xref: /freebsd/sys/kern/kern_fork.c (revision 8c5a9161d16094d9db474fe78ddead1325246d05)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 #include "opt_kstack_pages.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/bitstring.h>
48 #include <sys/sysproto.h>
49 #include <sys/eventhandler.h>
50 #include <sys/fcntl.h>
51 #include <sys/filedesc.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/sysctl.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/mutex.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/procdesc.h>
62 #include <sys/pioctl.h>
63 #include <sys/ptrace.h>
64 #include <sys/racct.h>
65 #include <sys/resourcevar.h>
66 #include <sys/sched.h>
67 #include <sys/syscall.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 #include <sys/acct.h>
71 #include <sys/ktr.h>
72 #include <sys/ktrace.h>
73 #include <sys/unistd.h>
74 #include <sys/sdt.h>
75 #include <sys/sx.h>
76 #include <sys/sysent.h>
77 #include <sys/signalvar.h>
78 
79 #include <security/audit/audit.h>
80 #include <security/mac/mac_framework.h>
81 
82 #include <vm/vm.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_extern.h>
86 #include <vm/uma.h>
87 
88 #ifdef KDTRACE_HOOKS
89 #include <sys/dtrace_bsd.h>
90 dtrace_fork_func_t	dtrace_fasttrap_fork;
91 #endif
92 
93 SDT_PROVIDER_DECLARE(proc);
94 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
95 
96 #ifndef _SYS_SYSPROTO_H_
97 struct fork_args {
98 	int     dummy;
99 };
100 #endif
101 
102 /* ARGSUSED */
103 int
104 sys_fork(struct thread *td, struct fork_args *uap)
105 {
106 	struct fork_req fr;
107 	int error, pid;
108 
109 	bzero(&fr, sizeof(fr));
110 	fr.fr_flags = RFFDG | RFPROC;
111 	fr.fr_pidp = &pid;
112 	error = fork1(td, &fr);
113 	if (error == 0) {
114 		td->td_retval[0] = pid;
115 		td->td_retval[1] = 0;
116 	}
117 	return (error);
118 }
119 
120 /* ARGUSED */
121 int
122 sys_pdfork(struct thread *td, struct pdfork_args *uap)
123 {
124 	struct fork_req fr;
125 	int error, fd, pid;
126 
127 	bzero(&fr, sizeof(fr));
128 	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
129 	fr.fr_pidp = &pid;
130 	fr.fr_pd_fd = &fd;
131 	fr.fr_pd_flags = uap->flags;
132 	/*
133 	 * It is necessary to return fd by reference because 0 is a valid file
134 	 * descriptor number, and the child needs to be able to distinguish
135 	 * itself from the parent using the return value.
136 	 */
137 	error = fork1(td, &fr);
138 	if (error == 0) {
139 		td->td_retval[0] = pid;
140 		td->td_retval[1] = 0;
141 		error = copyout(&fd, uap->fdp, sizeof(fd));
142 	}
143 	return (error);
144 }
145 
146 /* ARGSUSED */
147 int
148 sys_vfork(struct thread *td, struct vfork_args *uap)
149 {
150 	struct fork_req fr;
151 	int error, pid;
152 
153 	bzero(&fr, sizeof(fr));
154 	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
155 	fr.fr_pidp = &pid;
156 	error = fork1(td, &fr);
157 	if (error == 0) {
158 		td->td_retval[0] = pid;
159 		td->td_retval[1] = 0;
160 	}
161 	return (error);
162 }
163 
164 int
165 sys_rfork(struct thread *td, struct rfork_args *uap)
166 {
167 	struct fork_req fr;
168 	int error, pid;
169 
170 	/* Don't allow kernel-only flags. */
171 	if ((uap->flags & RFKERNELONLY) != 0)
172 		return (EINVAL);
173 
174 	AUDIT_ARG_FFLAGS(uap->flags);
175 	bzero(&fr, sizeof(fr));
176 	fr.fr_flags = uap->flags;
177 	fr.fr_pidp = &pid;
178 	error = fork1(td, &fr);
179 	if (error == 0) {
180 		td->td_retval[0] = pid;
181 		td->td_retval[1] = 0;
182 	}
183 	return (error);
184 }
185 
186 int __exclusive_cache_line	nprocs = 1;		/* process 0 */
187 int	lastpid = 0;
188 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
189     "Last used PID");
190 
191 /*
192  * Random component to lastpid generation.  We mix in a random factor to make
193  * it a little harder to predict.  We sanity check the modulus value to avoid
194  * doing it in critical paths.  Don't let it be too small or we pointlessly
195  * waste randomness entropy, and don't let it be impossibly large.  Using a
196  * modulus that is too big causes a LOT more process table scans and slows
197  * down fork processing as the pidchecked caching is defeated.
