1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_ktrace.h" 41 #include "opt_kstack_pages.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/sysproto.h> 46 #include <sys/eventhandler.h> 47 #include <sys/fcntl.h> 48 #include <sys/filedesc.h> 49 #include <sys/jail.h> 50 #include <sys/kernel.h> 51 #include <sys/kthread.h> 52 #include <sys/sysctl.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mutex.h> 56 #include <sys/priv.h> 57 #include <sys/proc.h> 58 #include <sys/procdesc.h> 59 #include <sys/pioctl.h> 60 #include <sys/ptrace.h> 61 #include <sys/racct.h> 62 #include <sys/resourcevar.h> 63 #include <sys/sched.h> 64 #include <sys/syscall.h> 65 #include <sys/vmmeter.h> 66 #include <sys/vnode.h> 67 #include <sys/acct.h> 68 #include <sys/ktr.h> 69 #include <sys/ktrace.h> 70 #include <sys/unistd.h> 71 #include <sys/sdt.h> 72 #include <sys/sx.h> 73 #include <sys/sysent.h> 74 #include <sys/signalvar.h> 75 76 #include <security/audit/audit.h> 77 #include <security/mac/mac_framework.h> 78 79 #include <vm/vm.h> 80 #include <vm/pmap.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_extern.h> 83 #include <vm/uma.h> 84 #include <vm/vm_domain.h> 85 86 #ifdef KDTRACE_HOOKS 87 #include <sys/dtrace_bsd.h> 88 dtrace_fork_func_t dtrace_fasttrap_fork; 89 #endif 90 91 SDT_PROVIDER_DECLARE(proc); 92 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int"); 93 94 #ifndef _SYS_SYSPROTO_H_ 95 struct fork_args { 96 int dummy; 97 }; 98 #endif 99 100 EVENTHANDLER_LIST_DECLARE(process_fork); 101 102 /* ARGSUSED */ 103 int 104 sys_fork(struct thread *td, struct fork_args *uap) 105 { 106 struct fork_req fr; 107 int error, pid; 108 109 bzero(&fr, sizeof(fr)); 110 fr.fr_flags = RFFDG | RFPROC; 111 fr.fr_pidp = &pid; 112 error = fork1(td, &fr); 113 if (error == 0) { 114 td->td_retval[0] = pid; 115 td->td_retval[1] = 0; 116 } 117 return (error); 118 } 119 120 /* ARGUSED */ 121 int 122 sys_pdfork(struct thread *td, struct pdfork_args *uap) 123 { 124 struct fork_req fr; 125 int error, fd, pid; 126 127 bzero(&fr, sizeof(fr)); 128 fr.fr_flags = RFFDG | RFPROC | RFPROCDESC; 129 fr.fr_pidp = &pid; 130 fr.fr_pd_fd = &fd; 131 fr.fr_pd_flags = uap->flags; 132 /* 133 * It is necessary to return fd by reference because 0 is a valid file 134 * descriptor number, and the child needs to be able to distinguish 135 * itself from the parent using the return value. 136 */ 137 error = fork1(td, &fr); 138 if (error == 0) { 139 td->td_retval[0] = pid; 140 td->td_retval[1] = 0; 141 error = copyout(&fd, uap->fdp, sizeof(fd)); 142 } 143 return (error); 144 } 145 146 /* ARGSUSED */ 147 int 148 sys_vfork(struct thread *td, struct vfork_args *uap) 149 { 150 struct fork_req fr; 151 int error, pid; 152 153 bzero(&fr, sizeof(fr)); 154 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; 155 fr.fr_pidp = &pid; 156 error = fork1(td, &fr); 157 if (error == 0) { 158 td->td_retval[0] = pid; 159 td->td_retval[1] = 0; 160 } 161 return (error); 162 } 163 164 int 165 sys_rfork(struct thread *td, struct rfork_args *uap) 166 { 167 struct fork_req fr; 168 int error, pid; 169 170 /* Don't allow kernel-only flags. */ 171 if ((uap->flags & RFKERNELONLY) != 0) 172 return (EINVAL); 173 174 AUDIT_ARG_FFLAGS(uap->flags); 175 bzero(&fr, sizeof(fr)); 176 fr.fr_flags = uap->flags; 177 fr.fr_pidp = &pid; 178 error = fork1(td, &fr); 179 if (error == 0) { 180 td->td_retval[0] = pid; 181 td->td_retval[1] = 0; 182 } 183 return (error); 184 } 185 186 int nprocs = 1; /* process 0 */ 187 int lastpid = 0; 188 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 189 "Last used PID"); 190 191 /* 192 * Random component to lastpid generation. We mix in a random factor to make 193 * it a little harder to predict. We sanity check the modulus value to avoid 194 * doing it in critical paths. Don't let it be too small or we pointlessly 195 * waste randomness entropy, and don't let it be impossibly large. Using a 196 * modulus that is too big causes a LOT more process table scans and slows 197 * down fork processing as the pidchecked caching is defeated. 