xref: /freebsd/sys/kern/kern_fork.c (revision 8e6e287f8d1f4f58bb94cc71b3b46c543569f83f)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_kstack_pages.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysproto.h>
46 #include <sys/eventhandler.h>
47 #include <sys/fcntl.h>
48 #include <sys/filedesc.h>
49 #include <sys/jail.h>
50 #include <sys/kernel.h>
51 #include <sys/kthread.h>
52 #include <sys/sysctl.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mutex.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/procdesc.h>
59 #include <sys/pioctl.h>
60 #include <sys/ptrace.h>
61 #include <sys/racct.h>
62 #include <sys/resourcevar.h>
63 #include <sys/sched.h>
64 #include <sys/syscall.h>
65 #include <sys/vmmeter.h>
66 #include <sys/vnode.h>
67 #include <sys/acct.h>
68 #include <sys/ktr.h>
69 #include <sys/ktrace.h>
70 #include <sys/unistd.h>
71 #include <sys/sdt.h>
72 #include <sys/sx.h>
73 #include <sys/sysent.h>
74 #include <sys/signalvar.h>
75 
76 #include <security/audit/audit.h>
77 #include <security/mac/mac_framework.h>
78 
79 #include <vm/vm.h>
80 #include <vm/pmap.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_extern.h>
83 #include <vm/uma.h>
84 #include <vm/vm_domain.h>
85 
86 #ifdef KDTRACE_HOOKS
87 #include <sys/dtrace_bsd.h>
88 dtrace_fork_func_t	dtrace_fasttrap_fork;
89 #endif
90 
91 SDT_PROVIDER_DECLARE(proc);
92 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
93 
94 #ifndef _SYS_SYSPROTO_H_
95 struct fork_args {
96 	int     dummy;
97 };
98 #endif
99 
100 EVENTHANDLER_LIST_DECLARE(process_fork);
101 
102 /* ARGSUSED */
103 int
104 sys_fork(struct thread *td, struct fork_args *uap)
105 {
106 	struct fork_req fr;
107 	int error, pid;
108 
109 	bzero(&fr, sizeof(fr));
110 	fr.fr_flags = RFFDG | RFPROC;
111 	fr.fr_pidp = &pid;
112 	error = fork1(td, &fr);
113 	if (error == 0) {
114 		td->td_retval[0] = pid;
115 		td->td_retval[1] = 0;
116 	}
117 	return (error);
118 }
119 
120 /* ARGUSED */
121 int
122 sys_pdfork(struct thread *td, struct pdfork_args *uap)
123 {
124 	struct fork_req fr;
125 	int error, fd, pid;
126 
127 	bzero(&fr, sizeof(fr));
128 	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
129 	fr.fr_pidp = &pid;
130 	fr.fr_pd_fd = &fd;
131 	fr.fr_pd_flags = uap->flags;
132 	/*
133 	 * It is necessary to return fd by reference because 0 is a valid file
134 	 * descriptor number, and the child needs to be able to distinguish
135 	 * itself from the parent using the return value.
136 	 */
137 	error = fork1(td, &fr);
138 	if (error == 0) {
139 		td->td_retval[0] = pid;
140 		td->td_retval[1] = 0;
141 		error = copyout(&fd, uap->fdp, sizeof(fd));
142 	}
143 	return (error);
144 }
145 
146 /* ARGSUSED */
147 int
148 sys_vfork(struct thread *td, struct vfork_args *uap)
149 {
150 	struct fork_req fr;
151 	int error, pid;
152 
153 	bzero(&fr, sizeof(fr));
154 	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
155 	fr.fr_pidp = &pid;
156 	error = fork1(td, &fr);
157 	if (error == 0) {
158 		td->td_retval[0] = pid;
159 		td->td_retval[1] = 0;
160 	}
161 	return (error);
162 }
163 
164 int
165 sys_rfork(struct thread *td, struct rfork_args *uap)
166 {
167 	struct fork_req fr;
168 	int error, pid;
169 
170 	/* Don't allow kernel-only flags. */
171 	if ((uap->flags & RFKERNELONLY) != 0)
172 		return (EINVAL);
173 
174 	AUDIT_ARG_FFLAGS(uap->flags);
175 	bzero(&fr, sizeof(fr));
176 	fr.fr_flags = uap->flags;
177 	fr.fr_pidp = &pid;
178 	error = fork1(td, &fr);
179 	if (error == 0) {
180 		td->td_retval[0] = pid;
181 		td->td_retval[1] = 0;
182 	}
183 	return (error);
184 }
185 
186 int	nprocs = 1;		/* process 0 */
187 int	lastpid = 0;
188 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
189     "Last used PID");
190 
191 /*
192  * Random component to lastpid generation.  We mix in a random factor to make
193  * it a little harder to predict.  We sanity check the modulus value to avoid
194  * doing it in critical paths.  Don't let it be too small or we pointlessly
195  * waste randomness entropy, and don't let it be impossibly large.  Using a
196  * modulus that is too big causes a LOT more process table scans and slows
197  * down fork processing as the pidchecked caching is defeated.