198  */
199 static int randompid = 0;
200 
201 static int
202 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
203 {
204 	int error, pid;
205 
206 	error = sysctl_wire_old_buffer(req, sizeof(int));
207 	if (error != 0)
208 		return(error);
209 	sx_xlock(&allproc_lock);
210 	pid = randompid;
211 	error = sysctl_handle_int(oidp, &pid, 0, req);
212 	if (error == 0 && req->newptr != NULL) {
213 		if (pid == 0)
214 			randompid = 0;
215 		else if (pid == 1)
216 			/* generate a random PID modulus between 100 and 1123 */
217 			randompid = 100 + arc4random() % 1024;
218 		else if (pid < 0 || pid > pid_max - 100)
219 			/* out of range */
220 			randompid = pid_max - 100;
221 		else if (pid < 100)
222 			/* Make it reasonable */
223 			randompid = 100;
224 		else
225 			randompid = pid;
226 	}
227 	sx_xunlock(&allproc_lock);
228 	return (error);
229 }
230 
231 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
232     0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value");
233 
234 extern bitstr_t proc_id_pidmap;
235 extern bitstr_t proc_id_grpidmap;
236 extern bitstr_t proc_id_sessidmap;
237 extern bitstr_t proc_id_reapmap;
238 
239 /*
240  * Find an unused process ID
241  *
242  * If RFHIGHPID is set (used during system boot), do not allocate
243  * low-numbered pids.
244  */
245 static int
246 fork_findpid(int flags)
247 {
248 	pid_t result;
249 	int trypid;
250 
251 	trypid = lastpid + 1;
252 	if (flags & RFHIGHPID) {
253 		if (trypid < 10)
254 			trypid = 10;
255 	} else {
256 		if (randompid)
257 			trypid += arc4random() % randompid;
258 	}
259 	mtx_lock(&procid_lock);
260 retry:
261 	/*
262 	 * If the process ID prototype has wrapped around,
263 	 * restart somewhat above 0, as the low-numbered procs
264 	 * tend to include daemons that don't exit.
265 	 */
266 	if (trypid >= pid_max) {
267 		trypid = trypid % pid_max;
268 		if (trypid < 100)
269 			trypid += 100;
270 	}
271 
272 	bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result);
273 	if (result == -1) {
274 		trypid = 100;
275 		goto retry;
276 	}
277 	if (bit_test(&proc_id_grpidmap, result) ||
278 	    bit_test(&proc_id_sessidmap, result) ||
279 	    bit_test(&proc_id_reapmap, result)) {
280 		trypid = result + 1;
281 		goto retry;
282 	}
283 
284 	/*
285 	 * RFHIGHPID does not mess with the lastpid counter during boot.
286 	 */
287 	if ((flags & RFHIGHPID) == 0)
288 		lastpid = result;
289 
290 	bit_set(&proc_id_pidmap, result);
291 	mtx_unlock(&procid_lock);
292 
293 	return (result);
294 }
295 
296 static int
297 fork_norfproc(struct thread *td, int flags)
298 {
299 	int error;
300 	struct proc *p1;
301 
302 	KASSERT((flags & RFPROC) == 0,
303 	    ("fork_norfproc called with RFPROC set"));
304 	p1 = td->td_proc;
305 
306 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
307 	    (flags & (RFCFDG | RFFDG))) {
308 		PROC_LOCK(p1);
309 		if (thread_single(p1, SINGLE_BOUNDARY)) {
310 			PROC_UNLOCK(p1);
311 			return (ERESTART);
312 		}
313 		PROC_UNLOCK(p1);
314 	}
315 
316 	error = vm_forkproc(td, NULL, NULL, NULL, flags);
317 	if (error)
318 		goto fail;
319 
320 	/*
321 	 * Close all file descriptors.
322 	 */
323 	if (flags & RFCFDG) {
324 		struct filedesc *fdtmp;
325 		fdtmp = fdinit(td->td_proc->p_fd, false);
326 		fdescfree(td);
327 		p1->p_fd = fdtmp;
328 	}
329 
330 	/*
331 	 * Unshare file descriptors (from parent).
