_drop_caught(p2);
517 			if ((fr->fr_flags2 & FR2_KPROC) != 0)
518 				p2->p_sigacts->ps_flag |= PS_NOCLDWAIT;
519 			mtx_unlock(&p2->p_sigacts->ps_mtx);
520 		}
521 	}
522 
523 	if (fr->fr_flags & RFTSIGZMB)
524 	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
525 	else if (fr->fr_flags & RFLINUXTHPN)
526 	        p2->p_sigparent = SIGUSR1;
527 	else
528 	        p2->p_sigparent = SIGCHLD;
529 
530 	if ((fr->fr_flags2 & FR2_KPROC) != 0) {
531 		p2->p_flag |= P_SYSTEM | P_KPROC;
532 		td2->td_pflags |= TDP_KTHREAD;
533 	}
534 
535 	p2->p_textvp = p1->p_textvp;
536 	p2->p_textdvp = p1->p_textdvp;
537 	p2->p_fd = fd;
538 	p2->p_fdtol = fdtol;
539 	p2->p_pd = pd;
540 
541 	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
542 		p2->p_flag |= P_PROTECTED;
543 		p2->p_flag2 |= P2_INHERIT_PROTECTED;
544 	}
545 
546 	/*
547 	 * p_limit is copy-on-write.  Bump its refcount.
548 	 */
549 	lim_fork(p1, p2);
550 
551 	thread_cow_get_proc(td2, p2);
552 
553 	pstats_fork(p1->p_stats, p2->p_stats);
554 
555 	PROC_UNLOCK(p1);
556 	PROC_UNLOCK(p2);
557 
558 	/*
559 	 * Bump references to the text vnode and directory, and copy
560 	 * the hardlink name.
561 	 */
562 	if (p2->p_textvp != NULL)
563 		vrefact(p2->p_textvp);
564 	if (p2->p_textdvp != NULL)
565 		vrefact(p2->p_textdvp);
566 	p2->p_binname = p1->p_binname == NULL ? NULL :
567 	    strdup(p1->p_binname, M_PARGS);
568 
569 	/*
570 	 * Set up linkage for kernel based threading.
571 	 */
572 	if ((fr->fr_flags & RFTHREAD) != 0) {
573 		mtx_lock(&ppeers_lock);
574 		p2->p_peers = p1->p_peers;
575 		p1->p_peers = p2;
576 		p2->p_leader = p1->p_leader;
577 		mtx_unlock(&ppeers_lock);
578 		PROC_LOCK(p1->p_leader);
579 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
580 			PROC_UNLOCK(p1->p_leader);
581 			/*
582 			 * The task leader is exiting, so process p1 is
583 			 * going to be killed shortly.  Since p1 obviously
584 			 * isn't dead yet, we know that the leader is either
585 			 * sending SIGKILL's to all the processes in this
586 			 * task or is sleeping waiting for all the peers to
587 			 * exit.  We let p1 complete the fork, but we need
588 			 * to go ahead and kill the new process p2 since
589 			 * the task leader may not get a chance to send
590 			 * SIGKILL to it.  We leave it on the list so that
591 			 * the task leader will wait for this new process
592 			 * to commit suicide.
593 			 */
594 			PROC_LOCK(p2);
595 			kern_psignal(p2, SIGKILL);
596 			PROC_UNLOCK(p2);
597 		} else
598 			PROC_UNLOCK(p1->p_leader);
599 	} else {
600 		p2->p_peers = NULL;
601 		p2->p_leader = p2;
602 	}
603 
604 	sx_xlock(&proctree_lock);
605 	PGRP_LOCK(p1->p_pgrp);
606 	PROC_LOCK(p2);
607 	PROC_LOCK(p1);
608 
609 	/*
610 	 * Preserve some more flags in subprocess.  P_PROFIL has already
611 	 * been preserved.
