xref: /freebsd/sys/kern/kern_fork.c (revision 814bd1ed438f7dfc5bedcb1f3e772a46fe7026bb)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 #include "opt_kstack_pages.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/bitstring.h>
48 #include <sys/sysproto.h>
49 #include <sys/eventhandler.h>
50 #include <sys/fcntl.h>
51 #include <sys/filedesc.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/sysctl.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/msan.h>
59 #include <sys/mutex.h>
60 #include <sys/priv.h>
61 #include <sys/proc.h>
62 #include <sys/procdesc.h>
63 #include <sys/ptrace.h>
64 #include <sys/racct.h>
65 #include <sys/resourcevar.h>
66 #include <sys/sched.h>
67 #include <sys/syscall.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 #include <sys/acct.h>
71 #include <sys/ktr.h>
72 #include <sys/ktrace.h>
73 #include <sys/unistd.h>
74 #include <sys/sdt.h>
75 #include <sys/sx.h>
76 #include <sys/sysent.h>
77 #include <sys/signalvar.h>
78 
79 #include <security/audit/audit.h>
80 #include <security/mac/mac_framework.h>
81 
82 #include <vm/vm.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_extern.h>
86 #include <vm/uma.h>
87 
88 #ifdef KDTRACE_HOOKS
89 #include <sys/dtrace_bsd.h>
90 dtrace_fork_func_t	dtrace_fasttrap_fork;
91 #endif
92 
93 SDT_PROVIDER_DECLARE(proc);
94 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
95 
96 #ifndef _SYS_SYSPROTO_H_
97 struct fork_args {
98 	int     dummy;
99 };
100 #endif
101 
102 /* ARGSUSED */
103 int
104 sys_fork(struct thread *td, struct fork_args *uap)
105 {
106 	struct fork_req fr;
107 	int error, pid;
108 
109 	bzero(&fr, sizeof(fr));
110 	fr.fr_flags = RFFDG | RFPROC;
111 	fr.fr_pidp = &pid;
112 	error = fork1(td, &fr);
113 	if (error == 0) {
114 		td->td_retval[0] = pid;
115 		td->td_retval[1] = 0;
116 	}
117 	return (error);
118 }
119 
120 /* ARGUSED */
121 int
122 sys_pdfork(struct thread *td, struct pdfork_args *uap)
123 {
124 	struct fork_req fr;
125 	int error, fd, pid;
126 
127 	bzero(&fr, sizeof(fr));
128 	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
129 	fr.fr_pidp = &pid;
130 	fr.fr_pd_fd = &fd;
131 	fr.fr_pd_flags = uap->flags;
132 	AUDIT_ARG_FFLAGS(uap->flags);
133 	/*
134 	 * It is necessary to return fd by reference because 0 is a valid file
135 	 * descriptor number, and the child needs to be able to distinguish
136 	 * itself from the parent using the return value.