198  */
199 static int randompid = 0;
200 
201 static int
202 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
203 {
204 	int error, pid;
205 
206 	error = sysctl_wire_old_buffer(req, sizeof(int));
207 	if (error != 0)
208 		return(error);
209 	sx_xlock(&allproc_lock);
210 	pid = randompid;
211 	error = sysctl_handle_int(oidp, &pid, 0, req);
212 	if (error == 0 && req->newptr != NULL) {
213 		if (pid == 0)
214 			randompid = 0;
215 		else if (pid == 1)
216 			/* generate a random PID modulus between 100 and 1123 */
217 			randompid = 100 + arc4random() % 1024;
218 		else if (pid < 0 || pid > pid_max - 100)
219 			/* out of range */
220 			randompid = pid_max - 100;
221 		else if (pid < 100)
222 			/* Make it reasonable */
223 			randompid = 100;
224 		else
225 			randompid = pid;
226 	}
227 	sx_xunlock(&allproc_lock);
228 	return (error);
229 }
230 
231 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
232     0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value");
233 
234 static int
235 fork_findpid(int flags)
236 {
237 	struct proc *p;
238 	int trypid;
239 	static int pidchecked = 0;
240 
241 	/*
242 	 * Requires allproc_lock in order to iterate over the list
243 	 * of processes, and proctree_lock to access p_pgrp.
244 	 */
245 	sx_assert(&allproc_lock, SX_LOCKED);
246 	sx_assert(&proctree_lock, SX_LOCKED);
247 
248 	/*
249 	 * Find an unused process ID.  We remember a range of unused IDs
250 	 * ready to use (from lastpid+1 through pidchecked-1).
251 	 *
252 	 * If RFHIGHPID is set (used during system boot), do not allocate
253 	 * low-numbered pids.
254 	 */
255 	trypid = lastpid + 1;
256 	if (flags & RFHIGHPID) {
257 		if (trypid < 10)
258 			trypid = 10;
259 	} else {
260 		if (randompid)
261 			trypid += arc4random() % randompid;
262 	}
263 retry:
264 	/*
265 	 * If the process ID prototype has wrapped around,
266 	 * restart somewhat above 0, as the low-numbered procs
267 	 * tend to include daemons that don't exit.
268 	 */
269 	if (trypid >= pid_max) {
270 		trypid = trypid % pid_max;
271 		if (trypid < 100)
272 			trypid += 100;
273 		pidchecked = 0;
274 	}
275 	if (trypid >= pidchecked) {
276 		int doingzomb = 0;
277 
278 		pidchecked = PID_MAX;
279 		/*
280 		 * Scan the active and zombie procs to check whether this pid
281 		 * is in use.  Remember the lowest pid that's greater
282 		 * than trypid, so we can avoid checking for a while.
283 		 *
284 		 * Avoid reuse of the process group id, session id or
285 		 * the reaper subtree id.  Note that for process group
286 		 * and sessions, the amount of reserved pids is
287 		 * limited by process limit.  For the subtree ids, the
288 		 * id is kept reserved only while there is a
289 		 * non-reaped process in the subtree, so amount of
290 		 * reserved pids is limited by process limit times
291 		 * two.
292 		 */
293 		p = LIST_FIRST(&allproc);
294 again:
295 		for (; p != NULL; p = LIST_NEXT(p, p_list)) {
296 			while (p->p_pid == trypid ||
297 			    p->p_reapsubtree == trypid ||
298 			    (p->p_pgrp != NULL &&
299 			    (p->p_pgrp->pg_id == trypid ||
300 			    (p->p_session != NULL &&
301 			    p->p_session->s_sid == trypid)))) {
302 				trypid++;
303 				if (trypid >= pidchecked)
304 					goto retry;
305 			}
306 			if (p->p_pid > trypid && pidchecked > p->p_pid)
307 				pidchecked = p->p_pid;
308 			if (p->p_pgrp != NULL) {
309 				if (p->p_pgrp->pg_id > trypid &&
310 				    pidchecked > p->p_pgrp->pg_id)
311 					pidchecked = p->p_pgrp->pg_id;
312 				if (p->p_session != NULL &&
313 				    p->p_session->s_sid > trypid &&
314 				    pidchecked > p->p_session->s_sid)
315 					pidchecked = p->p_session->s_sid;
316 			}
317 		}
318 		if (!doingzomb) {
319 			doingzomb = 1;
320 			p = LIST_FIRST(&zombproc);
321 			goto again;
322 		}
323 	}
324 
325 	/*
326 	 * RFHIGHPID does not mess with the lastpid counter during boot.