612 	 */
613 	p2->p_flag |= p1->p_flag & P_SUGID;
614 	td2->td_pflags |= (td->td_pflags & (TDP_ALTSTACK | TDP_SIGFASTBLOCK));
615 	SESS_LOCK(p1->p_session);
616 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
617 		p2->p_flag |= P_CONTROLT;
618 	SESS_UNLOCK(p1->p_session);
619 	if (fr->fr_flags & RFPPWAIT)
620 		p2->p_flag |= P_PPWAIT;
621 
622 	p2->p_pgrp = p1->p_pgrp;
623 	LIST_INSERT_AFTER(p1, p2, p_pglist);
624 	PGRP_UNLOCK(p1->p_pgrp);
625 	LIST_INIT(&p2->p_children);
626 	LIST_INIT(&p2->p_orphans);
627 
628 	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
629 	TAILQ_INIT(&p2->p_kqtim_stop);
630 
631 	/*
632 	 * This begins the section where we must prevent the parent
633 	 * from being swapped.
634 	 */
635 	_PHOLD(p1);
636 	PROC_UNLOCK(p1);
637 
638 	/*
639 	 * Attach the new process to its parent.
640 	 *
641 	 * If RFNOWAIT is set, the newly created process becomes a child
642 	 * of init.  This effectively disassociates the child from the
643 	 * parent.
644 	 */
645 	if ((fr->fr_flags & RFNOWAIT) != 0) {
646 		pptr = p1->p_reaper;
647 		p2->p_reaper = pptr;
648 	} else {
649 		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
650 		    p1 : p1->p_reaper;
651 		pptr = p1;
652 	}
653 	p2->p_pptr = pptr;
654 	p2->p_oppid = pptr->p_pid;
655 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
656 	LIST_INIT(&p2->p_reaplist);
657 	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
658 	if (p2->p_reaper == p1 && p1 != initproc) {
659 		p2->p_reapsubtree = p2->p_pid;
660 		proc_id_set_cond(PROC_ID_REAP, p2->p_pid);
661 	}
662 	sx_xunlock(&proctree_lock);
663 
664 	/* Inform accounting that we have forked. */
665 	p2->p_acflag = AFORK;
666 	PROC_UNLOCK(p2);
667 
668 #ifdef KTRACE
669 	ktrprocfork(p1, p2);
670 #endif
671 
672 	/*
673 	 * Finish creating the child process.  It will return via a different
674 	 * execution path later.  (ie: directly into user mode)
675 	 */
676 	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
677 
678 	if (fr->fr_flags == (RFFDG | RFPROC)) {
679 		VM_CNT_INC(v_forks);
680 		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
681 		    p2->p_vmspace->vm_ssize);
682 	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
683 		VM_CNT_INC(v_vforks);
684 		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
685 		    p2->p_vmspace->vm_ssize);
686 	} else if (p1 == &proc0) {
687 		VM_CNT_INC(v_kthreads);
688 		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
689 		    p2->p_vmspace->vm_ssize);
690 	} else {
691 		VM_CNT_INC(v_rforks);
692 		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
693 		    p2->p_vmspace->vm_ssize);
694 	}
695 
696 	/*
697 	 * Associate the process descriptor with the process before anything
698 	 * can happen that might cause that process to need the descriptor.
699 	 * However, don't do this until after fork(2) can no longer fail.
700 	 */
701 	if (fr->fr_flags & RFPROCDESC)
702 		procdesc_new(p2, fr->fr_pd_flags);
703 
704 	/*
705 	 * Both processes are set up, now check if any loadable modules want
706 	 * to adjust anything.
707 	 */
708 	EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
709 
710 	/*
711 	 * Set the child start time and mark the process as being complete.
712 	 */
713 	PROC_LOCK(p2);
714 	PROC_LOCK(p1);
715 	microuptime(&p2->p_stats->p_start);
716 	PROC_SLOCK(p2);
717 	p2->p_state = PRS_NORMAL;
718 	PROC_SUNLOCK(p2);
719 
720 #ifdef KDTRACE_HOOKS
721 	/*
722 	 * Tell the DTrace fasttrap provider about the new process so that any
723 	 * tracepoints inherited from the parent can be removed. We have to do
724 	 * this only after p_state is PRS_NORMAL since the fasttrap module will
725 	 * use pfind() later on.
726 	 */
727 	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
728 		dtrace_fasttrap_fork(p1, p2);
729 #endif
730 	if (fr->fr_flags & RFPPWAIT) {
731 		td->td_pflags |= TDP_RFPPWAIT;
732 		td->td_rfppwait_p = p2;
733 		td->td_dbgflags |= TDB_VFORK;
734 	}
735 	PROC_UNLOCK(p2);
736 
737 	/*
738 	 * Tell any interested parties about the new process.