137 	 */
138 	error = fork1(td, &fr);
139 	if (error == 0) {
140 		td->td_retval[0] = pid;
141 		td->td_retval[1] = 0;
142 		error = copyout(&fd, uap->fdp, sizeof(fd));
143 	}
144 	return (error);
145 }
146 
147 /* ARGSUSED */
148 int
149 sys_vfork(struct thread *td, struct vfork_args *uap)
150 {
151 	struct fork_req fr;
152 	int error, pid;
153 
154 	bzero(&fr, sizeof(fr));
155 	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
156 	fr.fr_pidp = &pid;
157 	error = fork1(td, &fr);
158 	if (error == 0) {
159 		td->td_retval[0] = pid;
160 		td->td_retval[1] = 0;
161 	}
162 	return (error);
163 }
164 
165 int
166 sys_rfork(struct thread *td, struct rfork_args *uap)
167 {
168 	struct fork_req fr;
169 	int error, pid;
170 
171 	/* Don't allow kernel-only flags. */
172 	if ((uap->flags & RFKERNELONLY) != 0)
173 		return (EINVAL);
174 	/* RFSPAWN must not appear with others */
175 	if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN)
176 		return (EINVAL);
177 
178 	AUDIT_ARG_FFLAGS(uap->flags);
179 	bzero(&fr, sizeof(fr));
180 	if ((uap->flags & RFSPAWN) != 0) {
181 		fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
182 		fr.fr_flags2 = FR2_DROPSIG_CAUGHT;
183 	} else {
184 		fr.fr_flags = uap->flags;
185 	}
186 	fr.fr_pidp = &pid;
187 	error = fork1(td, &fr);
188 	if (error == 0) {
189 		td->td_retval[0] = pid;
190 		td->td_retval[1] = 0;
191 	}
192 	return (error);
193 }
194 
195 int __exclusive_cache_line	nprocs = 1;		/* process 0 */
196 int	lastpid = 0;
197 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
198     "Last used PID");
199 
200 /*
201  * Random component to lastpid generation.  We mix in a random factor to make
202  * it a little harder to predict.  We sanity check the modulus value to avoid
203  * doing it in critical paths.  Don't let it be too small or we pointlessly
204  * waste randomness entropy, and don't let it be impossibly large.  Using a
205  * modulus that is too big causes a LOT more process table scans and slows
206  * down fork processing as the pidchecked caching is defeated.
207  */
208 static int randompid = 0;
209 
210 static int
211 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
212 {
213 	int error, pid;
214 
215 	error = sysctl_wire_old_buffer(req, sizeof(int));
216 	if (error != 0)
217 		return(error);
218 	sx_xlock(&allproc_lock);
219 	pid = randompid;
220 	error = sysctl_handle_int(oidp, &pid, 0, req);
221 	if (error == 0 && req->newptr != NULL) {
222 		if (pid == 0)
223 			randompid = 0;
224 		else if (pid == 1)
225 			/* generate a random PID modulus between 100 and 1123 */
226 			randompid = 100 + arc4random() % 1024;
227 		else if (pid < 0 || pid > pid_max - 100)
228 			/* out of range */
229 			randompid = pid_max - 100;
230 		else if (pid < 100)
231 			/* Make it reasonable */
232 			randompid = 100;
233 		else
234 			randompid = pid;
235 	}
236 	sx_xunlock(&allproc_lock);
237 	return (error);
238 }
239 
240 SYSCTL_PROC(_kern, OID_AUTO, randompid,
241     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
242     sysctl_kern_randompid, "I",
243     "Random PID modulus. Special values: 0: disable, 1: choose random value");
244 
245 extern bitstr_t proc_id_pidmap;
246 extern bitstr_t proc_id_grpidmap;
247 extern bitstr_t proc_id_sessidmap;
248 extern bitstr_t proc_id_reapmap;
249 
250 /*
251  * Find an unused process ID
252  *
253  * If RFHIGHPID is set (used during system boot), do not allocate
254  * low-numbered pids.
255  */
256 static int
257 fork_findpid(int flags)
258 {
259 	pid_t result;
260 	int trypid, random;
261 
262 	/*
263 	 * Avoid calling arc4random with procid_lock held.
264 	 */
265 	random = 0;
266 	if (__predict_false(randompid))
267 		random = arc4random() % randompid;
268 
269 	mtx_lock(&procid_lock);
270 
271 	trypid = lastpid + 1;
272 	if (flags & RFHIGHPID) {
273 		if (trypid < 10)
274 			trypid = 10;
275 	} else {
276 		trypid += random;
277 	}
278 retry:
279 	if (trypid >= pid_max)
280 		trypid = 2;
281 
282 	bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result);
283 	if (result == -1) {
284 		KASSERT(trypid != 2, ("unexpectedly ran out of IDs"));
285 		trypid = 2;
286 		goto retry;
287 	}
288 	if (bit_test(&proc_id_grpidmap, result) ||
289 	    bit_test(&proc_id_sessidmap, result) ||
290 	    bit_test(&proc_id_reapmap, result)) {
291 		trypid = result + 1;
292 		goto retry;
293 	}
294 
295 	/*
296 	 * RFHIGHPID does not mess with the lastpid counter during boot.