198 */ 199 static int randompid = 0; 200 201 static int 202 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 203 { 204 int error, pid; 205 206 error = sysctl_wire_old_buffer(req, sizeof(int)); 207 if (error != 0) 208 return(error); 209 sx_xlock(&allproc_lock); 210 pid = randompid; 211 error = sysctl_handle_int(oidp, &pid, 0, req); 212 if (error == 0 && req->newptr != NULL) { 213 if (pid == 0) 214 randompid = 0; 215 else if (pid == 1) 216 /* generate a random PID modulus between 100 and 1123 */ 217 randompid = 100 + arc4random() % 1024; 218 else if (pid < 0 || pid > pid_max - 100) 219 /* out of range */ 220 randompid = pid_max - 100; 221 else if (pid < 100) 222 /* Make it reasonable */ 223 randompid = 100; 224 else 225 randompid = pid; 226 } 227 sx_xunlock(&allproc_lock); 228 return (error); 229 } 230 231 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 232 0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value"); 233 234 static int 235 fork_findpid(int flags) 236 { 237 struct proc *p; 238 int trypid; 239 static int pidchecked = 0; 240 241 /* 242 * Requires allproc_lock in order to iterate over the list 243 * of processes, and proctree_lock to access p_pgrp. 244 */ 245 sx_assert(&allproc_lock, SX_LOCKED); 246 sx_assert(&proctree_lock, SX_LOCKED); 247 248 /* 249 * Find an unused process ID. We remember a range of unused IDs 250 * ready to use (from lastpid+1 through pidchecked-1). 251 * 252 * If RFHIGHPID is set (used during system boot), do not allocate 253 * low-numbered pids. 254 */ 255 trypid = lastpid + 1; 256 if (flags & RFHIGHPID) { 257 if (trypid < 10) 258 trypid = 10; 259 } else { 260 if (randompid) 261 trypid += arc4random() % randompid; 262 } 263 retry: 264 /* 265 * If the process ID prototype has wrapped around, 266 * restart somewhat above 0, as the low-numbered procs 267 * tend to include daemons that don't exit. 268 */ 269 if (trypid >= pid_max) { 270 trypid = trypid % pid_max; 271 if (trypid < 100) 272 trypid += 100; 273 pidchecked = 0; 274 } 275 if (trypid >= pidchecked) { 276 int doingzomb = 0; 277 278 pidchecked = PID_MAX; 279 /* 280 * Scan the active and zombie procs to check whether this pid 281 * is in use. Remember the lowest pid that's greater 282 * than trypid, so we can avoid checking for a while. 283 * 284 * Avoid reuse of the process group id, session id or 285 * the reaper subtree id. Note that for process group 286 * and sessions, the amount of reserved pids is 287 * limited by process limit. For the subtree ids, the 288 * id is kept reserved only while there is a 289 * non-reaped process in the subtree, so amount of 290 * reserved pids is limited by process limit times 291 * two. 292 */ 293 p = LIST_FIRST(&allproc); 294 again: 295 for (; p != NULL; p = LIST_NEXT(p, p_list)) { 296 while (p->p_pid == trypid || 297 p->p_reapsubtree == trypid || 298 (p->p_pgrp != NULL && 299 (p->p_pgrp->pg_id == trypid || 300 (p->p_session != NULL && 301 p->p_session->s_sid == trypid)))) { 302 trypid++; 303 if (trypid >= pidchecked) 304 goto retry; 305 } 306 if (p->p_pid > trypid && pidchecked > p->p_pid) 307 pidchecked = p->p_pid; 308 if (p->p_pgrp != NULL) { 309 if (p->p_pgrp->pg_id > trypid && 310 pidchecked > p->p_pgrp->pg_id) 311 pidchecked = p->p_pgrp->pg_id; 312 if (p->p_session != NULL && 313 p->p_session->s_sid > trypid && 314 pidchecked > p->p_session->s_sid) 315 pidchecked = p->p_session->s_sid; 316 } 317 } 318 if (!doingzomb) { 319 doingzomb = 1; 320 p = LIST_FIRST(&zombproc); 321 goto again; 322 } 323 } 324 325 /* 326 * RFHIGHPID does not mess with the lastpid counter during boot. 327 */ 328 if (flags & RFHIGHPID) 329 pidchecked = 0; 330 else 331 lastpid = trypid; 332 333 return (trypid); 334 } 335 336 static int 337 fork_norfproc(struct thread *td, int flags) 338 { 339 int error; 340 struct proc *p1; 341 342 KASSERT((flags & RFPROC) == 0, 343 ("fork_norfproc called with RFPROC set")); 344 p1 = td->td_proc; 345 346 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 347 (flags & (RFCFDG | RFFDG))) { 348 PROC_LOCK(p1); 349 if (thread_single(p1, SINGLE_BOUNDARY)) { 350 PROC_UNLOCK(p1); 351 return (ERESTART); 352 } 353 PROC_UNLOCK(p1); 354 } 355 356 error = vm_forkproc(td, NULL, NULL, NULL, flags); 357 if (error) 358 goto fail; 359 360 /* 361 * Close all file descriptors. 362 */ 363 if (flags & RFCFDG) { 364 struct filedesc *fdtmp; 365 fdtmp = fdinit(td->td_proc->p_fd, false); 366 fdescfree(td); 367 p1->p_fd = fdtmp; 368 } 369 370 /* 371 * Unshare file descriptors (from parent). 372 */ 373 if (flags & RFFDG) 374 fdunshare(td); 375 376 fail: 377 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 378 (flags & (RFCFDG | RFFDG))) { 379 PROC_LOCK(p1); 380 thread_single_end(p1, SINGLE_BOUNDARY); 381 PROC_UNLOCK(p1); 382 } 383 return (error); 384 } 385 386 static void 387 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2, 388 struct vmspace *vm2, struct file *fp_procdesc) 389 { 390 struct proc *p1, *pptr; 391 int trypid; 392 struct filedesc *fd; 393 struct filedesc_to_leader *fdtol; 394 struct sigacts *newsigacts; 395 396 sx_assert(&proctree_lock, SX_SLOCKED); 397 sx_assert(&allproc_lock, SX_XLOCKED); 398 399 p1 = td->td_proc; 400 401 trypid = fork_findpid(fr->fr_flags); 402 403 sx_sunlock(&proctree_lock); 404 405 p2->p_state = PRS_NEW; /* protect against others */ 406 p2->p_pid = trypid; 407 AUDIT_ARG_PID(p2->p_pid); 408 LIST_INSERT_HEAD(&allproc, p2, p_list); 409 allproc_gen++; 410 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); 411 tidhash_add(td2); 412 PROC_LOCK(p2); 413 PROC_LOCK(p1); 414 415 sx_xunlock(&allproc_lock); 416 417 bcopy(&p1->p_startcopy, &p2->p_startcopy, 418 __rangeof(struct proc, p_startcopy, p_endcopy)); 419 pargs_hold(p2->p_args); 420 421 PROC_UNLOCK(p1); 422 423 bzero(&p2->p_startzero, 424 __rangeof(struct proc, p_startzero, p_endzero)); 425 426 /* Tell the prison that we exist. */ 427 prison_proc_hold(p2->p_ucred->cr_prison); 428 429 PROC_UNLOCK(p2); 430 431 /* 432 * Malloc things while we don't hold any locks. 433 */ 434 if (fr->fr_flags & RFSIGSHARE) 435 newsigacts = NULL; 436 else 437 newsigacts = sigacts_alloc(); 438 439 /* 440 * Copy filedesc. 441 */ 442 if (fr->fr_flags & RFCFDG) { 443 fd = fdinit(p1->p_fd, false); 444 fdtol = NULL; 445 } else if (fr->fr_flags & RFFDG) { 446 fd = fdcopy(p1->p_fd); 447 fdtol = NULL; 448 } else { 449 fd = fdshare(p1->p_fd); 450 if (p1->p_fdtol == NULL) 451 p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL, 452 p1->p_leader); 453 if ((fr->fr_flags & RFTHREAD) != 0) { 454 /* 455 * Shared file descriptor table, and shared 456 * process leaders. 457 */ 458 fdtol = p1->p_fdtol; 459 FILEDESC_XLOCK(p1->p_fd); 460 fdtol->fdl_refcount++; 461 FILEDESC_XUNLOCK(p1->p_fd); 462 } else { 463 /* 464 * Shared file descriptor table, and different 465 * process leaders. 466 */ 467 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, 468 p1->p_fd, p2); 469 } 470 } 471 /* 472 * Make a proc table entry for the new process. 