1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_ktrace.h" 41 #include "opt_mac.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/sysproto.h> 46 #include <sys/eventhandler.h> 47 #include <sys/filedesc.h> 48 #include <sys/kernel.h> 49 #include <sys/kthread.h> 50 #include <sys/sysctl.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/mutex.h> 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/pioctl.h> 57 #include <sys/resourcevar.h> 58 #include <sys/sched.h> 59 #include <sys/syscall.h> 60 #include <sys/vmmeter.h> 61 #include <sys/vnode.h> 62 #include <sys/acct.h> 63 #include <sys/ktr.h> 64 #include <sys/ktrace.h> 65 #include <sys/unistd.h> 66 #include <sys/sx.h> 67 #include <sys/signalvar.h> 68 69 #include <security/audit/audit.h> 70 #include <security/mac/mac_framework.h> 71 72 #include <vm/vm.h> 73 #include <vm/pmap.h> 74 #include <vm/vm_map.h> 75 #include <vm/vm_extern.h> 76 #include <vm/uma.h> 77 78 79 #ifndef _SYS_SYSPROTO_H_ 80 struct fork_args { 81 int dummy; 82 }; 83 #endif 84 85 /* ARGSUSED */ 86 int 87 fork(td, uap) 88 struct thread *td; 89 struct fork_args *uap; 90 { 91 int error; 92 struct proc *p2; 93 94 error = fork1(td, RFFDG | RFPROC, 0, &p2); 95 if (error == 0) { 96 td->td_retval[0] = p2->p_pid; 97 td->td_retval[1] = 0; 98 } 99 return (error); 100 } 101 102 /* ARGSUSED */ 103 int 104 vfork(td, uap) 105 struct thread *td; 106 struct vfork_args *uap; 107 { 108 int error; 109 struct proc *p2; 110 111 error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, 0, &p2); 112 if (error == 0) { 113 td->td_retval[0] = p2->p_pid; 114 td->td_retval[1] = 0; 115 } 116 return (error); 117 } 118 119 int 120 rfork(td, uap) 121 struct thread *td; 122 struct rfork_args *uap; 123 { 124 struct proc *p2; 125 int error; 126 127 /* Don't allow kernel-only flags. */ 128 if ((uap->flags & RFKERNELONLY) != 0) 129 return (EINVAL); 130 131 AUDIT_ARG(fflags, uap->flags); 132 error = fork1(td, uap->flags, 0, &p2); 133 if (error == 0) { 134 td->td_retval[0] = p2 ? p2->p_pid : 0; 135 td->td_retval[1] = 0; 136 } 137 return (error); 138 } 139 140 int nprocs = 1; /* process 0 */ 141 int lastpid = 0; 142 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 143 "Last used PID"); 144 145 /* 146 * Random component to lastpid generation. We mix in a random factor to make 147 * it a little harder to predict. We sanity check the modulus value to avoid 148 * doing it in critical paths. Don't let it be too small or we pointlessly 149 * waste randomness entropy, and don't let it be impossibly large. Using a 150 * modulus that is too big causes a LOT more process table scans and slows 151 * down fork processing as the pidchecked caching is defeated. 152 */ 153 static int randompid = 0; 154 155 static int 156 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 157 { 158 int error, pid; 159 160 error = sysctl_wire_old_buffer(req, sizeof(int)); 161 if (error != 0) 162 return(error); 163 sx_xlock(&allproc_lock); 164 pid = randompid; 165 error = sysctl_handle_int(oidp, &pid, 0, req); 166 if (error == 0 && req->newptr != NULL) { 167 if (pid < 0 || pid > PID_MAX - 100) /* out of range */ 168 pid = PID_MAX - 100; 169 else if (pid < 2) /* NOP */ 170 pid = 0; 171 else if (pid < 100) /* Make it reasonable */ 172 pid = 100; 173 randompid = pid; 174 } 175 sx_xunlock(&allproc_lock); 176 return (error); 177 } 178 179 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 180 0, 0, sysctl_kern_randompid, "I", "Random PID modulus"); 181 182 int 183 fork1(td, flags, pages, procp) 184 struct thread *td; 185 int