739 	 */
740 	knote_fork(p1->p_klist, p2->p_pid);
741 
742 	/*
743 	 * Now can be swapped.
744 	 */
745 	_PRELE(p1);
746 	PROC_UNLOCK(p1);
747 	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
748 
749 	if (fr->fr_flags & RFPROCDESC) {
750 		procdesc_finit(p2->p_procdesc, fp_procdesc);
751 		fdrop(fp_procdesc, td);
752 	}
753 
754 	/*
755 	 * Speculative check for PTRACE_FORK. PTRACE_FORK is not
756 	 * synced with forks in progress so it is OK if we miss it
757 	 * if being set atm.
758 	 */
759 	if ((p1->p_ptevents & PTRACE_FORK) != 0) {
760 		sx_xlock(&proctree_lock);
761 		PROC_LOCK(p2);
762 
763 		/*
764 		 * p1->p_ptevents & p1->p_pptr are protected by both
765 		 * process and proctree locks for modifications,
766 		 * so owning proctree_lock allows the race-free read.
767 		 */
768 		if ((p1->p_ptevents & PTRACE_FORK) != 0) {
769 			/*
770 			 * Arrange for debugger to receive the fork event.
771 			 *
772 			 * We can report PL_FLAG_FORKED regardless of
773 			 * P_FOLLOWFORK settings, but it does not make a sense
774 			 * for runaway child.
775 			 */
776 			td->td_dbgflags |= TDB_FORK;
777 			td->td_dbg_forked = p2->p_pid;
778 			td2->td_dbgflags |= TDB_STOPATFORK;
779 			proc_set_traced(p2, true);
780 			CTR2(KTR_PTRACE,
781 			    "do_fork: attaching to new child pid %d: oppid %d",
782 			    p2->p_pid, p2->p_oppid);
783 			proc_reparent(p2, p1->p_pptr, false);
784 		}
785 		PROC_UNLOCK(p2);
786 		sx_xunlock(&proctree_lock);
787 	}
788 
789 	racct_proc_fork_done(p2);
790 
791 	if ((fr->fr_flags & RFSTOPPED) == 0) {
792 		if (fr->fr_pidp != NULL)
793 			*fr->fr_pidp = p2->p_pid;
794 		/*
795 		 * If RFSTOPPED not requested, make child runnable and
796 		 * add to run queue.
797 		 */
798 		thread_lock(td2);
799 		TD_SET_CAN_RUN(td2);
800 		sched_add(td2, SRQ_BORING);
801 	} else {
802 		*fr->fr_procp = p2;
803 	}
804 }
805 
806 static void
807 ast_vfork(struct thread *td, int tda __unused)
808 {
809 	struct proc *p, *p2;
810 
811 	MPASS(td->td_pflags & TDP_RFPPWAIT);
812 
813 	p = td->td_proc;
814 	/*
815 	 * Preserve synchronization semantics of vfork.  If
816 	 * waiting for child to exec or exit, fork set
817 	 * P_PPWAIT on child, and there we sleep on our proc
818 	 * (in case of exit).
819 	 *
820 	 * Do it after the ptracestop() above is finished, to
821 	 * not block our debugger until child execs or exits
822 	 * to finish vfork wait.