473 * Start by zeroing the section of proc that is zero-initialized, 474 * then copy the section that is copied directly from the parent. 475 */ 476 477 PROC_LOCK(p2); 478 PROC_LOCK(p1); 479 480 bzero(&td2->td_startzero, 481 __rangeof(struct thread, td_startzero, td_endzero)); 482 483 bcopy(&td->td_startcopy, &td2->td_startcopy, 484 __rangeof(struct thread, td_startcopy, td_endcopy)); 485 486 bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name)); 487 td2->td_sigstk = td->td_sigstk; 488 td2->td_flags = TDF_INMEM; 489 td2->td_lend_user_pri = PRI_MAX; 490 491 #ifdef VIMAGE 492 td2->td_vnet = NULL; 493 td2->td_vnet_lpush = NULL; 494 #endif 495 496 /* 497 * Allow the scheduler to initialize the child. 498 */ 499 thread_lock(td); 500 sched_fork(td, td2); 501 thread_unlock(td); 502 503 /* 504 * Duplicate sub-structures as needed. 505 * Increase reference counts on shared objects. 506 */ 507 p2->p_flag = P_INMEM; 508 p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP); 509 p2->p_swtick = ticks; 510 if (p1->p_flag & P_PROFIL) 511 startprofclock(p2); 512 513 /* 514 * Whilst the proc lock is held, copy the VM domain data out 515 * using the VM domain method. 516 */ 517 vm_domain_policy_init(&p2->p_vm_dom_policy); 518 vm_domain_policy_localcopy(&p2->p_vm_dom_policy, 519 &p1->p_vm_dom_policy); 520 521 if (fr->fr_flags & RFSIGSHARE) { 522 p2->p_sigacts = sigacts_hold(p1->p_sigacts); 523 } else { 524 sigacts_copy(newsigacts, p1->p_sigacts); 525 p2->p_sigacts = newsigacts; 526 } 527 528 if (fr->fr_flags & RFTSIGZMB) 529 p2->p_sigparent = RFTSIGNUM(fr->fr_flags); 530 else if (fr->fr_flags & RFLINUXTHPN) 531 p2->p_sigparent = SIGUSR1; 532 else 533 p2->p_sigparent = SIGCHLD; 534 535 p2->p_textvp = p1->p_textvp; 536 p2->p_fd = fd; 537 p2->p_fdtol = fdtol; 538 539 if (p1->p_flag2 & P2_INHERIT_PROTECTED) { 540 p2->p_flag |= P_PROTECTED; 541 p2->p_flag2 |= P2_INHERIT_PROTECTED; 542 } 543 544 /* 545 * p_limit is copy-on-write. Bump its refcount. 546 */ 547 lim_fork(p1, p2); 548 549 thread_cow_get_proc(td2, p2); 550 551 pstats_fork(p1->p_stats, p2->p_stats); 552 553 PROC_UNLOCK(p1); 554 PROC_UNLOCK(p2); 555 556 /* Bump references to the text vnode (for procfs). */ 557 if (p2->p_textvp) 558 vrefact(p2->p_textvp); 559 560 /* 561 * Set up linkage for kernel based threading. 562 */ 563 if ((fr->fr_flags & RFTHREAD) != 0) { 564 mtx_lock(&ppeers_lock); 565 p2->p_peers = p1->p_peers; 566 p1->p_peers = p2; 567 p2->p_leader = p1->p_leader; 568 mtx_unlock(&ppeers_lock); 569 PROC_LOCK(p1->p_leader); 570 if ((p1->p_leader->p_flag & P_WEXIT) != 0) { 571 PROC_UNLOCK(p1->p_leader); 572 /* 573 * The task leader is exiting, so process p1 is 574 * going to be killed shortly. Since p1 obviously 575 * isn't dead yet, we know that the leader is either 576 * sending SIGKILL's to all the processes in this 577 * task or is sleeping waiting for all the peers to 578 * exit. We let p1 complete the fork, but we need 579 * to go ahead and kill the new process p2 since 580 * the task leader may not get a chance to send 581 * SIGKILL to it. We leave it on the list so that 582 * the task leader will wait for this new process 583 * to commit suicide. 584 */ 585 PROC_LOCK(p2); 586 kern_psignal(p2, SIGKILL); 587 PROC_UNLOCK(p2); 588 } else 589 PROC_UNLOCK(p1->p_leader); 590 } else { 591 p2->p_peers = NULL; 592 p2->p_leader = p2; 593 } 594 595 sx_xlock(&proctree_lock); 596 PGRP_LOCK(p1->p_pgrp); 597 PROC_LOCK(p2); 598 PROC_LOCK(p1); 599 600 /* 601 * Preserve some more flags in subprocess. P_PROFIL has already 602 * been preserved. 