332 	 */
333 	if (flags & RFFDG)
334 		fdunshare(td);
335 
336 fail:
337 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
338 	    (flags & (RFCFDG | RFFDG))) {
339 		PROC_LOCK(p1);
340 		thread_single_end(p1, SINGLE_BOUNDARY);
341 		PROC_UNLOCK(p1);
342 	}
343 	return (error);
344 }
345 
346 static void
347 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
348     struct vmspace *vm2, struct file *fp_procdesc)
349 {
350 	struct proc *p1, *pptr;
351 	int trypid;
352 	struct filedesc *fd;
353 	struct filedesc_to_leader *fdtol;
354 	struct sigacts *newsigacts;
355 
356 	sx_assert(&allproc_lock, SX_XLOCKED);
357 
358 	p1 = td->td_proc;
359 
360 	trypid = fork_findpid(fr->fr_flags);
361 	p2->p_state = PRS_NEW;		/* protect against others */
362 	p2->p_pid = trypid;
363 	AUDIT_ARG_PID(p2->p_pid);
364 	LIST_INSERT_HEAD(&allproc, p2, p_list);
365 	allproc_gen++;
366 	sx_xlock(PIDHASHLOCK(p2->p_pid));
367 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
368 	sx_xunlock(PIDHASHLOCK(p2->p_pid));
369 	PROC_LOCK(p2);
370 	PROC_LOCK(p1);
371 
372 	sx_xunlock(&allproc_lock);
373 
374 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
375 	    __rangeof(struct proc, p_startcopy, p_endcopy));
376 	pargs_hold(p2->p_args);
377 
378 	PROC_UNLOCK(p1);
379 
380 	bzero(&p2->p_startzero,
381 	    __rangeof(struct proc, p_startzero, p_endzero));
382 
383 	/* Tell the prison that we exist. */
384 	prison_proc_hold(p2->p_ucred->cr_prison);
385 
386 	PROC_UNLOCK(p2);
387 
388 	tidhash_add(td2);
389 
390 	/*
391 	 * Malloc things while we don't hold any locks.
392 	 */
393 	if (fr->fr_flags & RFSIGSHARE)
394 		newsigacts = NULL;
395 	else
396 		newsigacts = sigacts_alloc();
397 
398 	/*
399 	 * Copy filedesc.
400 	 */
401 	if (fr->fr_flags & RFCFDG) {
402 		fd = fdinit(p1->p_fd, false);
403 		fdtol = NULL;
404 	} else if (fr->fr_flags & RFFDG) {
405 		fd = fdcopy(p1->p_fd);
406 		fdtol = NULL;
407 	} else {
408 		fd = fdshare(p1->p_fd);
409 		if (p1->p_fdtol == NULL)
410 			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
411 			    p1->p_leader);
412 		if ((fr->fr_flags & RFTHREAD) != 0) {
413 			/*
414 			 * Shared file descriptor table, and shared
415 			 * process leaders.
416 			 */
417 			fdtol = p1->p_fdtol;
418 			FILEDESC_XLOCK(p1->p_fd);
419 			fdtol->fdl_refcount++;
420 			FILEDESC_XUNLOCK(p1->p_fd);
421 		} else {
422 			/*
423 			 * Shared file descriptor table, and different
424 			 * process leaders.
425 			 */
426 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
427 			    p1->p_fd, p2);
428 		}
429 	}
430 	/*
431 	 * Make a proc table entry for the new process.
432 	 * Start by zeroing the section of proc that is zero-initialized,
433 	 * then copy the section that is copied directly from the parent.
434 	 */
435 
436 	PROC_LOCK(p2);
437 	PROC_LOCK(p1);
438 
439 	bzero(&td2->td_startzero,
440 	    __rangeof(struct thread, td_startzero, td_endzero));
441 
442 	bcopy(&td->td_startcopy, &td2->td_startcopy,
443 	    __rangeof(struct thread, td_startcopy, td_endcopy));
444 
445 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
446 	td2->td_sigstk = td->td_sigstk;
447 	td2->td_flags = TDF_INMEM;
448 	td2->td_lend_user_pri = PRI_MAX;
449 
450 #ifdef VIMAGE
451 	td2->td_vnet = NULL;
452 	td2->td_vnet_lpush = NULL;
453 #endif
454 
455 	/*
456 	 * Allow the scheduler to initialize the child.
457 	 */
458 	thread_lock(td);
459 	sched_fork(td, td2);
460 	thread_unlock(td);
461 
462 	/*
463 	 * Duplicate sub-structures as needed.
464 	 * Increase reference counts on shared objects.
