xref: /freebsd/sys/kern/kern_fork.c (revision 94942af266ac119ede0ca836f9aa5a5ac0582938)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_mac.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysproto.h>
46 #include <sys/eventhandler.h>
47 #include <sys/filedesc.h>
48 #include <sys/kernel.h>
49 #include <sys/kthread.h>
50 #include <sys/sysctl.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/pioctl.h>
57 #include <sys/resourcevar.h>
58 #include <sys/sched.h>
59 #include <sys/syscall.h>
60 #include <sys/vmmeter.h>
61 #include <sys/vnode.h>
62 #include <sys/acct.h>
63 #include <sys/ktr.h>
64 #include <sys/ktrace.h>
65 #include <sys/unistd.h>
66 #include <sys/sx.h>
67 #include <sys/signalvar.h>
68 
69 #include <security/audit/audit.h>
70 #include <security/mac/mac_framework.h>
71 
72 #include <vm/vm.h>
73 #include <vm/pmap.h>
74 #include <vm/vm_map.h>
75 #include <vm/vm_extern.h>
76 #include <vm/uma.h>
77 
78 
79 #ifndef _SYS_SYSPROTO_H_
80 struct fork_args {
81 	int     dummy;
82 };
83 #endif
84 
85 /* ARGSUSED */
86 int
87 fork(td, uap)
88 	struct thread *td;
89 	struct fork_args *uap;
90 {
91 	int error;
92 	struct proc *p2;
93 
94 	error = fork1(td, RFFDG | RFPROC, 0, &p2);
95 	if (error == 0) {
96 		td->td_retval[0] = p2->p_pid;
97 		td->td_retval[1] = 0;
98 	}
99 	return (error);
100 }
101 
102 /* ARGSUSED */
103 int
104 vfork(td, uap)
105 	struct thread *td;
106 	struct vfork_args *uap;
107 {
108 	int error;
109 	struct proc *p2;
110 
111 	error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, 0, &p2);
112 	if (error == 0) {
113 		td->td_retval[0] = p2->p_pid;
114 		td->td_retval[1] = 0;
115 	}
116 	return (error);
117 }
118 
119 int
120 rfork(td, uap)
121 	struct thread *td;
122 	struct rfork_args *uap;
123 {
124 	struct proc *p2;
125 	int error;
126 
127 	/* Don't allow kernel-only flags. */
128 	if ((uap->flags & RFKERNELONLY) != 0)
129 		return (EINVAL);
130 
131 	AUDIT_ARG(fflags, uap->flags);
132 	error = fork1(td, uap->flags, 0, &p2);
133 	if (error == 0) {
134 		td->td_retval[0] = p2 ? p2->p_pid : 0;
135 		td->td_retval[1] = 0;
136 	}
137 	return (error);
138 }
139 
140 int	nprocs = 1;		/* process 0 */
141 int	lastpid = 0;
142 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
143     "Last used PID");
144 
145 /*
146  * Random component to lastpid generation.  We mix in a random factor to make
147  * it a little harder to predict.  We sanity check the modulus value to avoid
148  * doing it in critical paths.  Don't let it be too small or we pointlessly
149  * waste randomness entropy, and don't let it be impossibly large.  Using a
150  * modulus that is too big causes a LOT more process table scans and slows
151  * down fork processing as the pidchecked caching is defeated.