603 */ 604 p2->p_flag |= p1->p_flag & P_SUGID; 605 td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING; 606 SESS_LOCK(p1->p_session); 607 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) 608 p2->p_flag |= P_CONTROLT; 609 SESS_UNLOCK(p1->p_session); 610 if (fr->fr_flags & RFPPWAIT) 611 p2->p_flag |= P_PPWAIT; 612 613 p2->p_pgrp = p1->p_pgrp; 614 LIST_INSERT_AFTER(p1, p2, p_pglist); 615 PGRP_UNLOCK(p1->p_pgrp); 616 LIST_INIT(&p2->p_children); 617 LIST_INIT(&p2->p_orphans); 618 619 callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0); 620 621 /* 622 * If PF_FORK is set, the child process inherits the 623 * procfs ioctl flags from its parent. 624 */ 625 if (p1->p_pfsflags & PF_FORK) { 626 p2->p_stops = p1->p_stops; 627 p2->p_pfsflags = p1->p_pfsflags; 628 } 629 630 /* 631 * This begins the section where we must prevent the parent 632 * from being swapped. 633 */ 634 _PHOLD(p1); 635 PROC_UNLOCK(p1); 636 637 /* 638 * Attach the new process to its parent. 639 * 640 * If RFNOWAIT is set, the newly created process becomes a child 641 * of init. This effectively disassociates the child from the 642 * parent. 643 */ 644 if ((fr->fr_flags & RFNOWAIT) != 0) { 645 pptr = p1->p_reaper; 646 p2->p_reaper = pptr; 647 } else { 648 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ? 649 p1 : p1->p_reaper; 650 pptr = p1; 651 } 652 p2->p_pptr = pptr; 653 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); 654 LIST_INIT(&p2->p_reaplist); 655 LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling); 656 if (p2->p_reaper == p1) 657 p2->p_reapsubtree = p2->p_pid; 658 sx_xunlock(&proctree_lock); 659 660 /* Inform accounting that we have forked. */ 661 p2->p_acflag = AFORK; 662 PROC_UNLOCK(p2); 663 664 #ifdef KTRACE 665 ktrprocfork(p1, p2); 666 #endif 667 668 /* 669 * Finish creating the child process. It will return via a different 670 * execution path later. (ie: directly into user mode) 671 */ 672 vm_forkproc(td, p2, td2, vm2, fr->fr_flags); 673 674 if (fr->fr_flags == (RFFDG | RFPROC)) { 675 VM_CNT_INC(v_forks); 676 VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize + 677 p2->p_vmspace->vm_ssize); 678 } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { 679 VM_CNT_INC(v_vforks); 680 VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize + 681 p2->p_vmspace->vm_ssize); 682 } else if (p1 == &proc0) { 683 VM_CNT_INC(v_kthreads); 684 VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize + 685 p2->p_vmspace->vm_ssize); 686 } else { 687 VM_CNT_INC(v_rforks); 688 VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize + 689 p2->p_vmspace->vm_ssize); 690 } 691 692 /* 693 * Associate the process descriptor with the process before anything 694 * can happen that might cause that process to need the descriptor. 695 * However, don't do this until after fork(2) can no longer fail. 696 */ 697 if (fr->fr_flags & RFPROCDESC) 698 procdesc_new(p2, fr->fr_pd_flags); 699 700 /* 701 * Both processes are set up, now check if any loadable modules want 702 * to adjust anything. 703 */ 704 EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags); 705 706 /* 707 * Set the child start time and mark the process as being complete. 708 */ 709 PROC_LOCK(p2); 710 PROC_LOCK(p1); 711 microuptime(&p2->p_stats->p_start); 712 PROC_SLOCK(p2); 713 p2->p_state = PRS_NORMAL; 714 PROC_SUNLOCK(p2); 715 716 #ifdef KDTRACE_HOOKS 717 /* 718 * Tell the DTrace fasttrap provider about the new process so that any 719 * tracepoints inherited from the parent can be removed. We have to do 720 * this only after p_state is PRS_NORMAL since the fasttrap module will 721 * use pfind() later on. 722 */ 723 if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork) 724 dtrace_fasttrap_fork(p1, p2); 725 #endif 726 /* 727 * Hold the process so that it cannot exit after we make it runnable, 728 * but before we wait for the debugger. 