465 	 */
466 	p2->p_flag = P_INMEM;
467 	p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE |
468 	    P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP);
469 	p2->p_swtick = ticks;
470 	if (p1->p_flag & P_PROFIL)
471 		startprofclock(p2);
472 
473 	if (fr->fr_flags & RFSIGSHARE) {
474 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
475 	} else {
476 		sigacts_copy(newsigacts, p1->p_sigacts);
477 		p2->p_sigacts = newsigacts;
478 	}
479 
480 	if (fr->fr_flags & RFTSIGZMB)
481 	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
482 	else if (fr->fr_flags & RFLINUXTHPN)
483 	        p2->p_sigparent = SIGUSR1;
484 	else
485 	        p2->p_sigparent = SIGCHLD;
486 
487 	p2->p_textvp = p1->p_textvp;
488 	p2->p_fd = fd;
489 	p2->p_fdtol = fdtol;
490 
491 	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
492 		p2->p_flag |= P_PROTECTED;
493 		p2->p_flag2 |= P2_INHERIT_PROTECTED;
494 	}
495 
496 	/*
497 	 * p_limit is copy-on-write.  Bump its refcount.
498 	 */
499 	lim_fork(p1, p2);
500 
501 	thread_cow_get_proc(td2, p2);
502 
503 	pstats_fork(p1->p_stats, p2->p_stats);
504 
505 	PROC_UNLOCK(p1);
506 	PROC_UNLOCK(p2);
507 
508 	/* Bump references to the text vnode (for procfs). */
509 	if (p2->p_textvp)
510 		vrefact(p2->p_textvp);
511 
512 	/*
513 	 * Set up linkage for kernel based threading.
514 	 */
515 	if ((fr->fr_flags & RFTHREAD) != 0) {
516 		mtx_lock(&ppeers_lock);
517 		p2->p_peers = p1->p_peers;
518 		p1->p_peers = p2;
519 		p2->p_leader = p1->p_leader;
520 		mtx_unlock(&ppeers_lock);
521 		PROC_LOCK(p1->p_leader);
522 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
523 			PROC_UNLOCK(p1->p_leader);
524 			/*
525 			 * The task leader is exiting, so process p1 is
526 			 * going to be killed shortly.  Since p1 obviously
527 			 * isn't dead yet, we know that the leader is either
528 			 * sending SIGKILL's to all the processes in this
529 			 * task or is sleeping waiting for all the peers to
530 			 * exit.  We let p1 complete the fork, but we need
531 			 * to go ahead and kill the new process p2 since
532 			 * the task leader may not get a chance to send
533 			 * SIGKILL to it.  We leave it on the list so that
534 			 * the task leader will wait for this new process
535 			 * to commit suicide.
536 			 */
537 			PROC_LOCK(p2);
538 			kern_psignal(p2, SIGKILL);
539 			PROC_UNLOCK(p2);
540 		} else
541 			PROC_UNLOCK(p1->p_leader);
542 	} else {
543 		p2->p_peers = NULL;
544 		p2->p_leader = p2;
545 	}
546 
547 	sx_xlock(&proctree_lock);
548 	PGRP_LOCK(p1->p_pgrp);
549 	PROC_LOCK(p2);
550 	PROC_LOCK(p1);
551 
552 	/*
553 	 * Preserve some more flags in subprocess.  P_PROFIL has already
554 	 * been preserved.
555 	 */
556 	p2->p_flag |= p1->p_flag & P_SUGID;
557 	td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING;
558 	SESS_LOCK(p1->p_session);
559 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
560 		p2->p_flag |= P_CONTROLT;
561 	SESS_UNLOCK(p1->p_session);
562 	if (fr->fr_flags & RFPPWAIT)
563 		p2->p_flag |= P_PPWAIT;
564 
565 	p2->p_pgrp = p1->p_pgrp;
566 	LIST_INSERT_AFTER(p1, p2, p_pglist);
567 	PGRP_UNLOCK(p1->p_pgrp);
568 	LIST_INIT(&p2->p_children);
569 	LIST_INIT(&p2->p_orphans);
570 
571 	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
572 
573 	/*
574 	 * If PF_FORK is set, the child process inherits the
575 	 * procfs ioctl flags from its parent.
576 	 */
577 	if (p1->p_pfsflags & PF_FORK) {
578 		p2->p_stops = p1->p_stops;
579 		p2->p_pfsflags = p1->p_pfsflags;
580 	}
581 
582 	/*
583 	 * This begins the section where we must prevent the parent
584 	 * from being swapped.
585 	 */
586 	_PHOLD(p1);
587 	PROC_UNLOCK(p1);
588 
589 	/*
590 	 * Attach the new process to its parent.
591 	 *
592 	 * If RFNOWAIT is set, the newly created process becomes a child
593 	 * of init.  This effectively disassociates the child from the
594 	 * parent.