flags; 186 int pages; 187 struct proc **procp; 188 { 189 struct proc *p1, *p2, *pptr; 190 struct proc *newproc; 191 int ok, trypid; 192 static int curfail, pidchecked = 0; 193 static struct timeval lastfail; 194 struct filedesc *fd; 195 struct filedesc_to_leader *fdtol; 196 struct thread *td2; 197 struct sigacts *newsigacts; 198 int error; 199 200 /* Can't copy and clear. */ 201 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) 202 return (EINVAL); 203 204 p1 = td->td_proc; 205 206 /* 207 * Here we don't create a new process, but we divorce 208 * certain parts of a process from itself. 209 */ 210 if ((flags & RFPROC) == 0) { 211 if ((p1->p_flag & P_HADTHREADS) && 212 (flags & (RFCFDG | RFFDG))) { 213 PROC_LOCK(p1); 214 if (thread_single(SINGLE_BOUNDARY)) { 215 PROC_UNLOCK(p1); 216 return (ERESTART); 217 } 218 PROC_UNLOCK(p1); 219 } 220 221 vm_forkproc(td, NULL, NULL, flags); 222 223 /* 224 * Close all file descriptors. 225 */ 226 if (flags & RFCFDG) { 227 struct filedesc *fdtmp; 228 fdtmp = fdinit(td->td_proc->p_fd); 229 fdfree(td); 230 p1->p_fd = fdtmp; 231 } 232 233 /* 234 * Unshare file descriptors (from parent). 235 */ 236 if (flags & RFFDG) 237 fdunshare(p1, td); 238 239 if ((p1->p_flag & P_HADTHREADS) && 240 (flags & (RFCFDG | RFFDG))) { 241 PROC_LOCK(p1); 242 thread_single_end(); 243 PROC_UNLOCK(p1); 244 } 245 *procp = NULL; 246 return (0); 247 } 248 249 /* 250 * Note 1:1 allows for forking with one thread coming out on the 251 * other side with the expectation that the process is about to 252 * exec. 253 */ 254 if (p1->p_flag & P_HADTHREADS) { 255 /* 256 * Idle the other threads for a second. 257 * Since the user space is copied, it must remain stable. 258 * In addition, all threads (from the user perspective) 259 * need to either be suspended or in the kernel, 260 * where they will try restart in the parent and will 261 * be aborted in the child. 262 */ 263 PROC_LOCK(p1); 264 if (thread_single(SINGLE_NO_EXIT)) { 265 /* Abort. Someone else is single threading before us. */ 266 PROC_UNLOCK(p1); 267 return (ERESTART); 268 } 269 PROC_UNLOCK(p1); 270 /* 271 * All other activity in this process 272 * is now suspended at the user boundary, 273 * (or other safe places if we think of any). 274 */ 275 } 276 277 /* Allocate new proc. */ 278 newproc = uma_zalloc(proc_zone, M_WAITOK); 279 #ifdef MAC 280 mac_init_proc(newproc); 281 #endif 282 #ifdef AUDIT 283 audit_proc_alloc(newproc); 284 #endif 285 knlist_init(&newproc->p_klist, &newproc->p_mtx, NULL, NULL, NULL); 286 STAILQ_INIT(&newproc->p_ktr); 287 288 /* We have to lock the process tree while we look for a pid. */ 289 sx_slock(&proctree_lock); 290 291 /* 292 * Although process entries are dynamically created, we still keep 293 * a global limit on the maximum number we will create. Don't allow 294 * a nonprivileged user to use the last ten processes; don't let root 295 * exceed the limit. The variable nprocs is the current number of 296 * processes, maxproc is the limit. 297 */ 298 sx_xlock(&allproc_lock); 299 if ((nprocs >= maxproc - 10 && 300 priv_check_cred(td->td_ucred, PRIV_MAXPROC, SUSER_RUID) != 0) || 301 nprocs >= maxproc) { 302 error = EAGAIN; 303 goto fail; 304 } 305 306 /* 307 * Increment the count of procs running with this uid. Don't allow 308 * a nonprivileged user to exceed their current limit. 309 * 310 * XXXRW: Can we avoid privilege here if it's not needed? 