297 	 */
298 	if ((flags & RFHIGHPID) == 0)
299 		lastpid = result;
300 
301 	bit_set(&proc_id_pidmap, result);
302 	mtx_unlock(&procid_lock);
303 
304 	return (result);
305 }
306 
307 static int
308 fork_norfproc(struct thread *td, int flags)
309 {
310 	int error;
311 	struct proc *p1;
312 
313 	KASSERT((flags & RFPROC) == 0,
314 	    ("fork_norfproc called with RFPROC set"));
315 	p1 = td->td_proc;
316 
317 	/*
318 	 * Quiesce other threads if necessary.  If RFMEM is not specified we
319 	 * must ensure that other threads do not concurrently create a second
320 	 * process sharing the vmspace, see vmspace_unshare().
321 	 */
322 again:
323 	if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
324 	    ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
325 		PROC_LOCK(p1);
326 		while (p1->p_singlethr > 0) {
327 			error = msleep(&p1->p_singlethr, &p1->p_mtx,
328 			    PWAIT | PCATCH, "rfork1t", 0);
329 			if (error != 0) {
330 				PROC_UNLOCK(p1);
331 				return (ERESTART);
332 			}
333 			goto again;
334 		}
335 		if (thread_single(p1, SINGLE_BOUNDARY)) {
336 			PROC_UNLOCK(p1);
337 			return (ERESTART);
338 		}
339 		PROC_UNLOCK(p1);
340 	}
341 
342 	error = vm_forkproc(td, NULL, NULL, NULL, flags);
343 	if (error)
344 		goto fail;
345 
346 	/*
347 	 * Close all file descriptors.
348 	 */
349 	if (flags & RFCFDG) {
350 		struct filedesc *fdtmp;
351 		struct pwddesc *pdtmp;
352 		pdtmp = pdinit(td->td_proc->p_pd, false);
353 		fdtmp = fdinit();
354 		pdescfree(td);
355 		fdescfree(td);
356 		p1->p_fd = fdtmp;
357 		p1->p_pd = pdtmp;
358 	}
359 
360 	/*
361 	 * Unshare file descriptors (from parent).
362 	 */
363 	if (flags & RFFDG) {
364 		fdunshare(td);
365 		pdunshare(td);
366 	}
367 
368 fail:
369 	if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
370 	    ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
371 		PROC_LOCK(p1);
372 		thread_single_end(p1, SINGLE_BOUNDARY);
373 		PROC_UNLOCK(p1);
374 	}
375 	return (error);
376 }
377 
378 static void
379 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
380     struct vmspace *vm2, struct file *fp_procdesc)
381 {
382 	struct proc *p1, *pptr;
383 	struct filedesc *fd;
384 	struct filedesc_to_leader *fdtol;
385 	struct pwddesc *pd;
386 	struct sigacts *newsigacts;
387 
388 	p1 = td->td_proc;
389 
390 	PROC_LOCK(p1);
391 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
392 	    __rangeof(struct proc, p_startcopy, p_endcopy));
393 	pargs_hold(p2->p_args);
394 	PROC_UNLOCK(p1);
395 
396 	bzero(&p2->p_startzero,
397 	    __rangeof(struct proc, p_startzero, p_endzero));
398 
399 	/* Tell the prison that we exist. */
400 	prison_proc_hold(p2->p_ucred->cr_prison);
401 
402 	p2->p_state = PRS_NEW;		/* protect against others */
403 	p2->p_pid = fork_findpid(fr->fr_flags);
404 	AUDIT_ARG_PID(p2->p_pid);
405 	TSFORK(p2->p_pid, p1->p_pid);
406 
407 	sx_xlock(&allproc_lock);
408 	LIST_INSERT_HEAD(&allproc, p2, p_list);
409 	allproc_gen++;
410 	sx_xunlock(&allproc_lock);
411 
412 	sx_xlock(PIDHASHLOCK(p2->p_pid));
413 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
414 	sx_xunlock(PIDHASHLOCK(p2->p_pid));
415 
416 	tidhash_add(td2);
417 
418 	/*
419 	 * Malloc things while we don't hold any locks.