729 */ 730 _PHOLD(p2); 731 if (p1->p_ptevents & PTRACE_FORK) { 732 /* 733 * Arrange for debugger to receive the fork event. 734 * 735 * We can report PL_FLAG_FORKED regardless of 736 * P_FOLLOWFORK settings, but it does not make a sense 737 * for runaway child. 738 */ 739 td->td_dbgflags |= TDB_FORK; 740 td->td_dbg_forked = p2->p_pid; 741 td2->td_dbgflags |= TDB_STOPATFORK; 742 } 743 if (fr->fr_flags & RFPPWAIT) { 744 td->td_pflags |= TDP_RFPPWAIT; 745 td->td_rfppwait_p = p2; 746 td->td_dbgflags |= TDB_VFORK; 747 } 748 PROC_UNLOCK(p2); 749 750 /* 751 * Now can be swapped. 752 */ 753 _PRELE(p1); 754 PROC_UNLOCK(p1); 755 756 /* 757 * Tell any interested parties about the new process. 758 */ 759 knote_fork(p1->p_klist, p2->p_pid); 760 SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags); 761 762 if (fr->fr_flags & RFPROCDESC) { 763 procdesc_finit(p2->p_procdesc, fp_procdesc); 764 fdrop(fp_procdesc, td); 765 } 766 767 if ((fr->fr_flags & RFSTOPPED) == 0) { 768 /* 769 * If RFSTOPPED not requested, make child runnable and 770 * add to run queue. 771 */ 772 thread_lock(td2); 773 TD_SET_CAN_RUN(td2); 774 sched_add(td2, SRQ_BORING); 775 thread_unlock(td2); 776 if (fr->fr_pidp != NULL) 777 *fr->fr_pidp = p2->p_pid; 778 } else { 779 *fr->fr_procp = p2; 780 } 781 782 PROC_LOCK(p2); 783 /* 784 * Wait until debugger is attached to child. 785 */ 786 while (td2->td_proc == p2 && (td2->td_dbgflags & TDB_STOPATFORK) != 0) 787 cv_wait(&p2->p_dbgwait, &p2->p_mtx); 788 _PRELE(p2); 789 racct_proc_fork_done(p2); 790 PROC_UNLOCK(p2); 791 } 792 793 int 794 fork1(struct thread *td, struct fork_req *fr) 795 { 796 struct proc *p1, *newproc; 797 struct thread *td2; 798 struct vmspace *vm2; 799 struct file *fp_procdesc; 800 vm_ooffset_t mem_charged; 801 int error, nprocs_new, ok; 802 static int curfail; 803 static struct timeval lastfail; 804 int flags, pages; 805 806 flags = fr->fr_flags; 807 pages = fr->fr_pages; 808 809 if ((flags & RFSTOPPED) != 0) 810 MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL); 811 else 812 MPASS(fr->fr_procp == NULL); 813 814 /* Check for the undefined or unimplemented flags. */ 815 if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0) 816 return (EINVAL); 817 818 /* Signal value requires RFTSIGZMB. */ 819 if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0) 820 return (EINVAL); 821 822 /* Can't copy and clear. */ 823 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) 824 return (EINVAL); 825 826 /* Check the validity of the signal number. */ 827 if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG) 828 return (EINVAL); 829 830 if ((flags & RFPROCDESC) != 0) { 831 /* Can't not create a process yet get a process descriptor. */ 832 if ((flags & RFPROC) == 0) 833 return (EINVAL); 834 835 /* Must provide a place to put a procdesc if creating one. */ 836 if (fr->fr_pd_fd == NULL) 837 return (EINVAL); 838 839 /* Check if we are using supported flags. */ 840 if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0) 841 return (EINVAL); 842 } 843 844 p1 = td->td_proc; 845 846 /* 847 * Here we don't create a new process, but we divorce 848 * certain parts of a process from itself. 849 */ 850 if ((flags & RFPROC) == 0) { 851 if (fr->fr_procp != NULL) 852 *fr->fr_procp = NULL; 853 else if (fr->fr_pidp != NULL) 854 *fr->fr_pidp = 0; 855 return (fork_norfproc(td, flags)); 856 } 857 858 fp_procdesc = NULL; 859 newproc = NULL; 860 vm2 = NULL; 861 862 /* 863 * Increment the nprocs resource before allocations occur. 864 * Although process entries are dynamically created, we still 865 * keep a global limit on the maximum number we will 866 * create. There are hard-limits as to the number of processes 867 * that can run, established by the KVA and memory usage for 868 * the process data. 869 * 870 * Don't allow a nonprivileged user to use the last ten 871 * processes; don't let root exceed the limit. 