152  */
153 static int randompid = 0;
154 
155 static int
156 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
157 {
158 	int error, pid;
159 
160 	error = sysctl_wire_old_buffer(req, sizeof(int));
161 	if (error != 0)
162 		return(error);
163 	sx_xlock(&allproc_lock);
164 	pid = randompid;
165 	error = sysctl_handle_int(oidp, &pid, 0, req);
166 	if (error == 0 && req->newptr != NULL) {
167 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
168 			pid = PID_MAX - 100;
169 		else if (pid < 2)			/* NOP */
170 			pid = 0;
171 		else if (pid < 100)			/* Make it reasonable */
172 			pid = 100;
173 		randompid = pid;
174 	}
175 	sx_xunlock(&allproc_lock);
176 	return (error);
177 }
178 
179 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
180     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
181 
182 int
183 fork1(td, flags, pages, procp)
184 	struct thread *td;
185 	int flags;
186 	int pages;
187 	struct proc **procp;
188 {
189 	struct proc *p1, *p2, *pptr;
190 	struct proc *newproc;
191 	int ok, trypid;
192 	static int curfail, pidchecked = 0;
193 	static struct timeval lastfail;
194 	struct filedesc *fd;
195 	struct filedesc_to_leader *fdtol;
196 	struct thread *td2;
197 	struct sigacts *newsigacts;
198 	int error;
199 
200 	/* Can't copy and clear. */
201 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
202 		return (EINVAL);
203 
204 	p1 = td->td_proc;
205 
206 	/*
207 	 * Here we don't create a new process, but we divorce
208 	 * certain parts of a process from itself.
209 	 */
210 	if ((flags & RFPROC) == 0) {
211 		if ((p1->p_flag & P_HADTHREADS) &&
212 		    (flags & (RFCFDG | RFFDG))) {
213 			PROC_LOCK(p1);
214 			if (thread_single(SINGLE_BOUNDARY)) {
215 				PROC_UNLOCK(p1);
216 				return (ERESTART);
217 			}
218 			PROC_UNLOCK(p1);
219 		}
220 
221 		vm_forkproc(td, NULL, NULL, flags);
222 
223 		/*
224 		 * Close all file descriptors.
225 		 */
226 		if (flags & RFCFDG) {
227 			struct filedesc *fdtmp;
228 			fdtmp = fdinit(td->td_proc->p_fd);
229 			fdfree(td);
230 			p1->p_fd = fdtmp;
231 		}
232 
233 		/*
234 		 * Unshare file descriptors (from parent).
235 		 */
236 		if (flags & RFFDG)
237 			fdunshare(p1, td);
238 
239 		if ((p1->p_flag & P_HADTHREADS) &&
240 		    (flags & (RFCFDG | RFFDG))) {
241 			PROC_LOCK(p1);
242 			thread_single_end();
243 			PROC_UNLOCK(p1);
244 		}
245 		*procp = NULL;
246 		return (0);
247 	}
248 
249 	/*
250 	 * Note 1:1 allows for forking with one thread coming out on the
251 	 * other side with the expectation that the process is about to
252 	 * exec.
253 	 */
254 	if (p1->p_flag & P_HADTHREADS) {
255 		/*
256 		 * Idle the other threads for a second.
257 		 * Since the user space is copied, it must remain stable.
258 		 * In addition, all threads (from the user perspective)
259 		 * need to either be suspended or in the kernel,
260 		 * where they will try restart in the parent and will
261 		 * be aborted in the child.
262 		 */
263 		PROC_LOCK(p1);
264 		if (thread_single(SINGLE_NO_EXIT)) {
265 			/* Abort. Someone else is single threading before us. */
266 			PROC_UNLOCK(p1);
267 			return (ERESTART);
268 		}
269 		PROC_UNLOCK(p1);
270 		/*
271 		 * All other activity in this process
272 		 * is now suspended at the user boundary,
273 		 * (or other safe places if we think of any).
274 		 */
275 	}
276 
277 	/* Allocate new proc. */
278 	newproc = uma_zalloc(proc_zone, M_WAITOK);
279 #ifdef MAC
280 	mac_init_proc(newproc);
281 #endif
282 #ifdef AUDIT
283 	audit_proc_alloc(newproc);
284 #endif
285 	knlist_init(&newproc->p_klist, &newproc->p_mtx, NULL, NULL, NULL);
286 	STAILQ_INIT(&newproc->p_ktr);
287 
288 	/* We have to lock the process tree while we look for a pid. */
289 	sx_slock(&proctree_lock);
290 
291 	/*
292 	 * Although process entries are dynamically created, we still keep
293 	 * a global limit on the maximum number we will create.  Don't allow
294 	 * a nonprivileged user to use the last ten processes; don't let root
295 	 * exceed the limit. The variable nprocs is the current number of
296 	 * processes, maxproc is the limit.
