1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ktrace.h" 43 #include "opt_kstack_pages.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/bitstring.h> 48 #include <sys/sysproto.h> 49 #include <sys/eventhandler.h> 50 #include <sys/fcntl.h> 51 #include <sys/filedesc.h> 52 #include <sys/jail.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/sysctl.h> 56 #include <sys/lock.h> 57 #include <sys/malloc.h> 58 #include <sys/mutex.h> 59 #include <sys/priv.h> 60 #include <sys/proc.h> 61 #include <sys/procdesc.h> 62 #include <sys/pioctl.h> 63 #include <sys/ptrace.h> 64 #include <sys/racct.h> 65 #include <sys/resourcevar.h> 66 #include <sys/sched.h> 67 #include <sys/syscall.h> 68 #include <sys/vmmeter.h> 69 #include <sys/vnode.h> 70 #include <sys/acct.h> 71 #include <sys/ktr.h> 72 #include <sys/ktrace.h> 73 #include <sys/unistd.h> 74 #include <sys/sdt.h> 75 #include <sys/sx.h> 76 #include <sys/sysent.h> 77 #include <sys/signalvar.h> 78 79 #include <security/audit/audit.h> 80 #include <security/mac/mac_framework.h> 81 82 #include <vm/vm.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_extern.h> 86 #include <vm/uma.h> 87 88 #ifdef KDTRACE_HOOKS 89 #include <sys/dtrace_bsd.h> 90 dtrace_fork_func_t dtrace_fasttrap_fork; 91 #endif 92 93 SDT_PROVIDER_DECLARE(proc); 94 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int"); 95 96 #ifndef _SYS_SYSPROTO_H_ 97 struct fork_args { 98 int dummy; 99 }; 100 #endif 101 102 EVENTHANDLER_LIST_DECLARE(process_fork); 103 104 /* ARGSUSED */ 105 int 106 sys_fork(struct thread *td, struct fork_args *uap) 107 { 108 struct fork_req fr; 109 int error, pid; 110 111 bzero(&fr, sizeof(fr)); 112 fr.fr_flags = RFFDG | RFPROC; 113 fr.fr_pidp = &pid; 114 error = fork1(td, &fr); 115 if (error == 0) { 116 td->td_retval[0] = pid; 117 td->td_retval[1] = 0; 118 } 119 return (error); 120 } 121 122 /* ARGUSED */ 123 int 124 sys_pdfork(struct thread *td, struct pdfork_args *uap) 125 { 126 struct fork_req fr; 127 int error, fd, pid; 128 129 bzero(&fr, sizeof(fr)); 130 fr.fr_flags = RFFDG | RFPROC | RFPROCDESC; 131 fr.fr_pidp = &pid; 132 fr.fr_pd_fd = &fd; 133 fr.fr_pd_flags = uap->flags; 134 /* 135 * It is necessary to return fd by reference because 0 is a valid file 136 * descriptor number, and the child needs to be able to distinguish 137 * itself from the parent using the return value. 138 */ 139 error = fork1(td, &fr); 140 if (error == 0) { 141 td->td_retval[0] = pid; 142 td->td_retval[1] = 0; 143 error = copyout(&fd, uap->fdp, sizeof(fd)); 144 } 145 return (error); 146 } 147 148 /* ARGSUSED */ 149 int 150 sys_vfork(struct thread *td, struct vfork_args *uap) 151 { 152 struct fork_req fr; 153 int error, pid; 154 155 bzero(&fr, sizeof(fr)); 156 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; 157 fr.fr_pidp = &pid; 158 error = fork1(td, &fr); 159 if (error == 0) { 160 td->td_retval[0] = pid; 161 td->td_retval[1] = 0; 162 } 163 return (error); 164 } 165 166 int 167 sys_rfork(struct thread *td, struct rfork_args *uap) 168 { 169 struct fork_req fr; 170 int error, pid; 171 172 /* Don't allow kernel-only flags. */ 173 if ((uap->flags & RFKERNELONLY) != 0) 174 return (EINVAL); 175 176 AUDIT_ARG_FFLAGS(uap->flags); 177 bzero(&fr, sizeof(fr)); 178 fr.fr_flags = uap->flags; 179 fr.fr_pidp = &pid; 180 error = fork1(td, &fr); 181 if (error == 0) { 182 td->td_retval[0] = pid; 183 td->td_retval[1] = 0; 184 } 185 return (error); 186 } 187 188 int nprocs = 1; /* process 0 */ 189 int lastpid = 0; 190 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 191 "Last used PID"); 192 193 /* 194 * Random component to lastpid generation. We mix in a random factor to make 195 * it a little harder to predict. We sanity check the modulus value to avoid 196 * doing it in critical paths. Don't let it be too small or we pointlessly 197 * waste randomness entropy, and don't let it be impossibly large. Using a 198 * modulus that is too big causes a LOT more process table scans and slows 199 * down fork processing as the pidchecked caching is defeated. 