420 	 */
421 	if (fr->fr_flags & RFSIGSHARE)
422 		newsigacts = NULL;
423 	else
424 		newsigacts = sigacts_alloc();
425 
426 	/*
427 	 * Copy filedesc.
428 	 */
429 	if (fr->fr_flags & RFCFDG) {
430 		pd = pdinit(p1->p_pd, false);
431 		fd = fdinit();
432 		fdtol = NULL;
433 	} else if (fr->fr_flags & RFFDG) {
434 		if (fr->fr_flags2 & FR2_SHARE_PATHS)
435 			pd = pdshare(p1->p_pd);
436 		else
437 			pd = pdcopy(p1->p_pd);
438 		fd = fdcopy(p1->p_fd);
439 		fdtol = NULL;
440 	} else {
441 		if (fr->fr_flags2 & FR2_SHARE_PATHS)
442 			pd = pdcopy(p1->p_pd);
443 		else
444 			pd = pdshare(p1->p_pd);
445 		fd = fdshare(p1->p_fd);
446 		if (p1->p_fdtol == NULL)
447 			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
448 			    p1->p_leader);
449 		if ((fr->fr_flags & RFTHREAD) != 0) {
450 			/*
451 			 * Shared file descriptor table, and shared
452 			 * process leaders.
453 			 */
454 			fdtol = filedesc_to_leader_share(p1->p_fdtol, p1->p_fd);
455 		} else {
456 			/*
457 			 * Shared file descriptor table, and different
458 			 * process leaders.
459 			 */
460 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
461 			    p1->p_fd, p2);
462 		}
463 	}
464 	/*
465 	 * Make a proc table entry for the new process.
466 	 * Start by zeroing the section of proc that is zero-initialized,
467 	 * then copy the section that is copied directly from the parent.
468 	 */
469 
470 	PROC_LOCK(p2);
471 	PROC_LOCK(p1);
472 
473 	bzero(&td2->td_startzero,
474 	    __rangeof(struct thread, td_startzero, td_endzero));
475 
476 	bcopy(&td->td_startcopy, &td2->td_startcopy,
477 	    __rangeof(struct thread, td_startcopy, td_endcopy));
478 
479 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
480 	td2->td_sigstk = td->td_sigstk;
481 	td2->td_flags = TDF_INMEM;
482 	td2->td_lend_user_pri = PRI_MAX;
483 
484 #ifdef VIMAGE
485 	td2->td_vnet = NULL;
486 	td2->td_vnet_lpush = NULL;
487 #endif
488 
489 	/*
490 	 * Allow the scheduler to initialize the child.
491 	 */
492 	thread_lock(td);
493 	sched_fork(td, td2);
494 	/*
495 	 * Request AST to check for TDP_RFPPWAIT.  Do it here
496 	 * to avoid calling thread_lock() again.
497 	 */
498 	if ((fr->fr_flags & RFPPWAIT) != 0)
499 		ast_sched_locked(td, TDA_VFORK);
500 	thread_unlock(td);
501 
502 	/*
503 	 * Duplicate sub-structures as needed.
504 	 * Increase reference counts on shared objects.