872 */ 873 nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1; 874 if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred, 875 PRIV_MAXPROC, 0) != 0) || nprocs_new >= maxproc) { 876 error = EAGAIN; 877 sx_xlock(&allproc_lock); 878 if (ppsratecheck(&lastfail, &curfail, 1)) { 879 printf("maxproc limit exceeded by uid %u (pid %d); " 880 "see tuning(7) and login.conf(5)\n", 881 td->td_ucred->cr_ruid, p1->p_pid); 882 } 883 sx_xunlock(&allproc_lock); 884 goto fail2; 885 } 886 887 /* 888 * If required, create a process descriptor in the parent first; we 889 * will abandon it if something goes wrong. We don't finit() until 890 * later. 891 */ 892 if (flags & RFPROCDESC) { 893 error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd, 894 fr->fr_pd_flags, fr->fr_pd_fcaps); 895 if (error != 0) 896 goto fail2; 897 } 898 899 mem_charged = 0; 900 if (pages == 0) 901 pages = kstack_pages; 902 /* Allocate new proc. */ 903 newproc = uma_zalloc(proc_zone, M_WAITOK); 904 td2 = FIRST_THREAD_IN_PROC(newproc); 905 if (td2 == NULL) { 906 td2 = thread_alloc(pages); 907 if (td2 == NULL) { 908 error = ENOMEM; 909 goto fail2; 910 } 911 proc_linkup(newproc, td2); 912 } else { 913 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) { 914 if (td2->td_kstack != 0) 915 vm_thread_dispose(td2); 916 if (!thread_alloc_stack(td2, pages)) { 917 error = ENOMEM; 918 goto fail2; 919 } 920 } 921 } 922 923 if ((flags & RFMEM) == 0) { 924 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged); 925 if (vm2 == NULL) { 926 error = ENOMEM; 927 goto fail2; 928 } 929 if (!swap_reserve(mem_charged)) { 930 /* 931 * The swap reservation failed. The accounting 932 * from the entries of the copied vm2 will be 933 * subtracted in vmspace_free(), so force the 934 * reservation there. 935 */ 936 swap_reserve_force(mem_charged); 937 error = ENOMEM; 938 goto fail2; 939 } 940 } else 941 vm2 = NULL; 942 943 /* 944 * XXX: This is ugly; when we copy resource usage, we need to bump 945 * per-cred resource counters. 946 */ 947 proc_set_cred_init(newproc, crhold(td->td_ucred)); 948 949 /* 950 * Initialize resource accounting for the child process. 951 */ 952 error = racct_proc_fork(p1, newproc); 953 if (error != 0) { 954 error = EAGAIN; 955 goto fail1; 956 } 957 958 #ifdef MAC 959 mac_proc_init(newproc); 960 #endif 961 newproc->p_klist = knlist_alloc(&newproc->p_mtx); 962 STAILQ_INIT(&newproc->p_ktr); 963 964 /* We have to lock the process tree while we look for a pid. */ 965 sx_slock(&proctree_lock); 966 sx_xlock(&allproc_lock); 967 968 /* 969 * Increment the count of procs running with this uid. Don't allow 970 * a nonprivileged user to exceed their current limit. 971 * 972 * XXXRW: Can we avoid privilege here if it's not needed? 973 */ 974 error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0); 975 if (error == 0) 976 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0); 977 else { 978 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 979 lim_cur(td, RLIMIT_NPROC)); 980 } 981 if (ok) { 982 do_fork(td, fr, newproc, td2, vm2, fp_procdesc); 983 return (0); 984 } 985 986 error = EAGAIN; 987 sx_sunlock(&proctree_lock); 988 sx_xunlock(&allproc_lock); 989 #ifdef MAC 990 mac_proc_destroy(newproc); 991 #endif 992 racct_proc_exit(newproc); 993 fail1: 994 crfree(newproc->p_ucred); 995 newproc->p_ucred = NULL; 996 fail2: 997 if (vm2 != NULL) 998 vmspace_free(vm2); 999 uma_zfree(proc_zone, newproc); 1000 if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) { 1001 fdclose(td, fp_procdesc, *fr->fr_pd_fd); 1002 fdrop(fp_procdesc, td); 1003 } 1004 atomic_add_int(&nprocs, -1); 1005 pause("fork", hz / 2); 1006 return (error); 1007 } 1008 1009 /* 1010 * Handle the return of a child process from fork1(). This function 1011 * is called from the MD fork_trampoline() entry point. 