327 	 */
328 	if (flags & RFHIGHPID)
329 		pidchecked = 0;
330 	else
331 		lastpid = trypid;
332 
333 	return (trypid);
334 }
335 
336 static int
337 fork_norfproc(struct thread *td, int flags)
338 {
339 	int error;
340 	struct proc *p1;
341 
342 	KASSERT((flags & RFPROC) == 0,
343 	    ("fork_norfproc called with RFPROC set"));
344 	p1 = td->td_proc;
345 
346 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
347 	    (flags & (RFCFDG | RFFDG))) {
348 		PROC_LOCK(p1);
349 		if (thread_single(p1, SINGLE_BOUNDARY)) {
350 			PROC_UNLOCK(p1);
351 			return (ERESTART);
352 		}
353 		PROC_UNLOCK(p1);
354 	}
355 
356 	error = vm_forkproc(td, NULL, NULL, NULL, flags);
357 	if (error)
358 		goto fail;
359 
360 	/*
361 	 * Close all file descriptors.
362 	 */
363 	if (flags & RFCFDG) {
364 		struct filedesc *fdtmp;
365 		fdtmp = fdinit(td->td_proc->p_fd, false);
366 		fdescfree(td);
367 		p1->p_fd = fdtmp;
368 	}
369 
370 	/*
371 	 * Unshare file descriptors (from parent).
372 	 */
373 	if (flags & RFFDG)
374 		fdunshare(td);
375 
376 fail:
377 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
378 	    (flags & (RFCFDG | RFFDG))) {
379 		PROC_LOCK(p1);
380 		thread_single_end(p1, SINGLE_BOUNDARY);
381 		PROC_UNLOCK(p1);
382 	}
383 	return (error);
384 }
385 
386 static void
387 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
388     struct vmspace *vm2, struct file *fp_procdesc)
389 {
390 	struct proc *p1, *pptr;
391 	int trypid;
392 	struct filedesc *fd;
393 	struct filedesc_to_leader *fdtol;
394 	struct sigacts *newsigacts;
395 
396 	sx_assert(&proctree_lock, SX_SLOCKED);
397 	sx_assert(&allproc_lock, SX_XLOCKED);
398 
399 	p1 = td->td_proc;
400 
401 	trypid = fork_findpid(fr->fr_flags);
402 
403 	sx_sunlock(&proctree_lock);
404 
405 	p2->p_state = PRS_NEW;		/* protect against others */
406 	p2->p_pid = trypid;
407 	AUDIT_ARG_PID(p2->p_pid);
408 	LIST_INSERT_HEAD(&allproc, p2, p_list);
409 	allproc_gen++;
410 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
411 	tidhash_add(td2);
412 	PROC_LOCK(p2);
413 	PROC_LOCK(p1);
414 
415 	sx_xunlock(&allproc_lock);
416 
417 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
418 	    __rangeof(struct proc, p_startcopy, p_endcopy));
419 	pargs_hold(p2->p_args);
420 
421 	PROC_UNLOCK(p1);
422 
423 	bzero(&p2->p_startzero,
424 	    __rangeof(struct proc, p_startzero, p_endzero));
425 
426 	/* Tell the prison that we exist. */
427 	prison_proc_hold(p2->p_ucred->cr_prison);
428 
429 	PROC_UNLOCK(p2);
430 
431 	/*
432 	 * Malloc things while we don't hold any locks.
433 	 */
434 	if (fr->fr_flags & RFSIGSHARE)
435 		newsigacts = NULL;
436 	else
437 		newsigacts = sigacts_alloc();
438 
439 	/*
440 	 * Copy filedesc.
441 	 */
442 	if (fr->fr_flags & RFCFDG) {
443 		fd = fdinit(p1->p_fd, false);
444 		fdtol = NULL;
445 	} else if (fr->fr_flags & RFFDG) {
446 		fd = fdcopy(p1->p_fd);
447 		fdtol = NULL;
448 	} else {
449 		fd = fdshare(p1->p_fd);
450 		if (p1->p_fdtol == NULL)
451 			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
452 			    p1->p_leader);
453 		if ((fr->fr_flags & RFTHREAD) != 0) {
454 			/*
455 			 * Shared file descriptor table, and shared
456 			 * process leaders.