200 */ 201 static int randompid = 0; 202 203 static int 204 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 205 { 206 int error, pid; 207 208 error = sysctl_wire_old_buffer(req, sizeof(int)); 209 if (error != 0) 210 return(error); 211 sx_xlock(&allproc_lock); 212 pid = randompid; 213 error = sysctl_handle_int(oidp, &pid, 0, req); 214 if (error == 0 && req->newptr != NULL) { 215 if (pid == 0) 216 randompid = 0; 217 else if (pid == 1) 218 /* generate a random PID modulus between 100 and 1123 */ 219 randompid = 100 + arc4random() % 1024; 220 else if (pid < 0 || pid > pid_max - 100) 221 /* out of range */ 222 randompid = pid_max - 100; 223 else if (pid < 100) 224 /* Make it reasonable */ 225 randompid = 100; 226 else 227 randompid = pid; 228 } 229 sx_xunlock(&allproc_lock); 230 return (error); 231 } 232 233 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 234 0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value"); 235 236 extern bitstr_t proc_id_pidmap; 237 extern bitstr_t proc_id_grpidmap; 238 extern bitstr_t proc_id_sessidmap; 239 extern bitstr_t proc_id_reapmap; 240 241 /* 242 * Find an unused process ID 243 * 244 * If RFHIGHPID is set (used during system boot), do not allocate 245 * low-numbered pids. 246 */ 247 static int 248 fork_findpid(int flags) 249 { 250 pid_t result; 251 int trypid; 252 253 trypid = lastpid + 1; 254 if (flags & RFHIGHPID) { 255 if (trypid < 10) 256 trypid = 10; 257 } else { 258 if (randompid) 259 trypid += arc4random() % randompid; 260 } 261 mtx_lock(&procid_lock); 262 retry: 263 /* 264 * If the process ID prototype has wrapped around, 265 * restart somewhat above 0, as the low-numbered procs 266 * tend to include daemons that don't exit. 267 */ 268 if (trypid >= pid_max) { 269 trypid = trypid % pid_max; 270 if (trypid < 100) 271 trypid += 100; 272 } 273 274 bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result); 275 if (result == -1) { 276 trypid = 100; 277 goto retry; 278 } 279 if (bit_test(&proc_id_grpidmap, result) || 280 bit_test(&proc_id_sessidmap, result) || 281 bit_test(&proc_id_reapmap, result)) { 282 trypid = result + 1; 283 goto retry; 284 } 285 286 /* 287 * RFHIGHPID does not mess with the lastpid counter during boot. 288 */ 289 if ((flags & RFHIGHPID) == 0) 290 lastpid = result; 291 292 bit_set(&proc_id_pidmap, result); 293 mtx_unlock(&procid_lock); 294 295 return (result); 296 } 297 298 static int 299 fork_norfproc(struct thread *td, int flags) 300 { 301 int error; 302 struct proc *p1; 303 304 KASSERT((flags & RFPROC) == 0, 305 ("fork_norfproc called with RFPROC set")); 306 p1 = td->td_proc; 307 308 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 309 (flags & (RFCFDG | RFFDG))) { 310 PROC_LOCK(p1); 311 if (thread_single(p1, SINGLE_BOUNDARY)) { 312 PROC_UNLOCK(p1); 313 return (ERESTART); 314 } 315 PROC_UNLOCK(p1); 316 } 317 318 error = vm_forkproc(td, NULL, NULL, NULL, flags); 319 if (error) 320 goto fail; 321 322 /* 323 * Close all file descriptors. 324 */ 325 if (flags & RFCFDG) { 326 struct filedesc *fdtmp; 327 fdtmp = fdinit(td->td_proc->p_fd, false); 328 fdescfree(td); 329 p1->p_fd = fdtmp; 330 } 331 332 /* 333 * Unshare file descriptors (from parent). 