823 	 */
824 	td->td_pflags &= ~TDP_RFPPWAIT;
825 	p2 = td->td_rfppwait_p;
826 again:
827 	PROC_LOCK(p2);
828 	while (p2->p_flag & P_PPWAIT) {
829 		PROC_LOCK(p);
830 		if (thread_suspend_check_needed()) {
831 			PROC_UNLOCK(p2);
832 			thread_suspend_check(0);
833 			PROC_UNLOCK(p);
834 			goto again;
835 		} else {
836 			PROC_UNLOCK(p);
837 		}
838 		cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz);
839 	}
840 	PROC_UNLOCK(p2);
841 
842 	if (td->td_dbgflags & TDB_VFORK) {
843 		PROC_LOCK(p);
844 		if (p->p_ptevents & PTRACE_VFORK)
845 			ptracestop(td, SIGTRAP, NULL);
846 		td->td_dbgflags &= ~TDB_VFORK;
847 		PROC_UNLOCK(p);
848 	}
849 }
850 
851 int
852 fork1(struct thread *td, struct fork_req *fr)
853 {
854 	struct proc *p1, *newproc;
855 	struct thread *td2;
856 	struct vmspace *vm2;
857 	struct ucred *cred;
858 	struct file *fp_procdesc;
859 	struct pgrp *pg;
860 	vm_ooffset_t mem_charged;
861 	int error, nprocs_new;
862 	static int curfail;
863 	static struct timeval lastfail;
864 	int flags, pages;
865 	bool killsx_locked;
866 
867 	flags = fr->fr_flags;
868 	pages = fr->fr_pages;
869 
870 	if ((flags & RFSTOPPED) != 0)
871 		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
872 	else
873 		MPASS(fr->fr_procp == NULL);
874 
875 	/* Check for the undefined or unimplemented flags. */
876 	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
877 		return (EINVAL);
878 
879 	/* Signal value requires RFTSIGZMB. */
880 	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
881 		return (EINVAL);
882 
883 	/* Can't copy and clear. */
884 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
885 		return (EINVAL);
886 
887 	/* Check the validity of the signal number. */
888 	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
889 		return (EINVAL);
890 
891 	if ((flags & RFPROCDESC) != 0) {
892 		/* Can't not create a process yet get a process descriptor. */
893 		if ((flags & RFPROC) == 0)
894 			return (EINVAL);
895 
896 		/* Must provide a place to put a procdesc if creating one. */
897 		if (fr->fr_pd_fd == NULL)
898 			return (EINVAL);
899 
900 		/* Check if we are using supported flags. */
901 		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
902 			return (EINVAL);
903 	}
904 
905 	p1 = td->td_proc;
906 
907 	/*
908 	 * Here we don't create a new process, but we divorce
909 	 * certain parts of a process from itself.
910 	 */
911 	if ((flags & RFPROC) == 0) {
912 		if (fr->fr_procp != NULL)
913 			*fr->fr_procp = NULL;
914 		else if (fr->fr_pidp != NULL)
915 			*fr->fr_pidp = 0;
916 		return (fork_norfproc(td, flags));
917 	}
918 
919 	fp_procdesc = NULL;
920 	newproc = NULL;
921 	vm2 = NULL;
922 	killsx_locked = false;
923 
924 	/*
925 	 * Increment the nprocs resource before allocations occur.
926 	 * Although process entries are dynamically created, we still
927 	 * keep a global limit on the maximum number we will
928 	 * create. There are hard-limits as to the number of processes
929 	 * that can run, established by the KVA and memory usage for
930 	 * the process data.
931 	 *
932 	 * Don't allow a nonprivileged user to use the last ten
933 	 * processes; don't let root exceed the limit.
934 	 */
935 	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
936 	if (nprocs_new >= maxproc - 10) {
937 		if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 ||
938 		    nprocs_new >= maxproc) {
939 			error = EAGAIN;
940 			sx_xlock(&allproc_lock);
941 			if (ppsratecheck(&lastfail, &curfail, 1)) {
942 				printf("maxproc limit exceeded by uid %u "
943 				    "(pid %d); see tuning(7) and "
944 				    "login.conf(5)\n",
945 				    td->td_ucred->cr_ruid, p1->p_pid);
946 			}
947 			sx_xunlock(&allproc_lock);
948 			goto fail2;
949 		}
950 	}
951 
952 	/*
953 	 * Atomically check for signals and block threads from sending
954 	 * a signal to our process group until the child is visible.
955 	 */
956 	pg = p1->p_pgrp;
957 	if (sx_slock_sig(&pg->pg_killsx) != 0) {
958 		error = ERESTART;
959 		goto fail2;
960 	} else if (__predict_false(p1->p_pgrp != pg || sig_intr() != 0 ||
961 	    atomic_load_int(&p1->p_killpg_cnt) != 0)) {
962 		/*
963 		 * Either the process was moved to other process
964 		 * group, or there is pending signal.  sx_slock_sig()
965 		 * does not check for signals if not sleeping for the
966 		 * lock.