457 			 */
458 			fdtol = p1->p_fdtol;
459 			FILEDESC_XLOCK(p1->p_fd);
460 			fdtol->fdl_refcount++;
461 			FILEDESC_XUNLOCK(p1->p_fd);
462 		} else {
463 			/*
464 			 * Shared file descriptor table, and different
465 			 * process leaders.
466 			 */
467 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
468 			    p1->p_fd, p2);
469 		}
470 	}
471 	/*
472 	 * Make a proc table entry for the new process.
473 	 * Start by zeroing the section of proc that is zero-initialized,
474 	 * then copy the section that is copied directly from the parent.
475 	 */
476 
477 	PROC_LOCK(p2);
478 	PROC_LOCK(p1);
479 
480 	bzero(&td2->td_startzero,
481 	    __rangeof(struct thread, td_startzero, td_endzero));
482 
483 	bcopy(&td->td_startcopy, &td2->td_startcopy,
484 	    __rangeof(struct thread, td_startcopy, td_endcopy));
485 
486 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
487 	td2->td_sigstk = td->td_sigstk;
488 	td2->td_flags = TDF_INMEM;
489 	td2->td_lend_user_pri = PRI_MAX;
490 
491 #ifdef VIMAGE
492 	td2->td_vnet = NULL;
493 	td2->td_vnet_lpush = NULL;
494 #endif
495 
496 	/*
497 	 * Allow the scheduler to initialize the child.
498 	 */
499 	thread_lock(td);
500 	sched_fork(td, td2);
501 	thread_unlock(td);
502 
503 	/*
504 	 * Duplicate sub-structures as needed.
505 	 * Increase reference counts on shared objects.
506 	 */
507 	p2->p_flag = P_INMEM;
508 	p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP);
509 	p2->p_swtick = ticks;
510 	if (p1->p_flag & P_PROFIL)
511 		startprofclock(p2);
512 
513 	/*
514 	 * Whilst the proc lock is held, copy the VM domain data out
515 	 * using the VM domain method.
516 	 */
517 	vm_domain_policy_init(&p2->p_vm_dom_policy);
518 	vm_domain_policy_localcopy(&p2->p_vm_dom_policy,
519 	    &p1->p_vm_dom_policy);
520 
521 	if (fr->fr_flags & RFSIGSHARE) {
522 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
523 	} else {
524 		sigacts_copy(newsigacts, p1->p_sigacts);
525 		p2->p_sigacts = newsigacts;
526 	}
527 
528 	if (fr->fr_flags & RFTSIGZMB)
529 	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
530 	else if (fr->fr_flags & RFLINUXTHPN)
531 	        p2->p_sigparent = SIGUSR1;
532 	else
533 	        p2->p_sigparent = SIGCHLD;
534 
535 	p2->p_textvp = p1->p_textvp;
536 	p2->p_fd = fd;
537 	p2->p_fdtol = fdtol;
538 
539 	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
540 		p2->p_flag |= P_PROTECTED;
541 		p2->p_flag2 |= P2_INHERIT_PROTECTED;
542 	}
543 
544 	/*
545 	 * p_limit is copy-on-write.  Bump its refcount.
546 	 */
547 	lim_fork(p1, p2);
548 
549 	thread_cow_get_proc(td2, p2);
550 
551 	pstats_fork(p1->p_stats, p2->p_stats);
552 
553 	PROC_UNLOCK(p1);
554 	PROC_UNLOCK(p2);
555 
556 	/* Bump references to the text vnode (for procfs). */
557 	if (p2->p_textvp)
558 		vrefact(p2->p_textvp);
559 
560 	/*
561 	 * Set up linkage for kernel based threading.
562 	 */
563 	if ((fr->fr_flags & RFTHREAD) != 0) {
564 		mtx_lock(&ppeers_lock);
565 		p2->p_peers = p1->p_peers;
566 		p1->p_peers = p2;
567 		p2->p_leader = p1->p_leader;
568 		mtx_unlock(&ppeers_lock);
569 		PROC_LOCK(p1->p_leader);
570 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
571 			PROC_UNLOCK(p1->p_leader);
572 			/*
573 			 * The task leader is exiting, so process p1 is
574 			 * going to be killed shortly.  Since p1 obviously
575 			 * isn't dead yet, we know that the leader is either
576 			 * sending SIGKILL's to all the processes in this
577 			 * task or is sleeping waiting for all the peers to
578 			 * exit.  We let p1 complete the fork, but we need
579 			 * to go ahead and kill the new process p2 since
580 			 * the task leader may not get a chance to send
581 			 * SIGKILL to it.  We leave it on the list so that
582 			 * the task leader will wait for this new process
583 			 * to commit suicide.