297 	 */
298 	sx_xlock(&allproc_lock);
299 	if ((nprocs >= maxproc - 10 &&
300 	    priv_check_cred(td->td_ucred, PRIV_MAXPROC, SUSER_RUID) != 0) ||
301 	    nprocs >= maxproc) {
302 		error = EAGAIN;
303 		goto fail;
304 	}
305 
306 	/*
307 	 * Increment the count of procs running with this uid. Don't allow
308 	 * a nonprivileged user to exceed their current limit.
309 	 *
310 	 * XXXRW: Can we avoid privilege here if it's not needed?
311 	 */
312 	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, SUSER_RUID |
313 	    SUSER_ALLOWJAIL);
314 	if (error == 0)
315 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
316 	else {
317 		PROC_LOCK(p1);
318 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
319 		    lim_cur(p1, RLIMIT_NPROC));
320 		PROC_UNLOCK(p1);
321 	}
322 	if (!ok) {
323 		error = EAGAIN;
324 		goto fail;
325 	}
326 
327 	/*
328 	 * Increment the nprocs resource before blocking can occur.  There
329 	 * are hard-limits as to the number of processes that can run.
330 	 */
331 	nprocs++;
332 
333 	/*
334 	 * Find an unused process ID.  We remember a range of unused IDs
335 	 * ready to use (from lastpid+1 through pidchecked-1).
336 	 *
337 	 * If RFHIGHPID is set (used during system boot), do not allocate
338 	 * low-numbered pids.
339 	 */
340 	trypid = lastpid + 1;
341 	if (flags & RFHIGHPID) {
342 		if (trypid < 10)
343 			trypid = 10;
344 	} else {
345 		if (randompid)
346 			trypid += arc4random() % randompid;
347 	}
348 retry:
349 	/*
350 	 * If the process ID prototype has wrapped around,
351 	 * restart somewhat above 0, as the low-numbered procs
352 	 * tend to include daemons that don't exit.
353 	 */
354 	if (trypid >= PID_MAX) {
355 		trypid = trypid % PID_MAX;
356 		if (trypid < 100)
357 			trypid += 100;
358 		pidchecked = 0;
359 	}
360 	if (trypid >= pidchecked) {
361 		int doingzomb = 0;
362 
363 		pidchecked = PID_MAX;
364 		/*
365 		 * Scan the active and zombie procs to check whether this pid
366 		 * is in use.  Remember the lowest pid that's greater
367 		 * than trypid, so we can avoid checking for a while.
368 		 */
369 		p2 = LIST_FIRST(&allproc);
370 again:
371 		for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
372 			while (p2->p_pid == trypid ||
373 			    (p2->p_pgrp != NULL &&
374 			    (p2->p_pgrp->pg_id == trypid ||
375 			    (p2->p_session != NULL &&
376 			    p2->p_session->s_sid == trypid)))) {
377 				trypid++;
378 				if (trypid >= pidchecked)
379 					goto retry;
380 			}
381 			if (p2->p_pid > trypid && pidchecked > p2->p_pid)
382 				pidchecked = p2->p_pid;
383 			if (p2->p_pgrp != NULL) {
384 				if (p2->p_pgrp->pg_id > trypid &&
385 				    pidchecked > p2->p_pgrp->pg_id)
386 					pidchecked = p2->p_pgrp->pg_id;
387 				if (p2->p_session != NULL &&
388 				    p2->p_session->s_sid > trypid &&
389 				    pidchecked > p2->p_session->s_sid)
390 					pidchecked = p2->p_session->s_sid;
391 			}
392 		}
393 		if (!doingzomb) {
394 			doingzomb = 1;
395 			p2 = LIST_FIRST(&zombproc);
396 			goto again;
397 		}
398 	}
399 	sx_sunlock(&proctree_lock);
400 
401 	/*
402 	 * RFHIGHPID does not mess with the lastpid counter during boot.