505 	 */
506 	p2->p_flag = P_INMEM;
507 	p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE |
508 	    P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC |
509 	    P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP |
510 	    P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC | P2_NO_NEW_PRIVS |
511 	    P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
512 	p2->p_swtick = ticks;
513 	if (p1->p_flag & P_PROFIL)
514 		startprofclock(p2);
515 
516 	if (fr->fr_flags & RFSIGSHARE) {
517 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
518 	} else {
519 		sigacts_copy(newsigacts, p1->p_sigacts);
520 		p2->p_sigacts = newsigacts;
521 		if ((fr->fr_flags2 & (FR2_DROPSIG_CAUGHT | FR2_KPROC)) != 0) {
522 			mtx_lock(&p2->p_sigacts->ps_mtx);
523 			if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0)
524 				sig_drop_caught(p2);
525 			if ((fr->fr_flags2 & FR2_KPROC) != 0)
526 				p2->p_sigacts->ps_flag |= PS_NOCLDWAIT;
527 			mtx_unlock(&p2->p_sigacts->ps_mtx);
528 		}
529 	}
530 
531 	if (fr->fr_flags & RFTSIGZMB)
532 	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
533 	else if (fr->fr_flags & RFLINUXTHPN)
534 	        p2->p_sigparent = SIGUSR1;
535 	else
536 	        p2->p_sigparent = SIGCHLD;
537 
538 	if ((fr->fr_flags2 & FR2_KPROC) != 0) {
539 		p2->p_flag |= P_SYSTEM | P_KPROC;
540 		td2->td_pflags |= TDP_KTHREAD;
541 	}
542 
543 	p2->p_textvp = p1->p_textvp;
544 	p2->p_textdvp = p1->p_textdvp;
545 	p2->p_fd = fd;
546 	p2->p_fdtol = fdtol;
547 	p2->p_pd = pd;
548 
549 	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
550 		p2->p_flag |= P_PROTECTED;
551 		p2->p_flag2 |= P2_INHERIT_PROTECTED;
552 	}
553 
554 	/*
555 	 * p_limit is copy-on-write.  Bump its refcount.
556 	 */
557 	lim_fork(p1, p2);
558 
559 	thread_cow_get_proc(td2, p2);
560 
561 	pstats_fork(p1->p_stats, p2->p_stats);
562 
563 	PROC_UNLOCK(p1);
564 	PROC_UNLOCK(p2);
565 
566 	/*
567 	 * Bump references to the text vnode and directory, and copy
568 	 * the hardlink name.
569 	 */
570 	if (p2->p_textvp != NULL)
571 		vrefact(p2->p_textvp);
572 	if (p2->p_textdvp != NULL)
573 		vrefact(p2->p_textdvp);
574 	p2->p_binname = p1->p_binname == NULL ? NULL :
575 	    strdup(p1->p_binname, M_PARGS);
576 
577 	/*
578 	 * Set up linkage for kernel based threading.
579 	 */
580 	if ((fr->fr_flags & RFTHREAD) != 0) {
581 		mtx_lock(&ppeers_lock);
582 		p2->p_peers = p1->p_peers;
583 		p1->p_peers = p2;
584 		p2->p_leader = p1->p_leader;
585 		mtx_unlock(&ppeers_lock);
586 		PROC_LOCK(p1->p_leader);
587 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
588 			PROC_UNLOCK(p1->p_leader);
589 			/*
590 			 * The task leader is exiting, so process p1 is
591 			 * going to be killed shortly.  Since p1 obviously
592 			 * isn't dead yet, we know that the leader is either
593 			 * sending SIGKILL's to all the processes in this
594 			 * task or is sleeping waiting for all the peers to
595 			 * exit.  We let p1 complete the fork, but we need
596 			 * to go ahead and kill the new process p2 since
597 			 * the task leader may not get a chance to send
598 			 * SIGKILL to it.  We leave it on the list so that
599 			 * the task leader will wait for this new process
600 			 * to commit suicide.
601 			 */
602 			PROC_LOCK(p2);
603 			kern_psignal(p2, SIGKILL);
604 			PROC_UNLOCK(p2);
605 		} else
606 			PROC_UNLOCK(p1->p_leader);
607 	} else {
608 		p2->p_peers = NULL;
609 		p2->p_leader = p2;
610 	}
611 
612 	sx_xlock(&proctree_lock);
613 	PGRP_LOCK(p1->p_pgrp);
614 	PROC_LOCK(p2);
615 	PROC_LOCK(p1);
616 
617 	/*
618 	 * Preserve some more flags in subprocess.  P_PROFIL has already
619 	 * been preserved.