584 			 */
585 			PROC_LOCK(p2);
586 			kern_psignal(p2, SIGKILL);
587 			PROC_UNLOCK(p2);
588 		} else
589 			PROC_UNLOCK(p1->p_leader);
590 	} else {
591 		p2->p_peers = NULL;
592 		p2->p_leader = p2;
593 	}
594 
595 	sx_xlock(&proctree_lock);
596 	PGRP_LOCK(p1->p_pgrp);
597 	PROC_LOCK(p2);
598 	PROC_LOCK(p1);
599 
600 	/*
601 	 * Preserve some more flags in subprocess.  P_PROFIL has already
602 	 * been preserved.
603 	 */
604 	p2->p_flag |= p1->p_flag & P_SUGID;
605 	td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING;
606 	SESS_LOCK(p1->p_session);
607 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
608 		p2->p_flag |= P_CONTROLT;
609 	SESS_UNLOCK(p1->p_session);
610 	if (fr->fr_flags & RFPPWAIT)
611 		p2->p_flag |= P_PPWAIT;
612 
613 	p2->p_pgrp = p1->p_pgrp;
614 	LIST_INSERT_AFTER(p1, p2, p_pglist);
615 	PGRP_UNLOCK(p1->p_pgrp);
616 	LIST_INIT(&p2->p_children);
617 	LIST_INIT(&p2->p_orphans);
618 
619 	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
620 
621 	/*
622 	 * If PF_FORK is set, the child process inherits the
623 	 * procfs ioctl flags from its parent.
624 	 */
625 	if (p1->p_pfsflags & PF_FORK) {
626 		p2->p_stops = p1->p_stops;
627 		p2->p_pfsflags = p1->p_pfsflags;
628 	}
629 
630 	/*
631 	 * This begins the section where we must prevent the parent
632 	 * from being swapped.
633 	 */
634 	_PHOLD(p1);
635 	PROC_UNLOCK(p1);
636 
637 	/*
638 	 * Attach the new process to its parent.
639 	 *
640 	 * If RFNOWAIT is set, the newly created process becomes a child
641 	 * of init.  This effectively disassociates the child from the
642 	 * parent.
643 	 */
644 	if ((fr->fr_flags & RFNOWAIT) != 0) {
645 		pptr = p1->p_reaper;
646 		p2->p_reaper = pptr;
647 	} else {
648 		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
649 		    p1 : p1->p_reaper;
650 		pptr = p1;
651 	}
652 	p2->p_pptr = pptr;
653 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
654 	LIST_INIT(&p2->p_reaplist);
655 	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
656 	if (p2->p_reaper == p1)
657 		p2->p_reapsubtree = p2->p_pid;
658 	sx_xunlock(&proctree_lock);
659 
660 	/* Inform accounting that we have forked. */
661 	p2->p_acflag = AFORK;
662 	PROC_UNLOCK(p2);
663 
664 #ifdef KTRACE
665 	ktrprocfork(p1, p2);
666 #endif
667 
668 	/*
669 	 * Finish creating the child process.  It will return via a different
670 	 * execution path later.  (ie: directly into user mode)
671 	 */
672 	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
673 
674 	if (fr->fr_flags == (RFFDG | RFPROC)) {
675 		VM_CNT_INC(v_forks);
676 		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
677 		    p2->p_vmspace->vm_ssize);
678 	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
679 		VM_CNT_INC(v_vforks);
680 		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
681 		    p2->p_vmspace->vm_ssize);
682 	} else if (p1 == &proc0) {
683 		VM_CNT_INC(v_kthreads);
684 		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
685 		    p2->p_vmspace->vm_ssize);
686 	} else {
687 		VM_CNT_INC(v_rforks);
688 		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
689 		    p2->p_vmspace->vm_ssize);
690 	}
691 
692 	/*
693 	 * Associate the process descriptor with the process before anything
694 	 * can happen that might cause that process to need the descriptor.
695 	 * However, don't do this until after fork(2) can no longer fail.
696 	 */
697 	if (fr->fr_flags & RFPROCDESC)
698 		procdesc_new(p2, fr->fr_pd_flags);
699 
700 	/*
701 	 * Both processes are set up, now check if any loadable modules want
702 	 * to adjust anything.
703 	 */
704 	EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
705 
706 	/*
707 	 * Set the child start time and mark the process as being complete.
708 	 */
709 	PROC_LOCK(p2);
710 	PROC_LOCK(p1);
711 	microuptime(&p2->p_stats->p_start);
712 	PROC_SLOCK(p2);
713 	p2->p_state = PRS_NORMAL;
714 	PROC_SUNLOCK(p2);
715 
716 #ifdef KDTRACE_HOOKS
717 	/*
718 	 * Tell the DTrace fasttrap provider about the new process so that any
719 	 * tracepoints inherited from the parent can be removed. We have to do
720 	 * this only after p_state is PRS_NORMAL since the fasttrap module will
721 	 * use pfind() later on.