403 	 */
404 	if (flags & RFHIGHPID)
405 		pidchecked = 0;
406 	else
407 		lastpid = trypid;
408 
409 	p2 = newproc;
410 	p2->p_state = PRS_NEW;		/* protect against others */
411 	p2->p_pid = trypid;
412 	AUDIT_ARG(pid, p2->p_pid);
413 	LIST_INSERT_HEAD(&allproc, p2, p_list);
414 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
415 
416 	PROC_LOCK(p2);
417 	PROC_LOCK(p1);
418 
419 	sx_xunlock(&allproc_lock);
420 
421 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
422 	    __rangeof(struct proc, p_startcopy, p_endcopy));
423 	PROC_UNLOCK(p1);
424 
425 	bzero(&p2->p_startzero,
426 	    __rangeof(struct proc, p_startzero, p_endzero));
427 
428 	p2->p_ucred = crhold(td->td_ucred);
429 	PROC_UNLOCK(p2);
430 
431 	/*
432 	 * Malloc things while we don't hold any locks.
433 	 */
434 	if (flags & RFSIGSHARE)
435 		newsigacts = NULL;
436 	else
437 		newsigacts = sigacts_alloc();
438 
439 	/*
440 	 * Copy filedesc.
441 	 */
442 	if (flags & RFCFDG) {
443 		fd = fdinit(p1->p_fd);
444 		fdtol = NULL;
445 	} else if (flags & RFFDG) {
446 		fd = fdcopy(p1->p_fd);
447 		fdtol = NULL;
448 	} else {
449 		fd = fdshare(p1->p_fd);
450 		if (p1->p_fdtol == NULL)
451 			p1->p_fdtol =
452 				filedesc_to_leader_alloc(NULL,
453 							 NULL,
454 							 p1->p_leader);
455 		if ((flags & RFTHREAD) != 0) {
456 			/*
457 			 * Shared file descriptor table and
458 			 * shared process leaders.
459 			 */
460 			fdtol = p1->p_fdtol;
461 			FILEDESC_XLOCK(p1->p_fd);
462 			fdtol->fdl_refcount++;
463 			FILEDESC_XUNLOCK(p1->p_fd);
464 		} else {
465 			/*
466 			 * Shared file descriptor table, and
467 			 * different process leaders
468 			 */
469 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
470 							 p1->p_fd,
471 							 p2);
472 		}
473 	}
474 	/*
475 	 * Make a proc table entry for the new process.
476 	 * Start by zeroing the section of proc that is zero-initialized,
477 	 * then copy the section that is copied directly from the parent.
478 	 */
479 	td2 = FIRST_THREAD_IN_PROC(p2);
480 
481 	/* Allocate and switch to an alternate kstack if specified. */
482 	if (pages != 0)
483 		vm_thread_new_altkstack(td2, pages);
484 
485 	PROC_LOCK(p2);
486 	PROC_LOCK(p1);
487 
488 	bzero(&td2->td_startzero,
489 	    __rangeof(struct thread, td_startzero, td_endzero));
490 
491 	bcopy(&td->td_startcopy, &td2->td_startcopy,
492 	    __rangeof(struct thread, td_startcopy, td_endcopy));
493 
494 	td2->td_sigstk = td->td_sigstk;
495 	td2->td_sigmask = td->td_sigmask;
496 
497 	/*
498 	 * Duplicate sub-structures as needed.
499 	 * Increase reference counts on shared objects.
500 	 */
501 	p2->p_flag = 0;
502 	if (p1->p_flag & P_PROFIL)
503 		startprofclock(p2);
504 	mtx_lock_spin(&sched_lock);
505 	p2->p_sflag = PS_INMEM;
506 	/*
507 	 * Allow the scheduler to adjust the priority of the child and
508 	 * parent while we hold the sched_lock.