967 		 */
968 		sx_sunlock(&pg->pg_killsx);
969 		error = ERESTART;
970 		goto fail2;
971 	} else {
972 		killsx_locked = true;
973 	}
974 
975 	/*
976 	 * If required, create a process descriptor in the parent first; we
977 	 * will abandon it if something goes wrong. We don't finit() until
978 	 * later.
979 	 */
980 	if (flags & RFPROCDESC) {
981 		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
982 		    fr->fr_pd_flags, fr->fr_pd_fcaps);
983 		if (error != 0)
984 			goto fail2;
985 		AUDIT_ARG_FD(*fr->fr_pd_fd);
986 	}
987 
988 	mem_charged = 0;
989 	if (pages == 0)
990 		pages = kstack_pages;
991 	/* Allocate new proc. */
992 	newproc = uma_zalloc(proc_zone, M_WAITOK);
993 	td2 = FIRST_THREAD_IN_PROC(newproc);
994 	if (td2 == NULL) {
995 		td2 = thread_alloc(pages);
996 		if (td2 == NULL) {
997 			error = ENOMEM;
998 			goto fail2;
999 		}
1000 		proc_linkup(newproc, td2);
1001 	} else {
1002 		kmsan_thread_alloc(td2);
1003 		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
1004 			if (td2->td_kstack != 0)
1005 				vm_thread_dispose(td2);
1006 			if (!thread_alloc_stack(td2, pages)) {
1007 				error = ENOMEM;
1008 				goto fail2;
1009 			}
1010 		}
1011 	}
1012 
1013 	if ((flags & RFMEM) == 0) {
1014 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
1015 		if (vm2 == NULL) {
1016 			error = ENOMEM;
1017 			goto fail2;
1018 		}
1019 		if (!swap_reserve(mem_charged)) {
1020 			/*
1021 			 * The swap reservation failed. The accounting
1022 			 * from the entries of the copied vm2 will be
1023 			 * subtracted in vmspace_free(), so force the
1024 			 * reservation there.
1025 			 */
1026 			swap_reserve_force(mem_charged);
1027 			error = ENOMEM;
1028 			goto fail2;
1029 		}
1030 	} else
1031 		vm2 = NULL;
1032 
1033 	/*
1034 	 * XXX: This is ugly; when we copy resource usage, we need to bump
1035 	 *      per-cred resource counters.
1036 	 */
1037 	proc_set_cred_init(newproc, td->td_ucred);
1038 
1039 	/*
1040 	 * Initialize resource accounting for the child process.
1041 	 */
1042 	error = racct_proc_fork(p1, newproc);
1043 	if (error != 0) {
1044 		error = EAGAIN;
1045 		goto fail1;
1046 	}
1047 
1048 #ifdef MAC
1049 	mac_proc_init(newproc);
1050 #endif
1051 	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
1052 	STAILQ_INIT(&newproc->p_ktr);
1053 
1054 	/*
1055 	 * Increment the count of procs running with this uid. Don't allow
1056 	 * a nonprivileged user to exceed their current limit.
1057 	 */
1058 	cred = td->td_ucred;
1059 	if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) {
1060 		if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0)
1061 			goto fail0;
1062 		chgproccnt(cred->cr_ruidinfo, 1, 0);
1063 	}
1064 
1065 	do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
1066 	sx_sunlock(&pg->pg_killsx);
1067 	return (0);
1068 fail0:
1069 	error = EAGAIN;
1070 #ifdef MAC
1071 	mac_proc_destroy(newproc);
1072 #endif
1073 	racct_proc_exit(newproc);
1074 fail1:
1075 	proc_unset_cred(newproc);
1076 fail2:
1077 	if (vm2 != NULL)
1078 		vmspace_free(vm2);
1079 	uma_zfree(proc_zone, newproc);
1080 	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
1081 		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1082 		fdrop(fp_procdesc, td);
1083 	}
1084 	atomic_add_int(&nprocs, -1);
1085 	if (killsx_locked)
1086 		sx_sunlock(&pg->pg_killsx);
1087 	pause("fork", hz / 2);
1088 	return (error);
1089 }
1090 
1091 /*
1092  * Handle the return of a child process from fork1().  This function
1093  * is called from the MD fork_trampoline() entry point.