1012 */ 1013 void 1014 fork_exit(void (*callout)(void *, struct trapframe *), void *arg, 1015 struct trapframe *frame) 1016 { 1017 struct proc *p; 1018 struct thread *td; 1019 struct thread *dtd; 1020 1021 td = curthread; 1022 p = td->td_proc; 1023 KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new")); 1024 1025 CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)", 1026 td, td_get_sched(td), p->p_pid, td->td_name); 1027 1028 sched_fork_exit(td); 1029 /* 1030 * Processes normally resume in mi_switch() after being 1031 * cpu_switch()'ed to, but when children start up they arrive here 1032 * instead, so we must do much the same things as mi_switch() would. 1033 */ 1034 if ((dtd = PCPU_GET(deadthread))) { 1035 PCPU_SET(deadthread, NULL); 1036 thread_stash(dtd); 1037 } 1038 thread_unlock(td); 1039 1040 /* 1041 * cpu_fork_kthread_handler intercepts this function call to 1042 * have this call a non-return function to stay in kernel mode. 1043 * initproc has its own fork handler, but it does return. 1044 */ 1045 KASSERT(callout != NULL, ("NULL callout in fork_exit")); 1046 callout(arg, frame); 1047 1048 /* 1049 * Check if a kernel thread misbehaved and returned from its main 1050 * function. 1051 */ 1052 if (p->p_flag & P_KPROC) { 1053 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n", 1054 td->td_name, p->p_pid); 1055 kthread_exit(); 1056 } 1057 mtx_assert(&Giant, MA_NOTOWNED); 1058 1059 if (p->p_sysent->sv_schedtail != NULL) 1060 (p->p_sysent->sv_schedtail)(td); 1061 td->td_pflags &= ~TDP_FORKING; 1062 } 1063 1064 /* 1065 * Simplified back end of syscall(), used when returning from fork() 1066 * directly into user mode. This function is passed in to fork_exit() 1067 * as the first parameter and is called when returning to a new 1068 * userland process. 1069 */ 1070 void 1071 fork_return(struct thread *td, struct trapframe *frame) 1072 { 1073 struct proc *p, *dbg; 1074 1075 p = td->td_proc; 1076 if (td->td_dbgflags & TDB_STOPATFORK) { 1077 sx_xlock(&proctree_lock); 1078 PROC_LOCK(p); 1079 if (p->p_pptr->p_ptevents & PTRACE_FORK) { 1080 /* 1081 * If debugger still wants auto-attach for the 1082 * parent's children, do it now. 1083 */ 1084 dbg = p->p_pptr->p_pptr; 1085 proc_set_traced(p, true); 1086 CTR2(KTR_PTRACE, 1087 "fork_return: attaching to new child pid %d: oppid %d", 1088 p->p_pid, p->p_oppid); 1089 proc_reparent(p, dbg); 1090 sx_xunlock(&proctree_lock); 1091 td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP; 1092 ptracestop(td, SIGSTOP, NULL); 1093 td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX); 1094 } else { 1095 /* 1096 * ... otherwise clear the request. 1097 */ 1098 sx_xunlock(&proctree_lock); 1099 td->td_dbgflags &= ~TDB_STOPATFORK; 1100 cv_broadcast(&p->p_dbgwait); 1101 } 1102 PROC_UNLOCK(p); 1103 } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) { 1104 /* 1105 * This is the start of a new thread in a traced 1106 * process. Report a system call exit event. 1107 */ 1108 PROC_LOCK(p); 1109 td->td_dbgflags |= TDB_SCX; 1110 _STOPEVENT(p, S_SCX, td->td_sa.code); 1111 if ((p->p_ptevents & PTRACE_SCX) != 0 || 1112 (td->td_dbgflags & TDB_BORN) != 0) 1113 ptracestop(td, SIGTRAP, NULL); 1114 td->td_dbgflags &= ~(TDB_SCX | TDB_BORN); 1115 PROC_UNLOCK(p); 1116 } 1117 1118 userret(td, frame); 1119 1120 #ifdef KTRACE 1121 if (KTRPOINT(td, KTR_SYSRET)) 1122 ktrsysret(SYS_fork, 0, 0); 1123 #endif 1124 } 1125