595 	 */
596 	if ((fr->fr_flags & RFNOWAIT) != 0) {
597 		pptr = p1->p_reaper;
598 		p2->p_reaper = pptr;
599 	} else {
600 		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
601 		    p1 : p1->p_reaper;
602 		pptr = p1;
603 	}
604 	p2->p_pptr = pptr;
605 	p2->p_oppid = pptr->p_pid;
606 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
607 	LIST_INIT(&p2->p_reaplist);
608 	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
609 	if (p2->p_reaper == p1 && p1 != initproc) {
610 		p2->p_reapsubtree = p2->p_pid;
611 		proc_id_set_cond(PROC_ID_REAP, p2->p_pid);
612 	}
613 	sx_xunlock(&proctree_lock);
614 
615 	/* Inform accounting that we have forked. */
616 	p2->p_acflag = AFORK;
617 	PROC_UNLOCK(p2);
618 
619 #ifdef KTRACE
620 	ktrprocfork(p1, p2);
621 #endif
622 
623 	/*
624 	 * Finish creating the child process.  It will return via a different
625 	 * execution path later.  (ie: directly into user mode)
626 	 */
627 	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
628 
629 	if (fr->fr_flags == (RFFDG | RFPROC)) {
630 		VM_CNT_INC(v_forks);
631 		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
632 		    p2->p_vmspace->vm_ssize);
633 	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
634 		VM_CNT_INC(v_vforks);
635 		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
636 		    p2->p_vmspace->vm_ssize);
637 	} else if (p1 == &proc0) {
638 		VM_CNT_INC(v_kthreads);
639 		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
640 		    p2->p_vmspace->vm_ssize);
641 	} else {
642 		VM_CNT_INC(v_rforks);
643 		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
644 		    p2->p_vmspace->vm_ssize);
645 	}
646 
647 	/*
648 	 * Associate the process descriptor with the process before anything
649 	 * can happen that might cause that process to need the descriptor.
650 	 * However, don't do this until after fork(2) can no longer fail.
651 	 */
652 	if (fr->fr_flags & RFPROCDESC)
653 		procdesc_new(p2, fr->fr_pd_flags);
654 
655 	/*
656 	 * Both processes are set up, now check if any loadable modules want
657 	 * to adjust anything.
658 	 */
659 	EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
660 
661 	/*
662 	 * Set the child start time and mark the process as being complete.
663 	 */
664 	PROC_LOCK(p2);
665 	PROC_LOCK(p1);
666 	microuptime(&p2->p_stats->p_start);
667 	PROC_SLOCK(p2);
668 	p2->p_state = PRS_NORMAL;
669 	PROC_SUNLOCK(p2);
670 
671 #ifdef KDTRACE_HOOKS
672 	/*
673 	 * Tell the DTrace fasttrap provider about the new process so that any
674 	 * tracepoints inherited from the parent can be removed. We have to do
675 	 * this only after p_state is PRS_NORMAL since the fasttrap module will
676 	 * use pfind() later on.
677 	 */
678 	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
679 		dtrace_fasttrap_fork(p1, p2);
680 #endif
681 	if (fr->fr_flags & RFPPWAIT) {
682 		td->td_pflags |= TDP_RFPPWAIT;
683 		td->td_rfppwait_p = p2;
684 		td->td_dbgflags |= TDB_VFORK;
685 	}
686 	PROC_UNLOCK(p2);
687 
688 	/*
689 	 * Tell any interested parties about the new process.
690 	 */
691 	knote_fork(p1->p_klist, p2->p_pid);
692 
693 	/*
694 	 * Now can be swapped.
695 	 */
696 	_PRELE(p1);
697 	PROC_UNLOCK(p1);
698 	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
699 
700 	if (fr->fr_flags & RFPROCDESC) {
701 		procdesc_finit(p2->p_procdesc, fp_procdesc);
702 		fdrop(fp_procdesc, td);
703 	}
704 
705 	/*
706 	 * Speculative check for PTRACE_FORK. PTRACE_FORK is not
707 	 * synced with forks in progress so it is OK if we miss it
708 	 * if being set atm.
709 	 */
710 	if ((p1->p_ptevents & PTRACE_FORK) != 0) {
711 		sx_xlock(&proctree_lock);
712 		PROC_LOCK(p2);
713 
714 		/*
715 		 * p1->p_ptevents & p1->p_pptr are protected by both
716 		 * process and proctree locks for modifications,
717 		 * so owning proctree_lock allows the race-free read.