334 */ 335 if (flags & RFFDG) 336 fdunshare(td); 337 338 fail: 339 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 340 (flags & (RFCFDG | RFFDG))) { 341 PROC_LOCK(p1); 342 thread_single_end(p1, SINGLE_BOUNDARY); 343 PROC_UNLOCK(p1); 344 } 345 return (error); 346 } 347 348 static void 349 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2, 350 struct vmspace *vm2, struct file *fp_procdesc) 351 { 352 struct proc *p1, *pptr; 353 int trypid; 354 struct filedesc *fd; 355 struct filedesc_to_leader *fdtol; 356 struct sigacts *newsigacts; 357 358 sx_assert(&allproc_lock, SX_XLOCKED); 359 360 p1 = td->td_proc; 361 362 trypid = fork_findpid(fr->fr_flags); 363 p2->p_state = PRS_NEW; /* protect against others */ 364 p2->p_pid = trypid; 365 AUDIT_ARG_PID(p2->p_pid); 366 LIST_INSERT_HEAD(&allproc, p2, p_list); 367 allproc_gen++; 368 sx_xlock(PIDHASHLOCK(p2->p_pid)); 369 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); 370 sx_xunlock(PIDHASHLOCK(p2->p_pid)); 371 PROC_LOCK(p2); 372 PROC_LOCK(p1); 373 374 sx_xunlock(&allproc_lock); 375 376 bcopy(&p1->p_startcopy, &p2->p_startcopy, 377 __rangeof(struct proc, p_startcopy, p_endcopy)); 378 pargs_hold(p2->p_args); 379 380 PROC_UNLOCK(p1); 381 382 bzero(&p2->p_startzero, 383 __rangeof(struct proc, p_startzero, p_endzero)); 384 385 /* Tell the prison that we exist. */ 386 prison_proc_hold(p2->p_ucred->cr_prison); 387 388 PROC_UNLOCK(p2); 389 390 tidhash_add(td2); 391 392 /* 393 * Malloc things while we don't hold any locks. 394 */ 395 if (fr->fr_flags & RFSIGSHARE) 396 newsigacts = NULL; 397 else 398 newsigacts = sigacts_alloc(); 399 400 /* 401 * Copy filedesc. 402 */ 403 if (fr->fr_flags & RFCFDG) { 404 fd = fdinit(p1->p_fd, false); 405 fdtol = NULL; 406 } else if (fr->fr_flags & RFFDG) { 407 fd = fdcopy(p1->p_fd); 408 fdtol = NULL; 409 } else { 410 fd = fdshare(p1->p_fd); 411 if (p1->p_fdtol == NULL) 412 p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL, 413 p1->p_leader); 414 if ((fr->fr_flags & RFTHREAD) != 0) { 415 /* 416 * Shared file descriptor table, and shared 417 * process leaders. 418 */ 419 fdtol = p1->p_fdtol; 420 FILEDESC_XLOCK(p1->p_fd); 421 fdtol->fdl_refcount++; 422 FILEDESC_XUNLOCK(p1->p_fd); 423 } else { 424 /* 425 * Shared file descriptor table, and different 426 * process leaders. 427 */ 428 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, 429 p1->p_fd, p2); 430 } 431 } 432 /* 433 * Make a proc table entry for the new process. 434 * Start by zeroing the section of proc that is zero-initialized, 435 * then copy the section that is copied directly from the parent. 436 */ 437 438 PROC_LOCK(p2); 439 PROC_LOCK(p1); 440 441 bzero(&td2->td_startzero, 442 __rangeof(struct thread, td_startzero, td_endzero)); 443 444 bcopy(&td->td_startcopy, &td2->td_startcopy, 445 __rangeof(struct thread, td_startcopy, td_endcopy)); 446 447 bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name)); 448 td2->td_sigstk = td->td_sigstk; 449 td2->td_flags = TDF_INMEM; 450 td2->td_lend_user_pri = PRI_MAX; 451 452 #ifdef VIMAGE 453 td2->td_vnet = NULL; 454 td2->td_vnet_lpush = NULL; 455 #endif 456 457 /* 458 * Allow the scheduler to initialize the child. 459 */ 460 thread_lock(td); 461 sched_fork(td, td2); 462 thread_unlock(td); 463 464 /* 465 * Duplicate sub-structures as needed. 466 * Increase reference counts on shared objects. 