722 	 */
723 	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
724 		dtrace_fasttrap_fork(p1, p2);
725 #endif
726 	/*
727 	 * Hold the process so that it cannot exit after we make it runnable,
728 	 * but before we wait for the debugger.
729 	 */
730 	_PHOLD(p2);
731 	if (p1->p_ptevents & PTRACE_FORK) {
732 		/*
733 		 * Arrange for debugger to receive the fork event.
734 		 *
735 		 * We can report PL_FLAG_FORKED regardless of
736 		 * P_FOLLOWFORK settings, but it does not make a sense
737 		 * for runaway child.
738 		 */
739 		td->td_dbgflags |= TDB_FORK;
740 		td->td_dbg_forked = p2->p_pid;
741 		td2->td_dbgflags |= TDB_STOPATFORK;
742 	}
743 	if (fr->fr_flags & RFPPWAIT) {
744 		td->td_pflags |= TDP_RFPPWAIT;
745 		td->td_rfppwait_p = p2;
746 		td->td_dbgflags |= TDB_VFORK;
747 	}
748 	PROC_UNLOCK(p2);
749 
750 	/*
751 	 * Now can be swapped.
752 	 */
753 	_PRELE(p1);
754 	PROC_UNLOCK(p1);
755 
756 	/*
757 	 * Tell any interested parties about the new process.
758 	 */
759 	knote_fork(p1->p_klist, p2->p_pid);
760 	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
761 
762 	if (fr->fr_flags & RFPROCDESC) {
763 		procdesc_finit(p2->p_procdesc, fp_procdesc);
764 		fdrop(fp_procdesc, td);
765 	}
766 
767 	if ((fr->fr_flags & RFSTOPPED) == 0) {
768 		/*
769 		 * If RFSTOPPED not requested, make child runnable and
770 		 * add to run queue.
771 		 */
772 		thread_lock(td2);
773 		TD_SET_CAN_RUN(td2);
774 		sched_add(td2, SRQ_BORING);
775 		thread_unlock(td2);
776 		if (fr->fr_pidp != NULL)
777 			*fr->fr_pidp = p2->p_pid;
778 	} else {
779 		*fr->fr_procp = p2;
780 	}
781 
782 	PROC_LOCK(p2);
783 	/*
784 	 * Wait until debugger is attached to child.
785 	 */
786 	while (td2->td_proc == p2 && (td2->td_dbgflags & TDB_STOPATFORK) != 0)
787 		cv_wait(&p2->p_dbgwait, &p2->p_mtx);
788 	_PRELE(p2);
789 	racct_proc_fork_done(p2);
790 	PROC_UNLOCK(p2);
791 }
792 
793 int
794 fork1(struct thread *td, struct fork_req *fr)
795 {
796 	struct proc *p1, *newproc;
797 	struct thread *td2;
798 	struct vmspace *vm2;
799 	struct file *fp_procdesc;
800 	vm_ooffset_t mem_charged;
801 	int error, nprocs_new, ok;
802 	static int curfail;
803 	static struct timeval lastfail;
804 	int flags, pages;
805 
806 	flags = fr->fr_flags;
807 	pages = fr->fr_pages;
808 
809 	if ((flags & RFSTOPPED) != 0)
810 		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
811 	else
812 		MPASS(fr->fr_procp == NULL);
813 
814 	/* Check for the undefined or unimplemented flags. */
815 	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
816 		return (EINVAL);
817 
818 	/* Signal value requires RFTSIGZMB. */
819 	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
820 		return (EINVAL);
821 
822 	/* Can't copy and clear. */
823 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
824 		return (EINVAL);
825 
826 	/* Check the validity of the signal number. */
827 	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
828 		return (EINVAL);
829 
830 	if ((flags & RFPROCDESC) != 0) {
831 		/* Can't not create a process yet get a process descriptor. */
832 		if ((flags & RFPROC) == 0)
833 			return (EINVAL);
834 
835 		/* Must provide a place to put a procdesc if creating one. */
836 		if (fr->fr_pd_fd == NULL)
837 			return (EINVAL);
838 
839 		/* Check if we are using supported flags. */
840 		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
841 			return (EINVAL);
842 	}
843 
844 	p1 = td->td_proc;
845 
846 	/*
847 	 * Here we don't create a new process, but we divorce
848 	 * certain parts of a process from itself.