1094  */
1095 void
1096 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1097     struct trapframe *frame)
1098 {
1099 	struct proc *p;
1100 	struct thread *td;
1101 	struct thread *dtd;
1102 
1103 	kmsan_mark(frame, sizeof(*frame), KMSAN_STATE_INITED);
1104 
1105 	td = curthread;
1106 	p = td->td_proc;
1107 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1108 
1109 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1110 	    td, td_get_sched(td), p->p_pid, td->td_name);
1111 
1112 	sched_fork_exit(td);
1113 
1114 	/*
1115 	 * Processes normally resume in mi_switch() after being
1116 	 * cpu_switch()'ed to, but when children start up they arrive here
1117 	 * instead, so we must do much the same things as mi_switch() would.
1118 	 */
1119 	if ((dtd = PCPU_GET(deadthread))) {
1120 		PCPU_SET(deadthread, NULL);
1121 		thread_stash(dtd);
1122 	}
1123 	thread_unlock(td);
1124 
1125 	/*
1126 	 * cpu_fork_kthread_handler intercepts this function call to
1127 	 * have this call a non-return function to stay in kernel mode.
1128 	 * initproc has its own fork handler, but it does return.
1129 	 */
1130 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1131 	callout(arg, frame);
1132 
1133 	/*
1134 	 * Check if a kernel thread misbehaved and returned from its main
1135 	 * function.
1136 	 */
1137 	if (p->p_flag & P_KPROC) {
1138 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1139 		    td->td_name, p->p_pid);
1140 		kthread_exit();
1141 	}
1142 	mtx_assert(&Giant, MA_NOTOWNED);
1143 
1144 	if (p->p_sysent->sv_schedtail != NULL)
1145 		(p->p_sysent->sv_schedtail)(td);
1146 }
1147 
1148 /*
1149  * Simplified back end of syscall(), used when returning from fork()
1150  * directly into user mode.  This function is passed in to fork_exit()
1151  * as the first parameter and is called when returning to a new
1152  * userland process.
1153  */
1154 void
1155 fork_return(struct thread *td, struct trapframe *frame)
1156 {
1157 	struct proc *p;
1158 
1159 	p = td->td_proc;
1160 	if (td->td_dbgflags & TDB_STOPATFORK) {
1161 		PROC_LOCK(p);
1162 		if ((p->p_flag & P_TRACED) != 0) {
1163 			/*
1164 			 * Inform the debugger if one is still present.
1165 			 */
1166 			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1167 			ptracestop(td, SIGSTOP, NULL);
1168 			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1169 		} else {
1170 			/*
1171 			 * ... otherwise clear the request.
1172 			 */
1173 			td->td_dbgflags &= ~TDB_STOPATFORK;
1174 		}
1175 		PROC_UNLOCK(p);
1176 	} else if (p->p_flag & P_TRACED) {
1177  		/*
1178 		 * This is the start of a new thread in a traced
1179 		 * process.  Report a system call exit event.
1180 		 */
1181 		PROC_LOCK(p);
1182 		td->td_dbgflags |= TDB_SCX;
1183 		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1184 		    (td->td_dbgflags & TDB_BORN) != 0)
1185 			ptracestop(td, SIGTRAP, NULL);
1186 		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1187 		PROC_UNLOCK(p);
1188 	}
1189 
1190 	/*
1191 	 * If the prison was killed mid-fork, die along with it.
1192 	 */
1193 	if (!prison_isalive(td->td_ucred->cr_prison))
1194 		exit1(td, 0, SIGKILL);
1195 
1196 	userret(td, frame);
1197 
1198 #ifdef KTRACE
1199 	if (KTRPOINT(td, KTR_SYSRET))
1200 		ktrsysret(td->td_sa.code, 0, 0);
1201 #endif
1202 }
1203 
1204 static void
1205 fork_init(void *arg __unused)
1206 {
1207 	ast_register(TDA_VFORK, ASTR_ASTF_REQUIRED | ASTR_TDP, TDP_RFPPWAIT,
1208 	    ast_vfork);
1209 }
1210 SYSINIT(fork, SI_SUB_INTRINSIC, SI_ORDER_ANY, fork_init, NULL);
1211