467 */ 468 p2->p_flag = P_INMEM; 469 p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE | 470 P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP); 471 p2->p_swtick = ticks; 472 if (p1->p_flag & P_PROFIL) 473 startprofclock(p2); 474 475 if (fr->fr_flags & RFSIGSHARE) { 476 p2->p_sigacts = sigacts_hold(p1->p_sigacts); 477 } else { 478 sigacts_copy(newsigacts, p1->p_sigacts); 479 p2->p_sigacts = newsigacts; 480 } 481 482 if (fr->fr_flags & RFTSIGZMB) 483 p2->p_sigparent = RFTSIGNUM(fr->fr_flags); 484 else if (fr->fr_flags & RFLINUXTHPN) 485 p2->p_sigparent = SIGUSR1; 486 else 487 p2->p_sigparent = SIGCHLD; 488 489 p2->p_textvp = p1->p_textvp; 490 p2->p_fd = fd; 491 p2->p_fdtol = fdtol; 492 493 if (p1->p_flag2 & P2_INHERIT_PROTECTED) { 494 p2->p_flag |= P_PROTECTED; 495 p2->p_flag2 |= P2_INHERIT_PROTECTED; 496 } 497 498 /* 499 * p_limit is copy-on-write. Bump its refcount. 500 */ 501 lim_fork(p1, p2); 502 503 thread_cow_get_proc(td2, p2); 504 505 pstats_fork(p1->p_stats, p2->p_stats); 506 507 PROC_UNLOCK(p1); 508 PROC_UNLOCK(p2); 509 510 /* Bump references to the text vnode (for procfs). */ 511 if (p2->p_textvp) 512 vrefact(p2->p_textvp); 513 514 /* 515 * Set up linkage for kernel based threading. 516 */ 517 if ((fr->fr_flags & RFTHREAD) != 0) { 518 mtx_lock(&ppeers_lock); 519 p2->p_peers = p1->p_peers; 520 p1->p_peers = p2; 521 p2->p_leader = p1->p_leader; 522 mtx_unlock(&ppeers_lock); 523 PROC_LOCK(p1->p_leader); 524 if ((p1->p_leader->p_flag & P_WEXIT) != 0) { 525 PROC_UNLOCK(p1->p_leader); 526 /* 527 * The task leader is exiting, so process p1 is 528 * going to be killed shortly. Since p1 obviously 529 * isn't dead yet, we know that the leader is either 530 * sending SIGKILL's to all the processes in this 531 * task or is sleeping waiting for all the peers to 532 * exit. We let p1 complete the fork, but we need 533 * to go ahead and kill the new process p2 since 534 * the task leader may not get a chance to send 535 * SIGKILL to it. We leave it on the list so that 536 * the task leader will wait for this new process 537 * to commit suicide. 538 */ 539 PROC_LOCK(p2); 540 kern_psignal(p2, SIGKILL); 541 PROC_UNLOCK(p2); 542 } else 543 PROC_UNLOCK(p1->p_leader); 544 } else { 545 p2->p_peers = NULL; 546 p2->p_leader = p2; 547 } 548 549 sx_xlock(&proctree_lock); 550 PGRP_LOCK(p1->p_pgrp); 551 PROC_LOCK(p2); 552 PROC_LOCK(p1); 553 554 /* 555 * Preserve some more flags in subprocess. P_PROFIL has already 556 * been preserved. 557 */ 558 p2->p_flag |= p1->p_flag & P_SUGID; 559 td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING; 560 SESS_LOCK(p1->p_session); 561 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) 562 p2->p_flag |= P_CONTROLT; 563 SESS_UNLOCK(p1->p_session); 564 if (fr->fr_flags & RFPPWAIT) 565 p2->p_flag |= P_PPWAIT; 566 567 p2->p_pgrp = p1->p_pgrp; 568 LIST_INSERT_AFTER(p1, p2, p_pglist); 569 PGRP_UNLOCK(p1->p_pgrp); 570 LIST_INIT(&p2->p_children); 571 LIST_INIT(&p2->p_orphans); 572 573 callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0); 574 575 /* 576 * If PF_FORK is set, the child process inherits the 577 * procfs ioctl flags from its parent. 578 */ 579 if (p1->p_pfsflags & PF_FORK) { 580 p2->p_stops = p1->p_stops; 581 p2->p_pfsflags = p1->p_pfsflags; 582 } 583 584 /* 585 * This begins the section where we must prevent the parent 586 * from being swapped. 587 */ 588 _PHOLD(p1); 589 PROC_UNLOCK(p1); 590 591 /* 592 * Attach the new process to its parent. 593 * 594 * If RFNOWAIT is set, the newly created process becomes a child 595 * of init. This effectively disassociates the child from the 596 * parent. 597 */ 598 if ((fr->fr_flags & RFNOWAIT) != 0) { 599 pptr = p1->p_reaper; 600 p2->p_reaper = pptr; 601 } else { 602 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ? 