311 */ 312 error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, SUSER_RUID | 313 SUSER_ALLOWJAIL); 314 if (error == 0) 315 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0); 316 else { 317 PROC_LOCK(p1); 318 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 319 lim_cur(p1, RLIMIT_NPROC)); 320 PROC_UNLOCK(p1); 321 } 322 if (!ok) { 323 error = EAGAIN; 324 goto fail; 325 } 326 327 /* 328 * Increment the nprocs resource before blocking can occur. There 329 * are hard-limits as to the number of processes that can run. 330 */ 331 nprocs++; 332 333 /* 334 * Find an unused process ID. We remember a range of unused IDs 335 * ready to use (from lastpid+1 through pidchecked-1). 336 * 337 * If RFHIGHPID is set (used during system boot), do not allocate 338 * low-numbered pids. 339 */ 340 trypid = lastpid + 1; 341 if (flags & RFHIGHPID) { 342 if (trypid < 10) 343 trypid = 10; 344 } else { 345 if (randompid) 346 trypid += arc4random() % randompid; 347 } 348 retry: 349 /* 350 * If the process ID prototype has wrapped around, 351 * restart somewhat above 0, as the low-numbered procs 352 * tend to include daemons that don't exit. 353 */ 354 if (trypid >= PID_MAX) { 355 trypid = trypid % PID_MAX; 356 if (trypid < 100) 357 trypid += 100; 358 pidchecked = 0; 359 } 360 if (trypid >= pidchecked) { 361 int doingzomb = 0; 362 363 pidchecked = PID_MAX; 364 /* 365 * Scan the active and zombie procs to check whether this pid 366 * is in use. Remember the lowest pid that's greater 367 * than trypid, so we can avoid checking for a while. 368 */ 369 p2 = LIST_FIRST(&allproc); 370 again: 371 for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) { 372 while (p2->p_pid == trypid || 373 (p2->p_pgrp != NULL && 374 (p2->p_pgrp->pg_id == trypid || 375 (p2->p_session != NULL && 376 p2->p_session->s_sid == trypid)))) { 377 trypid++; 378 if (trypid >= pidchecked) 379 goto retry; 380 } 381 if (p2->p_pid > trypid && pidchecked > p2->p_pid) 382 pidchecked = p2->p_pid; 383 if (p2->p_pgrp != NULL) { 384 if (p2->p_pgrp->pg_id > trypid && 385 pidchecked > p2->p_pgrp->pg_id) 386 pidchecked = p2->p_pgrp->pg_id; 387 if (p2->p_session != NULL && 388 p2->p_session->s_sid > trypid && 389 pidchecked > p2->p_session->s_sid) 390 pidchecked = p2->p_session->s_sid; 391 } 392 } 393 if (!doingzomb) { 394 doingzomb = 1; 395 p2 = LIST_FIRST(&zombproc); 396 goto again; 397 } 398 } 399 sx_sunlock(&proctree_lock); 400 401 /* 402 * RFHIGHPID does not mess with the lastpid counter during boot. 403 */ 404 if (flags & RFHIGHPID) 405 pidchecked = 0; 406 else 407 lastpid = trypid; 408 409 p2 = newproc; 410 p2->p_state = PRS_NEW; /* protect against others */ 411 p2->p_pid = trypid; 412 AUDIT_ARG(pid, p2->p_pid); 413 LIST_INSERT_HEAD(&allproc, p2, p_list); 414 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); 415 416 PROC_LOCK(p2); 417 PROC_LOCK(p1); 418 419 sx_xunlock(&allproc_lock); 420 421 bcopy(&p1->p_startcopy, &p2->p_startcopy, 422 __rangeof(struct proc, p_startcopy, p_endcopy)); 423 PROC_UNLOCK(p1); 424 425 bzero(&p2->p_startzero, 426 __rangeof(struct proc, p_startzero, p_endzero)); 427 428 p2->p_ucred = crhold(td->td_ucred); 429 PROC_UNLOCK(p2); 430 431 /* 432 * Malloc things while we don't hold any locks. 433 */ 434 if (flags & RFSIGSHARE) 435 newsigacts = NULL; 436 else 437 newsigacts = sigacts_alloc(); 438 439 /* 440 * Copy filedesc. 441 */ 442 if (flags & RFCFDG) { 443 fd = fdinit(p1->p_fd); 444 fdtol = NULL; 445 } else if (flags & RFFDG) { 446 fd = fdcopy(p1->p_fd); 447 fdtol = NULL; 448 } else { 449 fd = fdshare(p1->p_fd); 450 if (p1->p_fdtol == NULL) 451 p1->p_fdtol = 452 filedesc_to_leader_alloc(NULL, 453 NULL, 454 p1->p_leader); 455 if ((flags & RFTHREAD) != 0) { 456 /* 457 * Shared file descriptor table and 458 * shared process leaders. 