718 		 */
719 		if ((p1->p_ptevents & PTRACE_FORK) != 0) {
720 			/*
721 			 * Arrange for debugger to receive the fork event.
722 			 *
723 			 * We can report PL_FLAG_FORKED regardless of
724 			 * P_FOLLOWFORK settings, but it does not make a sense
725 			 * for runaway child.
726 			 */
727 			td->td_dbgflags |= TDB_FORK;
728 			td->td_dbg_forked = p2->p_pid;
729 			td2->td_dbgflags |= TDB_STOPATFORK;
730 			proc_set_traced(p2, true);
731 			CTR2(KTR_PTRACE,
732 			    "do_fork: attaching to new child pid %d: oppid %d",
733 			    p2->p_pid, p2->p_oppid);
734 			proc_reparent(p2, p1->p_pptr, false);
735 		}
736 		PROC_UNLOCK(p2);
737 		sx_xunlock(&proctree_lock);
738 	}
739 
740 	racct_proc_fork_done(p2);
741 
742 	if ((fr->fr_flags & RFSTOPPED) == 0) {
743 		if (fr->fr_pidp != NULL)
744 			*fr->fr_pidp = p2->p_pid;
745 		/*
746 		 * If RFSTOPPED not requested, make child runnable and
747 		 * add to run queue.
748 		 */
749 		thread_lock(td2);
750 		TD_SET_CAN_RUN(td2);
751 		sched_add(td2, SRQ_BORING);
752 		thread_unlock(td2);
753 	} else {
754 		*fr->fr_procp = p2;
755 	}
756 }
757 
758 void
759 fork_rfppwait(struct thread *td)
760 {
761 	struct proc *p, *p2;
762 
763 	MPASS(td->td_pflags & TDP_RFPPWAIT);
764 
765 	p = td->td_proc;
766 	/*
767 	 * Preserve synchronization semantics of vfork.  If
768 	 * waiting for child to exec or exit, fork set
769 	 * P_PPWAIT on child, and there we sleep on our proc
770 	 * (in case of exit).
771 	 *
772 	 * Do it after the ptracestop() above is finished, to
773 	 * not block our debugger until child execs or exits
774 	 * to finish vfork wait.
775 	 */
776 	td->td_pflags &= ~TDP_RFPPWAIT;
777 	p2 = td->td_rfppwait_p;
778 again:
779 	PROC_LOCK(p2);
780 	while (p2->p_flag & P_PPWAIT) {
781 		PROC_LOCK(p);
782 		if (thread_suspend_check_needed()) {
783 			PROC_UNLOCK(p2);
784 			thread_suspend_check(0);
785 			PROC_UNLOCK(p);
786 			goto again;
787 		} else {
788 			PROC_UNLOCK(p);
789 		}
790 		cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz);
791 	}
792 	PROC_UNLOCK(p2);
793 
794 	if (td->td_dbgflags & TDB_VFORK) {
795 		PROC_LOCK(p);
796 		if (p->p_ptevents & PTRACE_VFORK)
797 			ptracestop(td, SIGTRAP, NULL);
798 		td->td_dbgflags &= ~TDB_VFORK;
799 		PROC_UNLOCK(p);
800 	}
801 }
802 
803 int
804 fork1(struct thread *td, struct fork_req *fr)
805 {
806 	struct proc *p1, *newproc;
807 	struct thread *td2;
808 	struct vmspace *vm2;
809 	struct file *fp_procdesc;
810 	vm_ooffset_t mem_charged;
811 	int error, nprocs_new, ok;
812 	static int curfail;
813 	static struct timeval lastfail;
814 	int flags, pages;
815 
816 	flags = fr->fr_flags;
817 	pages = fr->fr_pages;
818 
819 	if ((flags & RFSTOPPED) != 0)
820 		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
821 	else
822 		MPASS(fr->fr_procp == NULL);
823 
824 	/* Check for the undefined or unimplemented flags. */
825 	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
826 		return (EINVAL);
827 
828 	/* Signal value requires RFTSIGZMB. */
829 	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
830 		return (EINVAL);
831 
832 	/* Can't copy and clear. */
833 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
834 		return (EINVAL);
835 
836 	/* Check the validity of the signal number. */
837 	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
838 		return (EINVAL);
839 
840 	if ((flags & RFPROCDESC) != 0) {
841 		/* Can't not create a process yet get a process descriptor. */
842 		if ((flags & RFPROC) == 0)
843 			return (EINVAL);
844 
845 		/* Must provide a place to put a procdesc if creating one. */
846 		if (fr->fr_pd_fd == NULL)
847 			return (EINVAL);
848 
849 		/* Check if we are using supported flags. */
850 		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
851 			return (EINVAL);
852 	}
853 
854 	p1 = td->td_proc;
855 
856 	/*
857 	 * Here we don't create a new process, but we divorce
858 	 * certain parts of a process from itself.