603 p1 : p1->p_reaper; 604 pptr = p1; 605 } 606 p2->p_pptr = pptr; 607 p2->p_oppid = pptr->p_pid; 608 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); 609 LIST_INIT(&p2->p_reaplist); 610 LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling); 611 if (p2->p_reaper == p1 && p1 != initproc) { 612 p2->p_reapsubtree = p2->p_pid; 613 proc_id_set_cond(PROC_ID_REAP, p2->p_pid); 614 } 615 sx_xunlock(&proctree_lock); 616 617 /* Inform accounting that we have forked. */ 618 p2->p_acflag = AFORK; 619 PROC_UNLOCK(p2); 620 621 #ifdef KTRACE 622 ktrprocfork(p1, p2); 623 #endif 624 625 /* 626 * Finish creating the child process. It will return via a different 627 * execution path later. (ie: directly into user mode) 628 */ 629 vm_forkproc(td, p2, td2, vm2, fr->fr_flags); 630 631 if (fr->fr_flags == (RFFDG | RFPROC)) { 632 VM_CNT_INC(v_forks); 633 VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize + 634 p2->p_vmspace->vm_ssize); 635 } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { 636 VM_CNT_INC(v_vforks); 637 VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize + 638 p2->p_vmspace->vm_ssize); 639 } else if (p1 == &proc0) { 640 VM_CNT_INC(v_kthreads); 641 VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize + 642 p2->p_vmspace->vm_ssize); 643 } else { 644 VM_CNT_INC(v_rforks); 645 VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize + 646 p2->p_vmspace->vm_ssize); 647 } 648 649 /* 650 * Associate the process descriptor with the process before anything 651 * can happen that might cause that process to need the descriptor. 652 * However, don't do this until after fork(2) can no longer fail. 653 */ 654 if (fr->fr_flags & RFPROCDESC) 655 procdesc_new(p2, fr->fr_pd_flags); 656 657 /* 658 * Both processes are set up, now check if any loadable modules want 659 * to adjust anything. 660 */ 661 EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags); 662 663 /* 664 * Set the child start time and mark the process as being complete. 665 */ 666 PROC_LOCK(p2); 667 PROC_LOCK(p1); 668 microuptime(&p2->p_stats->p_start); 669 PROC_SLOCK(p2); 670 p2->p_state = PRS_NORMAL; 671 PROC_SUNLOCK(p2); 672 673 #ifdef KDTRACE_HOOKS 674 /* 675 * Tell the DTrace fasttrap provider about the new process so that any 676 * tracepoints inherited from the parent can be removed. We have to do 677 * this only after p_state is PRS_NORMAL since the fasttrap module will 678 * use pfind() later on. 679 */ 680 if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork) 681 dtrace_fasttrap_fork(p1, p2); 682 #endif 683 if (fr->fr_flags & RFPPWAIT) { 684 td->td_pflags |= TDP_RFPPWAIT; 685 td->td_rfppwait_p = p2; 686 td->td_dbgflags |= TDB_VFORK; 687 } 688 PROC_UNLOCK(p2); 689 690 /* 691 * Tell any interested parties about the new process. 692 */ 693 knote_fork(p1->p_klist, p2->p_pid); 694 695 /* 696 * Now can be swapped. 697 */ 698 _PRELE(p1); 699 PROC_UNLOCK(p1); 700 SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags); 701 702 if (fr->fr_flags & RFPROCDESC) { 703 procdesc_finit(p2->p_procdesc, fp_procdesc); 704 fdrop(fp_procdesc, td); 705 } 706 707 /* 708 * Speculative check for PTRACE_FORK. PTRACE_FORK is not 709 * synced with forks in progress so it is OK if we miss it 710 * if being set atm. 711 */ 712 if ((p1->p_ptevents & PTRACE_FORK) != 0) { 713 sx_xlock(&proctree_lock); 714 PROC_LOCK(p2); 715 716 /* 717 * p1->p_ptevents & p1->p_pptr are protected by both 718 * process and proctree locks for modifications, 719 * so owning proctree_lock allows the race-free read. 720 */ 721 if ((p1->p_ptevents & PTRACE_FORK) != 0) { 722 /* 723 * Arrange for debugger to receive the fork event. 724 * 725 * We can report PL_FLAG_FORKED regardless of 726 * P_FOLLOWFORK settings, but it does not make a sense 727 * for runaway child. 