459 */ 460 fdtol = p1->p_fdtol; 461 FILEDESC_XLOCK(p1->p_fd); 462 fdtol->fdl_refcount++; 463 FILEDESC_XUNLOCK(p1->p_fd); 464 } else { 465 /* 466 * Shared file descriptor table, and 467 * different process leaders 468 */ 469 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, 470 p1->p_fd, 471 p2); 472 } 473 } 474 /* 475 * Make a proc table entry for the new process. 476 * Start by zeroing the section of proc that is zero-initialized, 477 * then copy the section that is copied directly from the parent. 478 */ 479 td2 = FIRST_THREAD_IN_PROC(p2); 480 481 /* Allocate and switch to an alternate kstack if specified. */ 482 if (pages != 0) 483 vm_thread_new_altkstack(td2, pages); 484 485 PROC_LOCK(p2); 486 PROC_LOCK(p1); 487 488 bzero(&td2->td_startzero, 489 __rangeof(struct thread, td_startzero, td_endzero)); 490 491 bcopy(&td->td_startcopy, &td2->td_startcopy, 492 __rangeof(struct thread, td_startcopy, td_endcopy)); 493 494 td2->td_sigstk = td->td_sigstk; 495 td2->td_sigmask = td->td_sigmask; 496 497 /* 498 * Duplicate sub-structures as needed. 499 * Increase reference counts on shared objects. 500 */ 501 p2->p_flag = 0; 502 if (p1->p_flag & P_PROFIL) 503 startprofclock(p2); 504 mtx_lock_spin(&sched_lock); 505 p2->p_sflag = PS_INMEM; 506 /* 507 * Allow the scheduler to adjust the priority of the child and 508 * parent while we hold the sched_lock. 509 */ 510 sched_fork(td, td2); 511 512 mtx_unlock_spin(&sched_lock); 513 td2->td_ucred = crhold(p2->p_ucred); 514 #ifdef AUDIT 515 audit_proc_fork(p1, p2); 516 #endif 517 pargs_hold(p2->p_args); 518 519 if (flags & RFSIGSHARE) { 520 p2->p_sigacts = sigacts_hold(p1->p_sigacts); 521 } else { 522 sigacts_copy(newsigacts, p1->p_sigacts); 523 p2->p_sigacts = newsigacts; 524 } 525 if (flags & RFLINUXTHPN) 526 p2->p_sigparent = SIGUSR1; 527 else 528 p2->p_sigparent = SIGCHLD; 529 530 p2->p_textvp = p1->p_textvp; 531 p2->p_fd = fd; 532 p2->p_fdtol = fdtol; 533 534 /* 535 * p_limit is copy-on-write. Bump its refcount. 536 */ 537 p2->p_limit = lim_hold(p1->p_limit); 538 539 pstats_fork(p1->p_stats, p2->p_stats); 540 541 PROC_UNLOCK(p1); 542 PROC_UNLOCK(p2); 543 544 /* Bump references to the text vnode (for procfs) */ 545 if (p2->p_textvp) 546 vref(p2->p_textvp); 547 548 /* 549 * Set up linkage for kernel based threading. 550 */ 551 if ((flags & RFTHREAD) != 0) { 552 mtx_lock(&ppeers_lock); 553 p2->p_peers = p1->p_peers; 554 p1->p_peers = p2; 555 p2->p_leader = p1->p_leader; 556 mtx_unlock(&ppeers_lock); 557 PROC_LOCK(p1->p_leader); 558 if ((p1->p_leader->p_flag & P_WEXIT) != 0) { 559 PROC_UNLOCK(p1->p_leader); 560 /* 561 * The task leader is exiting, so process p1 is 562 * going to be killed shortly. Since p1 obviously 563 * isn't dead yet, we know that the leader is either 564 * sending SIGKILL's to all the processes in this 565 * task or is sleeping waiting for all the peers to 566 * exit. We let p1 complete the fork, but we need 567 * to go ahead and kill the new process p2 since 568 * the task leader may not get a chance to send 569 * SIGKILL to it. We leave it on the list so that 570 * the task leader will wait for this new process 571 * to commit suicide. 572 */ 573 PROC_LOCK(p2); 574 psignal(p2, SIGKILL); 575 PROC_UNLOCK(p2); 576 } else 577 PROC_UNLOCK(p1->p_leader); 578 } else { 579 p2->p_peers = NULL; 580 p2->p_leader = p2; 581 } 582 583 sx_xlock(&proctree_lock); 584 PGRP_LOCK(p1->p_pgrp); 585 PROC_LOCK(p2); 586 PROC_LOCK(p1); 587 588 /* 589 * Preserve some more flags in subprocess. P_PROFIL has already 590 * been preserved. 