509 	 */
510 	sched_fork(td, td2);
511 
512 	mtx_unlock_spin(&sched_lock);
513 	td2->td_ucred = crhold(p2->p_ucred);
514 #ifdef AUDIT
515 	audit_proc_fork(p1, p2);
516 #endif
517 	pargs_hold(p2->p_args);
518 
519 	if (flags & RFSIGSHARE) {
520 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
521 	} else {
522 		sigacts_copy(newsigacts, p1->p_sigacts);
523 		p2->p_sigacts = newsigacts;
524 	}
525 	if (flags & RFLINUXTHPN)
526 	        p2->p_sigparent = SIGUSR1;
527 	else
528 	        p2->p_sigparent = SIGCHLD;
529 
530 	p2->p_textvp = p1->p_textvp;
531 	p2->p_fd = fd;
532 	p2->p_fdtol = fdtol;
533 
534 	/*
535 	 * p_limit is copy-on-write.  Bump its refcount.
536 	 */
537 	p2->p_limit = lim_hold(p1->p_limit);
538 
539 	pstats_fork(p1->p_stats, p2->p_stats);
540 
541 	PROC_UNLOCK(p1);
542 	PROC_UNLOCK(p2);
543 
544 	/* Bump references to the text vnode (for procfs) */
545 	if (p2->p_textvp)
546 		vref(p2->p_textvp);
547 
548 	/*
549 	 * Set up linkage for kernel based threading.
550 	 */
551 	if ((flags & RFTHREAD) != 0) {
552 		mtx_lock(&ppeers_lock);
553 		p2->p_peers = p1->p_peers;
554 		p1->p_peers = p2;
555 		p2->p_leader = p1->p_leader;
556 		mtx_unlock(&ppeers_lock);
557 		PROC_LOCK(p1->p_leader);
558 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
559 			PROC_UNLOCK(p1->p_leader);
560 			/*
561 			 * The task leader is exiting, so process p1 is
562 			 * going to be killed shortly.  Since p1 obviously
563 			 * isn't dead yet, we know that the leader is either
564 			 * sending SIGKILL's to all the processes in this
565 			 * task or is sleeping waiting for all the peers to
566 			 * exit.  We let p1 complete the fork, but we need
567 			 * to go ahead and kill the new process p2 since
568 			 * the task leader may not get a chance to send
569 			 * SIGKILL to it.  We leave it on the list so that
570 			 * the task leader will wait for this new process
571 			 * to commit suicide.
572 			 */
573 			PROC_LOCK(p2);
574 			psignal(p2, SIGKILL);
575 			PROC_UNLOCK(p2);
576 		} else
577 			PROC_UNLOCK(p1->p_leader);
578 	} else {
579 		p2->p_peers = NULL;
580 		p2->p_leader = p2;
581 	}
582 
583 	sx_xlock(&proctree_lock);
584 	PGRP_LOCK(p1->p_pgrp);
585 	PROC_LOCK(p2);
586 	PROC_LOCK(p1);
587 
588 	/*
589 	 * Preserve some more flags in subprocess.  P_PROFIL has already
590 	 * been preserved.
591 	 */
592 	p2->p_flag |= p1->p_flag & P_SUGID;
593 	td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
594 	SESS_LOCK(p1->p_session);
595 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
596 		p2->p_flag |= P_CONTROLT;
597 	SESS_UNLOCK(p1->p_session);
598 	if (flags & RFPPWAIT)
599 		p2->p_flag |= P_PPWAIT;
600 
601 	p2->p_pgrp = p1->p_pgrp;
602 	LIST_INSERT_AFTER(p1, p2, p_pglist);
603 	PGRP_UNLOCK(p1->p_pgrp);
604 	LIST_INIT(&p2->p_children);
605 
606 	callout_init(&p2->p_itcallout, CALLOUT_MPSAFE);
607 
608 #ifdef KTRACE
609 	/*
610 	 * Copy traceflag and tracefile if enabled.