849 	 */
850 	if ((flags & RFPROC) == 0) {
851 		if (fr->fr_procp != NULL)
852 			*fr->fr_procp = NULL;
853 		else if (fr->fr_pidp != NULL)
854 			*fr->fr_pidp = 0;
855 		return (fork_norfproc(td, flags));
856 	}
857 
858 	fp_procdesc = NULL;
859 	newproc = NULL;
860 	vm2 = NULL;
861 
862 	/*
863 	 * Increment the nprocs resource before allocations occur.
864 	 * Although process entries are dynamically created, we still
865 	 * keep a global limit on the maximum number we will
866 	 * create. There are hard-limits as to the number of processes
867 	 * that can run, established by the KVA and memory usage for
868 	 * the process data.
869 	 *
870 	 * Don't allow a nonprivileged user to use the last ten
871 	 * processes; don't let root exceed the limit.
872 	 */
873 	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
874 	if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred,
875 	    PRIV_MAXPROC, 0) != 0) || nprocs_new >= maxproc) {
876 		error = EAGAIN;
877 		sx_xlock(&allproc_lock);
878 		if (ppsratecheck(&lastfail, &curfail, 1)) {
879 			printf("maxproc limit exceeded by uid %u (pid %d); "
880 			    "see tuning(7) and login.conf(5)\n",
881 			    td->td_ucred->cr_ruid, p1->p_pid);
882 		}
883 		sx_xunlock(&allproc_lock);
884 		goto fail2;
885 	}
886 
887 	/*
888 	 * If required, create a process descriptor in the parent first; we
889 	 * will abandon it if something goes wrong. We don't finit() until
890 	 * later.
891 	 */
892 	if (flags & RFPROCDESC) {
893 		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
894 		    fr->fr_pd_flags, fr->fr_pd_fcaps);
895 		if (error != 0)
896 			goto fail2;
897 	}
898 
899 	mem_charged = 0;
900 	if (pages == 0)
901 		pages = kstack_pages;
902 	/* Allocate new proc. */
903 	newproc = uma_zalloc(proc_zone, M_WAITOK);
904 	td2 = FIRST_THREAD_IN_PROC(newproc);
905 	if (td2 == NULL) {
906 		td2 = thread_alloc(pages);
907 		if (td2 == NULL) {
908 			error = ENOMEM;
909 			goto fail2;
910 		}
911 		proc_linkup(newproc, td2);
912 	} else {
913 		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
914 			if (td2->td_kstack != 0)
915 				vm_thread_dispose(td2);
916 			if (!thread_alloc_stack(td2, pages)) {
917 				error = ENOMEM;
918 				goto fail2;
919 			}
920 		}
921 	}
922 
923 	if ((flags & RFMEM) == 0) {
924 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
925 		if (vm2 == NULL) {
926 			error = ENOMEM;
927 			goto fail2;
928 		}
929 		if (!swap_reserve(mem_charged)) {
930 			/*
931 			 * The swap reservation failed. The accounting
932 			 * from the entries of the copied vm2 will be
933 			 * subtracted in vmspace_free(), so force the
934 			 * reservation there.
935 			 */
936 			swap_reserve_force(mem_charged);
937 			error = ENOMEM;
938 			goto fail2;
939 		}
940 	} else
941 		vm2 = NULL;
942 
943 	/*
944 	 * XXX: This is ugly; when we copy resource usage, we need to bump
945 	 *      per-cred resource counters.
946 	 */
947 	proc_set_cred_init(newproc, crhold(td->td_ucred));
948 
949 	/*
950 	 * Initialize resource accounting for the child process.
951 	 */
952 	error = racct_proc_fork(p1, newproc);
953 	if (error != 0) {
954 		error = EAGAIN;
955 		goto fail1;
956 	}
957 
958 #ifdef MAC
959 	mac_proc_init(newproc);
960 #endif
961 	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
962 	STAILQ_INIT(&newproc->p_ktr);
963 
964 	/* We have to lock the process tree while we look for a pid. */
965 	sx_slock(&proctree_lock);
966 	sx_xlock(&allproc_lock);
967 
968 	/*
969 	 * Increment the count of procs running with this uid. Don't allow
970 	 * a nonprivileged user to exceed their current limit.
971 	 *
972 	 * XXXRW: Can we avoid privilege here if it's not needed?
973 	 */
974 	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
975 	if (error == 0)
976 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
977 	else {
978 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
979 		    lim_cur(td, RLIMIT_NPROC));
980 	}
981 	if (ok) {
982 		do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
983 		return (0);
984 	}
985 
986 	error = EAGAIN;
987 	sx_sunlock(&proctree_lock);
988 	sx_xunlock(&allproc_lock);
989 #ifdef MAC
990 	mac_proc_destroy(newproc);
991 #endif
992 	racct_proc_exit(newproc);
993 fail1:
994 	crfree(newproc->p_ucred);
995 	newproc->p_ucred = NULL;
996 fail2:
997 	if (vm2 != NULL)
998 		vmspace_free(vm2);
999 	uma_zfree(proc_zone, newproc);
1000 	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
1001 		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1002 		fdrop(fp_procdesc, td);
1003 	}
1004 	atomic_add_int(&nprocs, -1);
1005 	pause("fork", hz / 2);
1006 	return (error);
1007 }
1008 
1009 /*
1010  * Handle the return of a child process from fork1().  This function
1011  * is called from the MD fork_trampoline() entry point.