591 */ 592 p2->p_flag |= p1->p_flag & P_SUGID; 593 td2->td_pflags |= td->td_pflags & TDP_ALTSTACK; 594 SESS_LOCK(p1->p_session); 595 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) 596 p2->p_flag |= P_CONTROLT; 597 SESS_UNLOCK(p1->p_session); 598 if (flags & RFPPWAIT) 599 p2->p_flag |= P_PPWAIT; 600 601 p2->p_pgrp = p1->p_pgrp; 602 LIST_INSERT_AFTER(p1, p2, p_pglist); 603 PGRP_UNLOCK(p1->p_pgrp); 604 LIST_INIT(&p2->p_children); 605 606 callout_init(&p2->p_itcallout, CALLOUT_MPSAFE); 607 608 #ifdef KTRACE 609 /* 610 * Copy traceflag and tracefile if enabled. 611 */ 612 mtx_lock(&ktrace_mtx); 613 KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode")); 614 if (p1->p_traceflag & KTRFAC_INHERIT) { 615 p2->p_traceflag = p1->p_traceflag; 616 if ((p2->p_tracevp = p1->p_tracevp) != NULL) { 617 VREF(p2->p_tracevp); 618 KASSERT(p1->p_tracecred != NULL, 619 ("ktrace vnode with no cred")); 620 p2->p_tracecred = crhold(p1->p_tracecred); 621 } 622 } 623 mtx_unlock(&ktrace_mtx); 624 #endif 625 626 /* 627 * If PF_FORK is set, the child process inherits the 628 * procfs ioctl flags from its parent. 629 */ 630 if (p1->p_pfsflags & PF_FORK) { 631 p2->p_stops = p1->p_stops; 632 p2->p_pfsflags = p1->p_pfsflags; 633 } 634 635 /* 636 * This begins the section where we must prevent the parent 637 * from being swapped. 638 */ 639 _PHOLD(p1); 640 PROC_UNLOCK(p1); 641 642 /* 643 * Attach the new process to its parent. 644 * 645 * If RFNOWAIT is set, the newly created process becomes a child 646 * of init. This effectively disassociates the child from the 647 * parent. 648 */ 649 if (flags & RFNOWAIT) 650 pptr = initproc; 651 else 652 pptr = p1; 653 p2->p_pptr = pptr; 654 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); 655 sx_xunlock(&proctree_lock); 656 657 /* Inform accounting that we have forked. */ 658 p2->p_acflag = AFORK; 659 PROC_UNLOCK(p2); 660 661 /* 662 * Finish creating the child process. It will return via a different 663 * execution path later. (ie: directly into user mode) 664 */ 665 vm_forkproc(td, p2, td2, flags); 666 667 if (flags == (RFFDG | RFPROC)) { 668 VMCNT_ADD(forks, 1); 669 VMCNT_ADD(forkpages, p2->p_vmspace->vm_dsize + 670 p2->p_vmspace->vm_ssize); 671 } else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { 672 VMCNT_ADD(forks, 1); 673 VMCNT_ADD(forkpages, p2->p_vmspace->vm_dsize + 674 p2->p_vmspace->vm_ssize); 675 } else if (p1 == &proc0) { 676 VMCNT_ADD(kthreads, 1); 677 VMCNT_ADD(kthreadpages, p2->p_vmspace->vm_dsize + 678 p2->p_vmspace->vm_ssize); 679 } else { 680 VMCNT_ADD(rforks, 1); 681 VMCNT_ADD(rforkpages, p2->p_vmspace->vm_dsize + 682 p2->p_vmspace->vm_ssize); 683 } 684 685 /* 686 * Both processes are set up, now check if any loadable modules want 687 * to adjust anything. 688 * What if they have an error? XXX 689 */ 690 EVENTHANDLER_INVOKE(process_fork, p1, p2, flags); 691 692 /* 693 * Set the child start time and mark the process as being complete. 694 */ 695 microuptime(&p2->p_stats->p_start); 696 mtx_lock_spin(&sched_lock); 697 p2->p_state = PRS_NORMAL; 698 699 /* 700 * If RFSTOPPED not requested, make child runnable and add to 701 * run queue. 702 */ 703 if ((flags & RFSTOPPED) == 0) { 704 TD_SET_CAN_RUN(td2); 705 sched_add(td2, SRQ_BORING); 706 } 707 mtx_unlock_spin(&sched_lock); 708 709 /* 710 * Now can be swapped. 711 */ 712 PROC_LOCK(p1); 713 _PRELE(p1); 714 715 /* 716 * Tell any interested parties about the new process. 