611 	 */
612 	mtx_lock(&ktrace_mtx);
613 	KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
614 	if (p1->p_traceflag & KTRFAC_INHERIT) {
615 		p2->p_traceflag = p1->p_traceflag;
616 		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
617 			VREF(p2->p_tracevp);
618 			KASSERT(p1->p_tracecred != NULL,
619 			    ("ktrace vnode with no cred"));
620 			p2->p_tracecred = crhold(p1->p_tracecred);
621 		}
622 	}
623 	mtx_unlock(&ktrace_mtx);
624 #endif
625 
626 	/*
627 	 * If PF_FORK is set, the child process inherits the
628 	 * procfs ioctl flags from its parent.
629 	 */
630 	if (p1->p_pfsflags & PF_FORK) {
631 		p2->p_stops = p1->p_stops;
632 		p2->p_pfsflags = p1->p_pfsflags;
633 	}
634 
635 	/*
636 	 * This begins the section where we must prevent the parent
637 	 * from being swapped.
638 	 */
639 	_PHOLD(p1);
640 	PROC_UNLOCK(p1);
641 
642 	/*
643 	 * Attach the new process to its parent.
644 	 *
645 	 * If RFNOWAIT is set, the newly created process becomes a child
646 	 * of init.  This effectively disassociates the child from the
647 	 * parent.
648 	 */
649 	if (flags & RFNOWAIT)
650 		pptr = initproc;
651 	else
652 		pptr = p1;
653 	p2->p_pptr = pptr;
654 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
655 	sx_xunlock(&proctree_lock);
656 
657 	/* Inform accounting that we have forked. */
658 	p2->p_acflag = AFORK;
659 	PROC_UNLOCK(p2);
660 
661 	/*
662 	 * Finish creating the child process.  It will return via a different
663 	 * execution path later.  (ie: directly into user mode)
664 	 */
665 	vm_forkproc(td, p2, td2, flags);
666 
667 	if (flags == (RFFDG | RFPROC)) {
668 		VMCNT_ADD(forks, 1);
669 		VMCNT_ADD(forkpages, p2->p_vmspace->vm_dsize +
670 		    p2->p_vmspace->vm_ssize);
671 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
672 		VMCNT_ADD(forks, 1);
673 		VMCNT_ADD(forkpages, p2->p_vmspace->vm_dsize +
674 		    p2->p_vmspace->vm_ssize);
675 	} else if (p1 == &proc0) {
676 		VMCNT_ADD(kthreads, 1);
677 		VMCNT_ADD(kthreadpages, p2->p_vmspace->vm_dsize +
678 		    p2->p_vmspace->vm_ssize);
679 	} else {
680 		VMCNT_ADD(rforks, 1);
681 		VMCNT_ADD(rforkpages, p2->p_vmspace->vm_dsize +
682 		    p2->p_vmspace->vm_ssize);
683 	}
684 
685 	/*
686 	 * Both processes are set up, now check if any loadable modules want
687 	 * to adjust anything.
688 	 *   What if they have an error? XXX
689 	 */
690 	EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
691 
692 	/*
693 	 * Set the child start time and mark the process as being complete.
694 	 */
695 	microuptime(&p2->p_stats->p_start);
696 	mtx_lock_spin(&sched_lock);
697 	p2->p_state = PRS_NORMAL;
698 
699 	/*
700 	 * If RFSTOPPED not requested, make child runnable and add to
701 	 * run queue.
702 	 */
703 	if ((flags & RFSTOPPED) == 0) {
704 		TD_SET_CAN_RUN(td2);
705 		sched_add(td2, SRQ_BORING);
706 	}
707 	mtx_unlock_spin(&sched_lock);
708 
709 	/*
710 	 * Now can be swapped.
711 	 */
712 	PROC_LOCK(p1);
713 	_PRELE(p1);
714 
715 	/*
716 	 * Tell any interested parties about the new process.
717 	 */
718 	KNOTE_LOCKED(&p1->p_klist, NOTE_FORK | p2->p_pid);
719 
720 	PROC_UNLOCK(p1);
721 
722 	/*
723 	 * Preserve synchronization semantics of vfork.  If waiting for
724 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
725 	 * proc (in case of exit).