859 	 */
860 	if ((flags & RFPROC) == 0) {
861 		if (fr->fr_procp != NULL)
862 			*fr->fr_procp = NULL;
863 		else if (fr->fr_pidp != NULL)
864 			*fr->fr_pidp = 0;
865 		return (fork_norfproc(td, flags));
866 	}
867 
868 	fp_procdesc = NULL;
869 	newproc = NULL;
870 	vm2 = NULL;
871 
872 	/*
873 	 * Increment the nprocs resource before allocations occur.
874 	 * Although process entries are dynamically created, we still
875 	 * keep a global limit on the maximum number we will
876 	 * create. There are hard-limits as to the number of processes
877 	 * that can run, established by the KVA and memory usage for
878 	 * the process data.
879 	 *
880 	 * Don't allow a nonprivileged user to use the last ten
881 	 * processes; don't let root exceed the limit.
882 	 */
883 	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
884 	if (nprocs_new >= maxproc - 10) {
885 		if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 ||
886 		    nprocs_new >= maxproc) {
887 			error = EAGAIN;
888 			sx_xlock(&allproc_lock);
889 			if (ppsratecheck(&lastfail, &curfail, 1)) {
890 				printf("maxproc limit exceeded by uid %u "
891 				    "(pid %d); see tuning(7) and "
892 				    "login.conf(5)\n",
893 				    td->td_ucred->cr_ruid, p1->p_pid);
894 			}
895 			sx_xunlock(&allproc_lock);
896 			goto fail2;
897 		}
898 	}
899 
900 	/*
901 	 * If required, create a process descriptor in the parent first; we
902 	 * will abandon it if something goes wrong. We don't finit() until
903 	 * later.
904 	 */
905 	if (flags & RFPROCDESC) {
906 		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
907 		    fr->fr_pd_flags, fr->fr_pd_fcaps);
908 		if (error != 0)
909 			goto fail2;
910 	}
911 
912 	mem_charged = 0;
913 	if (pages == 0)
914 		pages = kstack_pages;
915 	/* Allocate new proc. */
916 	newproc = uma_zalloc(proc_zone, M_WAITOK);
917 	td2 = FIRST_THREAD_IN_PROC(newproc);
918 	if (td2 == NULL) {
919 		td2 = thread_alloc(pages);
920 		if (td2 == NULL) {
921 			error = ENOMEM;
922 			goto fail2;
923 		}
924 		proc_linkup(newproc, td2);
925 	} else {
926 		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
927 			if (td2->td_kstack != 0)
928 				vm_thread_dispose(td2);
929 			if (!thread_alloc_stack(td2, pages)) {
930 				error = ENOMEM;
931 				goto fail2;
932 			}
933 		}
934 	}
935 
936 	if ((flags & RFMEM) == 0) {
937 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
938 		if (vm2 == NULL) {
939 			error = ENOMEM;
940 			goto fail2;
941 		}
942 		if (!swap_reserve(mem_charged)) {
943 			/*
944 			 * The swap reservation failed. The accounting
945 			 * from the entries of the copied vm2 will be
946 			 * subtracted in vmspace_free(), so force the
947 			 * reservation there.
948 			 */
949 			swap_reserve_force(mem_charged);
950 			error = ENOMEM;
951 			goto fail2;
952 		}
953 	} else
954 		vm2 = NULL;
955 
956 	/*
957 	 * XXX: This is ugly; when we copy resource usage, we need to bump
958 	 *      per-cred resource counters.
959 	 */
960 	proc_set_cred_init(newproc, crhold(td->td_ucred));
961 
962 	/*
963 	 * Initialize resource accounting for the child process.
964 	 */
965 	error = racct_proc_fork(p1, newproc);
966 	if (error != 0) {
967 		error = EAGAIN;
968 		goto fail1;
969 	}
970 
971 #ifdef MAC
972 	mac_proc_init(newproc);
973 #endif
974 	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
975 	STAILQ_INIT(&newproc->p_ktr);
976 
977 	sx_xlock(&allproc_lock);
978 
979 	/*
980 	 * Increment the count of procs running with this uid. Don't allow
981 	 * a nonprivileged user to exceed their current limit.
982 	 *
983 	 * XXXRW: Can we avoid privilege here if it's not needed?