728 */ 729 td->td_dbgflags |= TDB_FORK; 730 td->td_dbg_forked = p2->p_pid; 731 td2->td_dbgflags |= TDB_STOPATFORK; 732 proc_set_traced(p2, true); 733 CTR2(KTR_PTRACE, 734 "do_fork: attaching to new child pid %d: oppid %d", 735 p2->p_pid, p2->p_oppid); 736 proc_reparent(p2, p1->p_pptr, false); 737 } 738 PROC_UNLOCK(p2); 739 sx_xunlock(&proctree_lock); 740 } 741 742 racct_proc_fork_done(p2); 743 744 if ((fr->fr_flags & RFSTOPPED) == 0) { 745 if (fr->fr_pidp != NULL) 746 *fr->fr_pidp = p2->p_pid; 747 /* 748 * If RFSTOPPED not requested, make child runnable and 749 * add to run queue. 750 */ 751 thread_lock(td2); 752 TD_SET_CAN_RUN(td2); 753 sched_add(td2, SRQ_BORING); 754 thread_unlock(td2); 755 } else { 756 *fr->fr_procp = p2; 757 } 758 } 759 760 void 761 fork_rfppwait(struct thread *td) 762 { 763 struct proc *p, *p2; 764 765 MPASS(td->td_pflags & TDP_RFPPWAIT); 766 767 p = td->td_proc; 768 /* 769 * Preserve synchronization semantics of vfork. If 770 * waiting for child to exec or exit, fork set 771 * P_PPWAIT on child, and there we sleep on our proc 772 * (in case of exit). 773 * 774 * Do it after the ptracestop() above is finished, to 775 * not block our debugger until child execs or exits 776 * to finish vfork wait. 777 */ 778 td->td_pflags &= ~TDP_RFPPWAIT; 779 p2 = td->td_rfppwait_p; 780 again: 781 PROC_LOCK(p2); 782 while (p2->p_flag & P_PPWAIT) { 783 PROC_LOCK(p); 784 if (thread_suspend_check_needed()) { 785 PROC_UNLOCK(p2); 786 thread_suspend_check(0); 787 PROC_UNLOCK(p); 788 goto again; 789 } else { 790 PROC_UNLOCK(p); 791 } 792 cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz); 793 } 794 PROC_UNLOCK(p2); 795 796 if (td->td_dbgflags & TDB_VFORK) { 797 PROC_LOCK(p); 798 if (p->p_ptevents & PTRACE_VFORK) 799 ptracestop(td, SIGTRAP, NULL); 800 td->td_dbgflags &= ~TDB_VFORK; 801 PROC_UNLOCK(p); 802 } 803 } 804 805 int 806 fork1(struct thread *td, struct fork_req *fr) 807 { 808 struct proc *p1, *newproc; 809 struct thread *td2; 810 struct vmspace *vm2; 811 struct file *fp_procdesc; 812 vm_ooffset_t mem_charged; 813 int error, nprocs_new, ok; 814 static int curfail; 815 static struct timeval lastfail; 816 int flags, pages; 817 818 flags = fr->fr_flags; 819 pages = fr->fr_pages; 820 821 if ((flags & RFSTOPPED) != 0) 822 MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL); 823 else 824 MPASS(fr->fr_procp == NULL); 825 826 /* Check for the undefined or unimplemented flags. */ 827 if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0) 828 return (EINVAL); 829 830 /* Signal value requires RFTSIGZMB. */ 831 if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0) 832 return (EINVAL); 833 834 /* Can't copy and clear. */ 835 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) 836 return (EINVAL); 837 838 /* Check the validity of the signal number. */ 839 if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG) 840 return (EINVAL); 841 842 if ((flags & RFPROCDESC) != 0) { 843 /* Can't not create a process yet get a process descriptor. */ 844 if ((flags & RFPROC) == 0) 845 return (EINVAL); 846 847 /* Must provide a place to put a procdesc if creating one. */ 848 if (fr->fr_pd_fd == NULL) 849 return (EINVAL); 850 851 /* Check if we are using supported flags. */ 852 if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0) 853 return (EINVAL); 854 } 855 856 p1 = td->td_proc; 857 858 /* 859 * Here we don't create a new process, but we divorce 860 * certain parts of a process from itself. 861 */ 862 if ((flags & RFPROC) == 0) { 863 if (fr->fr_procp != NULL) 864 *fr->fr_procp = NULL; 865 else if (fr->fr_pidp != NULL) 866 *fr->fr_pidp = 0; 867 return (fork_norfproc(td, flags)); 868 } 869 870 fp_procdesc = NULL; 871 newproc = NULL; 872 vm2 = NULL; 873 874 /* 875 * Increment the nprocs resource before allocations occur. 