1012  */
1013 void
1014 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1015     struct trapframe *frame)
1016 {
1017 	struct proc *p;
1018 	struct thread *td;
1019 	struct thread *dtd;
1020 
1021 	td = curthread;
1022 	p = td->td_proc;
1023 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1024 
1025 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1026 	    td, td_get_sched(td), p->p_pid, td->td_name);
1027 
1028 	sched_fork_exit(td);
1029 	/*
1030 	* Processes normally resume in mi_switch() after being
1031 	* cpu_switch()'ed to, but when children start up they arrive here
1032 	* instead, so we must do much the same things as mi_switch() would.
1033 	*/
1034 	if ((dtd = PCPU_GET(deadthread))) {
1035 		PCPU_SET(deadthread, NULL);
1036 		thread_stash(dtd);
1037 	}
1038 	thread_unlock(td);
1039 
1040 	/*
1041 	 * cpu_fork_kthread_handler intercepts this function call to
1042 	 * have this call a non-return function to stay in kernel mode.
1043 	 * initproc has its own fork handler, but it does return.
1044 	 */
1045 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1046 	callout(arg, frame);
1047 
1048 	/*
1049 	 * Check if a kernel thread misbehaved and returned from its main
1050 	 * function.
1051 	 */
1052 	if (p->p_flag & P_KPROC) {
1053 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1054 		    td->td_name, p->p_pid);
1055 		kthread_exit();
1056 	}
1057 	mtx_assert(&Giant, MA_NOTOWNED);
1058 
1059 	if (p->p_sysent->sv_schedtail != NULL)
1060 		(p->p_sysent->sv_schedtail)(td);
1061 	td->td_pflags &= ~TDP_FORKING;
1062 }
1063 
1064 /*
1065  * Simplified back end of syscall(), used when returning from fork()
1066  * directly into user mode.  This function is passed in to fork_exit()
1067  * as the first parameter and is called when returning to a new
1068  * userland process.
1069  */
1070 void
1071 fork_return(struct thread *td, struct trapframe *frame)
1072 {
1073 	struct proc *p, *dbg;
1074 
1075 	p = td->td_proc;
1076 	if (td->td_dbgflags & TDB_STOPATFORK) {
1077 		sx_xlock(&proctree_lock);
1078 		PROC_LOCK(p);
1079 		if (p->p_pptr->p_ptevents & PTRACE_FORK) {
1080 			/*
1081 			 * If debugger still wants auto-attach for the
1082 			 * parent's children, do it now.
1083 			 */
1084 			dbg = p->p_pptr->p_pptr;
1085 			proc_set_traced(p, true);
1086 			CTR2(KTR_PTRACE,
1087 		    "fork_return: attaching to new child pid %d: oppid %d",
1088 			    p->p_pid, p->p_oppid);
1089 			proc_reparent(p, dbg);
1090 			sx_xunlock(&proctree_lock);
1091 			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1092 			ptracestop(td, SIGSTOP, NULL);
1093 			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1094 		} else {
1095 			/*
1096 			 * ... otherwise clear the request.
1097 			 */
1098 			sx_xunlock(&proctree_lock);
1099 			td->td_dbgflags &= ~TDB_STOPATFORK;
1100 			cv_broadcast(&p->p_dbgwait);
1101 		}
1102 		PROC_UNLOCK(p);
1103 	} else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
1104  		/*
1105 		 * This is the start of a new thread in a traced
1106 		 * process.  Report a system call exit event.
1107 		 */
1108 		PROC_LOCK(p);
1109 		td->td_dbgflags |= TDB_SCX;
1110 		_STOPEVENT(p, S_SCX, td->td_sa.code);
1111 		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1112 		    (td->td_dbgflags & TDB_BORN) != 0)
1113 			ptracestop(td, SIGTRAP, NULL);
1114 		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1115 		PROC_UNLOCK(p);
1116 	}
1117 
1118 	userret(td, frame);
1119 
1120 #ifdef KTRACE
1121 	if (KTRPOINT(td, KTR_SYSRET))
1122 		ktrsysret(SYS_fork, 0, 0);
1123 #endif
1124 }
1125