984 	 */
985 	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT);
986 	if (error == 0)
987 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
988 	else {
989 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
990 		    lim_cur(td, RLIMIT_NPROC));
991 	}
992 	if (ok) {
993 		do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
994 		return (0);
995 	}
996 
997 	error = EAGAIN;
998 	sx_xunlock(&allproc_lock);
999 #ifdef MAC
1000 	mac_proc_destroy(newproc);
1001 #endif
1002 	racct_proc_exit(newproc);
1003 fail1:
1004 	crfree(newproc->p_ucred);
1005 	newproc->p_ucred = NULL;
1006 fail2:
1007 	if (vm2 != NULL)
1008 		vmspace_free(vm2);
1009 	uma_zfree(proc_zone, newproc);
1010 	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
1011 		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1012 		fdrop(fp_procdesc, td);
1013 	}
1014 	atomic_add_int(&nprocs, -1);
1015 	pause("fork", hz / 2);
1016 	return (error);
1017 }
1018 
1019 /*
1020  * Handle the return of a child process from fork1().  This function
1021  * is called from the MD fork_trampoline() entry point.
1022  */
1023 void
1024 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1025     struct trapframe *frame)
1026 {
1027 	struct proc *p;
1028 	struct thread *td;
1029 	struct thread *dtd;
1030 
1031 	td = curthread;
1032 	p = td->td_proc;
1033 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1034 
1035 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1036 	    td, td_get_sched(td), p->p_pid, td->td_name);
1037 
1038 	sched_fork_exit(td);
1039 	/*
1040 	* Processes normally resume in mi_switch() after being
1041 	* cpu_switch()'ed to, but when children start up they arrive here
1042 	* instead, so we must do much the same things as mi_switch() would.
1043 	*/
1044 	if ((dtd = PCPU_GET(deadthread))) {
1045 		PCPU_SET(deadthread, NULL);
1046 		thread_stash(dtd);
1047 	}
1048 	thread_unlock(td);
1049 
1050 	/*
1051 	 * cpu_fork_kthread_handler intercepts this function call to
1052 	 * have this call a non-return function to stay in kernel mode.
1053 	 * initproc has its own fork handler, but it does return.
1054 	 */
1055 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1056 	callout(arg, frame);
1057 
1058 	/*
1059 	 * Check if a kernel thread misbehaved and returned from its main
1060 	 * function.
1061 	 */
1062 	if (p->p_flag & P_KPROC) {
1063 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1064 		    td->td_name, p->p_pid);
1065 		kthread_exit();
1066 	}
1067 	mtx_assert(&Giant, MA_NOTOWNED);
1068 
1069 	if (p->p_sysent->sv_schedtail != NULL)
1070 		(p->p_sysent->sv_schedtail)(td);
1071 	td->td_pflags &= ~TDP_FORKING;
1072 }
1073 
1074 /*
1075  * Simplified back end of syscall(), used when returning from fork()
1076  * directly into user mode.  This function is passed in to fork_exit()
1077  * as the first parameter and is called when returning to a new
1078  * userland process.
1079  */
1080 void
1081 fork_return(struct thread *td, struct trapframe *frame)
1082 {
1083 	struct proc *p;
1084 
1085 	p = td->td_proc;
1086 	if (td->td_dbgflags & TDB_STOPATFORK) {
1087 		PROC_LOCK(p);
1088 		if ((p->p_flag & P_TRACED) != 0) {
1089 			/*
1090 			 * Inform the debugger if one is still present.
1091 			 */
1092 			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1093 			ptracestop(td, SIGSTOP, NULL);
1094 			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1095 		} else {
1096 			/*
1097 			 * ... otherwise clear the request.
1098 			 */
1099 			td->td_dbgflags &= ~TDB_STOPATFORK;
1100 		}
1101 		PROC_UNLOCK(p);
1102 	} else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
1103  		/*
1104 		 * This is the start of a new thread in a traced
1105 		 * process.  Report a system call exit event.
1106 		 */
1107 		PROC_LOCK(p);
1108 		td->td_dbgflags |= TDB_SCX;
1109 		_STOPEVENT(p, S_SCX, td->td_sa.code);
1110 		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1111 		    (td->td_dbgflags & TDB_BORN) != 0)
1112 			ptracestop(td, SIGTRAP, NULL);
1113 		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1114 		PROC_UNLOCK(p);
1115 	}
1116 
1117 	userret(td, frame);
1118 
1119 #ifdef KTRACE
1120 	if (KTRPOINT(td, KTR_SYSRET))
1121 		ktrsysret(SYS_fork, 0, 0);
1122 #endif
1123 }
1124