726 	 */
727 	PROC_LOCK(p2);
728 	while (p2->p_flag & P_PPWAIT)
729 		msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
730 	PROC_UNLOCK(p2);
731 
732 	/*
733 	 * If other threads are waiting, let them continue now.
734 	 */
735 	if (p1->p_flag & P_HADTHREADS) {
736 		PROC_LOCK(p1);
737 		thread_single_end();
738 		PROC_UNLOCK(p1);
739 	}
740 
741 	/*
742 	 * Return child proc pointer to parent.
743 	 */
744 	*procp = p2;
745 	return (0);
746 fail:
747 	sx_sunlock(&proctree_lock);
748 	if (ppsratecheck(&lastfail, &curfail, 1))
749 		printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n",
750 		    td->td_ucred->cr_ruid);
751 	sx_xunlock(&allproc_lock);
752 #ifdef MAC
753 	mac_destroy_proc(newproc);
754 #endif
755 #ifdef AUDIT
756 	audit_proc_free(newproc);
757 #endif
758 	uma_zfree(proc_zone, newproc);
759 	if (p1->p_flag & P_HADTHREADS) {
760 		PROC_LOCK(p1);
761 		thread_single_end();
762 		PROC_UNLOCK(p1);
763 	}
764 	pause("fork", hz / 2);
765 	return (error);
766 }
767 
768 /*
769  * Handle the return of a child process from fork1().  This function
770  * is called from the MD fork_trampoline() entry point.
771  */
772 void
773 fork_exit(callout, arg, frame)
774 	void (*callout)(void *, struct trapframe *);
775 	void *arg;
776 	struct trapframe *frame;
777 {
778 	struct proc *p;
779 	struct thread *td;
780 
781 	/*
782 	 * Finish setting up thread glue so that it begins execution in a
783 	 * non-nested critical section with sched_lock held but not recursed.
784 	 */
785 	td = curthread;
786 	p = td->td_proc;
787 	td->td_oncpu = PCPU_GET(cpuid);
788 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
789 
790 	sched_lock.mtx_lock = (uintptr_t)td;
791 	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
792 	CTR4(KTR_PROC, "fork_exit: new thread %p (kse %p, pid %d, %s)",
793 		td, td->td_sched, p->p_pid, p->p_comm);
794 
795 	/*
796 	 * Processes normally resume in mi_switch() after being
797 	 * cpu_switch()'ed to, but when children start up they arrive here
798 	 * instead, so we must do much the same things as mi_switch() would.
799 	 */
800 	if ((td = PCPU_GET(deadthread))) {
801 		PCPU_SET(deadthread, NULL);
802 		thread_stash(td);
803 	}
804 	mtx_unlock_spin(&sched_lock);
805 
806 	/*
807 	 * cpu_set_fork_handler intercepts this function call to
808 	 * have this call a non-return function to stay in kernel mode.
809 	 * initproc has its own fork handler, but it does return.
810 	 */
811 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
812 	callout(arg, frame);
813 
814 	/*
815 	 * Check if a kernel thread misbehaved and returned from its main
816 	 * function.
817 	 */
818 	if (p->p_flag & P_KTHREAD) {
819 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
820 		    p->p_comm, p->p_pid);
821 		kthread_exit(0);
822 	}
823 	mtx_assert(&Giant, MA_NOTOWNED);
824 
825 	EVENTHANDLER_INVOKE(schedtail, p);
826 }
827 
828 /*
829  * Simplified back end of syscall(), used when returning from fork()
830  * directly into user mode.  Giant is not held on entry, and must not
831  * be held on return.  This function is passed in to fork_exit() as the
832  * first parameter and is called when returning to a new userland process.
833  */
834 void
835 fork_return(td, frame)
836 	struct thread *td;
837 	struct trapframe *frame;
838 {
839 
840 	userret(td, frame);
841 #ifdef KTRACE
842 	if (KTRPOINT(td, KTR_SYSRET))
843 		ktrsysret(SYS_fork, 0, 0);
844 #endif
845 	mtx_assert(&Giant, MA_NOTOWNED);
846 }
847