876 * Although process entries are dynamically created, we still 877 * keep a global limit on the maximum number we will 878 * create. There are hard-limits as to the number of processes 879 * that can run, established by the KVA and memory usage for 880 * the process data. 881 * 882 * Don't allow a nonprivileged user to use the last ten 883 * processes; don't let root exceed the limit. 884 */ 885 nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1; 886 if ((nprocs_new >= maxproc - 10 && 887 priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0) || 888 nprocs_new >= maxproc) { 889 error = EAGAIN; 890 sx_xlock(&allproc_lock); 891 if (ppsratecheck(&lastfail, &curfail, 1)) { 892 printf("maxproc limit exceeded by uid %u (pid %d); " 893 "see tuning(7) and login.conf(5)\n", 894 td->td_ucred->cr_ruid, p1->p_pid); 895 } 896 sx_xunlock(&allproc_lock); 897 goto fail2; 898 } 899 900 /* 901 * If required, create a process descriptor in the parent first; we 902 * will abandon it if something goes wrong. We don't finit() until 903 * later. 904 */ 905 if (flags & RFPROCDESC) { 906 error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd, 907 fr->fr_pd_flags, fr->fr_pd_fcaps); 908 if (error != 0) 909 goto fail2; 910 } 911 912 mem_charged = 0; 913 if (pages == 0) 914 pages = kstack_pages; 915 /* Allocate new proc. */ 916 newproc = uma_zalloc(proc_zone, M_WAITOK); 917 td2 = FIRST_THREAD_IN_PROC(newproc); 918 if (td2 == NULL) { 919 td2 = thread_alloc(pages); 920 if (td2 == NULL) { 921 error = ENOMEM; 922 goto fail2; 923 } 924 proc_linkup(newproc, td2); 925 } else { 926 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) { 927 if (td2->td_kstack != 0) 928 vm_thread_dispose(td2); 929 if (!thread_alloc_stack(td2, pages)) { 930 error = ENOMEM; 931 goto fail2; 932 } 933 } 934 } 935 936 if ((flags & RFMEM) == 0) { 937 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged); 938 if (vm2 == NULL) { 939 error = ENOMEM; 940 goto fail2; 941 } 942 if (!swap_reserve(mem_charged)) { 943 /* 944 * The swap reservation failed. The accounting 945 * from the entries of the copied vm2 will be 946 * subtracted in vmspace_free(), so force the 947 * reservation there. 948 */ 949 swap_reserve_force(mem_charged); 950 error = ENOMEM; 951 goto fail2; 952 } 953 } else 954 vm2 = NULL; 955 956 /* 957 * XXX: This is ugly; when we copy resource usage, we need to bump 958 * per-cred resource counters. 959 */ 960 proc_set_cred_init(newproc, crhold(td->td_ucred)); 961 962 /* 963 * Initialize resource accounting for the child process. 964 */ 965 error = racct_proc_fork(p1, newproc); 966 if (error != 0) { 967 error = EAGAIN; 968 goto fail1; 969 } 970 971 #ifdef MAC 972 mac_proc_init(newproc); 973 #endif 974 newproc->p_klist = knlist_alloc(&newproc->p_mtx); 975 STAILQ_INIT(&newproc->p_ktr); 976 977 sx_xlock(&allproc_lock); 978 979 /* 980 * Increment the count of procs running with this uid. Don't allow 981 * a nonprivileged user to exceed their current limit. 982 * 983 * XXXRW: Can we avoid privilege here if it's not needed? 