717 */ 718 KNOTE_LOCKED(&p1->p_klist, NOTE_FORK | p2->p_pid); 719 720 PROC_UNLOCK(p1); 721 722 /* 723 * Preserve synchronization semantics of vfork. If waiting for 724 * child to exec or exit, set P_PPWAIT on child, and sleep on our 725 * proc (in case of exit). 726 */ 727 PROC_LOCK(p2); 728 while (p2->p_flag & P_PPWAIT) 729 msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0); 730 PROC_UNLOCK(p2); 731 732 /* 733 * If other threads are waiting, let them continue now. 734 */ 735 if (p1->p_flag & P_HADTHREADS) { 736 PROC_LOCK(p1); 737 thread_single_end(); 738 PROC_UNLOCK(p1); 739 } 740 741 /* 742 * Return child proc pointer to parent. 743 */ 744 *procp = p2; 745 return (0); 746 fail: 747 sx_sunlock(&proctree_lock); 748 if (ppsratecheck(&lastfail, &curfail, 1)) 749 printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n", 750 td->td_ucred->cr_ruid); 751 sx_xunlock(&allproc_lock); 752 #ifdef MAC 753 mac_destroy_proc(newproc); 754 #endif 755 #ifdef AUDIT 756 audit_proc_free(newproc); 757 #endif 758 uma_zfree(proc_zone, newproc); 759 if (p1->p_flag & P_HADTHREADS) { 760 PROC_LOCK(p1); 761 thread_single_end(); 762 PROC_UNLOCK(p1); 763 } 764 pause("fork", hz / 2); 765 return (error); 766 } 767 768 /* 769 * Handle the return of a child process from fork1(). This function 770 * is called from the MD fork_trampoline() entry point. 771 */ 772 void 773 fork_exit(callout, arg, frame) 774 void (*callout)(void *, struct trapframe *); 775 void *arg; 776 struct trapframe *frame; 777 { 778 struct proc *p; 779 struct thread *td; 780 781 /* 782 * Finish setting up thread glue so that it begins execution in a 783 * non-nested critical section with sched_lock held but not recursed. 784 */ 785 td = curthread; 786 p = td->td_proc; 787 td->td_oncpu = PCPU_GET(cpuid); 788 KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new")); 789 790 sched_lock.mtx_lock = (uintptr_t)td; 791 mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED); 792 CTR4(KTR_PROC, "fork_exit: new thread %p (kse %p, pid %d, %s)", 793 td, td->td_sched, p->p_pid, p->p_comm); 794 795 /* 796 * Processes normally resume in mi_switch() after being 797 * cpu_switch()'ed to, but when children start up they arrive here 798 * instead, so we must do much the same things as mi_switch() would. 799 */ 800 if ((td = PCPU_GET(deadthread))) { 801 PCPU_SET(deadthread, NULL); 802 thread_stash(td); 803 } 804 mtx_unlock_spin(&sched_lock); 805 806 /* 807 * cpu_set_fork_handler intercepts this function call to 808 * have this call a non-return function to stay in kernel mode. 809 * initproc has its own fork handler, but it does return. 810 */ 811 KASSERT(callout != NULL, ("NULL callout in fork_exit")); 812 callout(arg, frame); 813 814 /* 815 * Check if a kernel thread misbehaved and returned from its main 816 * function. 817 */ 818 if (p->p_flag & P_KTHREAD) { 819 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n", 820 p->p_comm, p->p_pid); 821 kthread_exit(0); 822 } 823 mtx_assert(&Giant, MA_NOTOWNED); 824 825 EVENTHANDLER_INVOKE(schedtail, p); 826 } 827 828 /* 829 * Simplified back end of syscall(), used when returning from fork() 830 * directly into user mode. Giant is not held on entry, and must not 831 * be held on return. This function is passed in to fork_exit() as the 832 * first parameter and is called when returning to a new userland process. 833 */ 834 void 835 fork_return(td, frame) 836 struct thread *td; 837 struct trapframe *frame; 838 { 839 840 userret(td, frame); 841 #ifdef KTRACE 842 if (KTRPOINT(td, KTR_SYSRET)) 843 ktrsysret(SYS_fork, 0, 0); 844 #endif 845 mtx_assert(&Giant, MA_NOTOWNED); 846 } 847