984 */ 985 error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT); 986 if (error == 0) 987 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0); 988 else { 989 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 990 lim_cur(td, RLIMIT_NPROC)); 991 } 992 if (ok) { 993 do_fork(td, fr, newproc, td2, vm2, fp_procdesc); 994 return (0); 995 } 996 997 error = EAGAIN; 998 sx_xunlock(&allproc_lock); 999 #ifdef MAC 1000 mac_proc_destroy(newproc); 1001 #endif 1002 racct_proc_exit(newproc); 1003 fail1: 1004 crfree(newproc->p_ucred); 1005 newproc->p_ucred = NULL; 1006 fail2: 1007 if (vm2 != NULL) 1008 vmspace_free(vm2); 1009 uma_zfree(proc_zone, newproc); 1010 if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) { 1011 fdclose(td, fp_procdesc, *fr->fr_pd_fd); 1012 fdrop(fp_procdesc, td); 1013 } 1014 atomic_add_int(&nprocs, -1); 1015 pause("fork", hz / 2); 1016 return (error); 1017 } 1018 1019 /* 1020 * Handle the return of a child process from fork1(). This function 1021 * is called from the MD fork_trampoline() entry point. 1022 */ 1023 void 1024 fork_exit(void (*callout)(void *, struct trapframe *), void *arg, 1025 struct trapframe *frame) 1026 { 1027 struct proc *p; 1028 struct thread *td; 1029 struct thread *dtd; 1030 1031 td = curthread; 1032 p = td->td_proc; 1033 KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new")); 1034 1035 CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)", 1036 td, td_get_sched(td), p->p_pid, td->td_name); 1037 1038 sched_fork_exit(td); 1039 /* 1040 * Processes normally resume in mi_switch() after being 1041 * cpu_switch()'ed to, but when children start up they arrive here 1042 * instead, so we must do much the same things as mi_switch() would. 1043 */ 1044 if ((dtd = PCPU_GET(deadthread))) { 1045 PCPU_SET(deadthread, NULL); 1046 thread_stash(dtd); 1047 } 1048 thread_unlock(td); 1049 1050 /* 1051 * cpu_fork_kthread_handler intercepts this function call to 1052 * have this call a non-return function to stay in kernel mode. 1053 * initproc has its own fork handler, but it does return. 1054 */ 1055 KASSERT(callout != NULL, ("NULL callout in fork_exit")); 1056 callout(arg, frame); 1057 1058 /* 1059 * Check if a kernel thread misbehaved and returned from its main 1060 * function. 1061 */ 1062 if (p->p_flag & P_KPROC) { 1063 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n", 1064 td->td_name, p->p_pid); 1065 kthread_exit(); 1066 } 1067 mtx_assert(&Giant, MA_NOTOWNED); 1068 1069 if (p->p_sysent->sv_schedtail != NULL) 1070 (p->p_sysent->sv_schedtail)(td); 1071 td->td_pflags &= ~TDP_FORKING; 1072 } 1073 1074 /* 1075 * Simplified back end of syscall(), used when returning from fork() 1076 * directly into user mode. This function is passed in to fork_exit() 1077 * as the first parameter and is called when returning to a new 1078 * userland process. 1079 */ 1080 void 1081 fork_return(struct thread *td, struct trapframe *frame) 1082 { 1083 struct proc *p; 1084 1085 p = td->td_proc; 1086 if (td->td_dbgflags & TDB_STOPATFORK) { 1087 PROC_LOCK(p); 1088 if ((p->p_flag & P_TRACED) != 0) { 1089 /* 1090 * Inform the debugger if one is still present. 1091 */ 1092 td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP; 1093 ptracestop(td, SIGSTOP, NULL); 1094 td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX); 1095 } else { 1096 /* 1097 * ... otherwise clear the request. 1098 */ 1099 td->td_dbgflags &= ~TDB_STOPATFORK; 1100 } 1101 PROC_UNLOCK(p); 1102 } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) { 1103 /* 1104 * This is the start of a new thread in a traced 1105 * process. Report a system call exit event. 1106 */ 1107 PROC_LOCK(p); 1108 td->td_dbgflags |= TDB_SCX; 1109 _STOPEVENT(p, S_SCX, td->td_sa.code); 1110 if ((p->p_ptevents & PTRACE_SCX) != 0 || 1111 (td->td_dbgflags & TDB_BORN) != 0) 1112 ptracestop(td, SIGTRAP, NULL); 1113 td->td_dbgflags &= ~(TDB_SCX | TDB_BORN); 1114 PROC_UNLOCK(p); 1115 } 1116 1117 userret(td, frame); 1118 1119 #ifdef KTRACE 1120 if (KTRPOINT(td, KTR_SYSRET)) 1121 ktrsysret(SYS_fork, 0, 0); 1122 #endif 1123 } 1124