620 	 */
621 	p2->p_flag |= p1->p_flag & P_SUGID;
622 	td2->td_pflags |= (td->td_pflags & (TDP_ALTSTACK | TDP_SIGFASTBLOCK));
623 	SESS_LOCK(p1->p_session);
624 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
625 		p2->p_flag |= P_CONTROLT;
626 	SESS_UNLOCK(p1->p_session);
627 	if (fr->fr_flags & RFPPWAIT)
628 		p2->p_flag |= P_PPWAIT;
629 
630 	p2->p_pgrp = p1->p_pgrp;
631 	LIST_INSERT_AFTER(p1, p2, p_pglist);
632 	PGRP_UNLOCK(p1->p_pgrp);
633 	LIST_INIT(&p2->p_children);
634 	LIST_INIT(&p2->p_orphans);
635 
636 	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
637 	TAILQ_INIT(&p2->p_kqtim_stop);
638 
639 	/*
640 	 * This begins the section where we must prevent the parent
641 	 * from being swapped.
642 	 */
643 	_PHOLD(p1);
644 	PROC_UNLOCK(p1);
645 
646 	/*
647 	 * Attach the new process to its parent.
648 	 *
649 	 * If RFNOWAIT is set, the newly created process becomes a child
650 	 * of init.  This effectively disassociates the child from the
651 	 * parent.
652 	 */
653 	if ((fr->fr_flags & RFNOWAIT) != 0) {
654 		pptr = p1->p_reaper;
655 		p2->p_reaper = pptr;
656 	} else {
657 		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
658 		    p1 : p1->p_reaper;
659 		pptr = p1;
660 	}
661 	p2->p_pptr = pptr;
662 	p2->p_oppid = pptr->p_pid;
663 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
664 	LIST_INIT(&p2->p_reaplist);
665 	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
666 	if (p2->p_reaper == p1 && p1 != initproc) {
667 		p2->p_reapsubtree = p2->p_pid;
668 		proc_id_set_cond(PROC_ID_REAP, p2->p_pid);
669 	}
670 	sx_xunlock(&proctree_lock);
671 
672 	/* Inform accounting that we have forked. */
673 	p2->p_acflag = AFORK;
674 	PROC_UNLOCK(p2);
675 
676 #ifdef KTRACE
677 	ktrprocfork(p1, p2);
678 #endif
679 
680 	/*
681 	 * Finish creating the child process.  It will return via a different
682 	 * execution path later.  (ie: directly into user mode)
683 	 */
684 	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
685 
686 	if (fr->fr_flags == (RFFDG | RFPROC)) {
687 		VM_CNT_INC(v_forks);
688 		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
689 		    p2->p_vmspace->vm_ssize);
690 	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
691 		VM_CNT_INC(v_vforks);
692 		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
693 		    p2->p_vmspace->vm_ssize);
694 	} else if (p1 == &proc0) {
695 		VM_CNT_INC(v_kthreads);
696 		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
697 		    p2->p_vmspace->vm_ssize);
698 	} else {
699 		VM_CNT_INC(v_rforks);
700 		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
701 		    p2->p_vmspace->vm_ssize);
702 	}
703 
704 	/*
705 	 * Associate the process descriptor with the process before anything
706 	 * can happen that might cause that process to need the descriptor.
707 	 * However, don't do this until after fork(2) can no longer fail.
708 	 */
709 	if (fr->fr_flags & RFPROCDESC)
710 		procdesc_new(p2, fr->fr_pd_flags);
711 
712 	/*
713 	 * Both processes are set up, now check if any loadable modules want
714 	 * to adjust anything.
715 	 */
716 	EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
717 
718 	/*
719 	 * Set the child start time and mark the process as being complete.
720 	 */
721 	PROC_LOCK(p2);
722 	PROC_LOCK(p1);
723 	microuptime(&p2->p_stats->p_start);
724 	PROC_SLOCK(p2);
725 	p2->p_state = PRS_NORMAL;
726 	PROC_SUNLOCK(p2);
727 
728 #ifdef KDTRACE_HOOKS
729 	/*
730 	 * Tell the DTrace fasttrap provider about the new process so that any
731 	 * tracepoints inherited from the parent can be removed. We have to do
732 	 * this only after p_state is PRS_NORMAL since the fasttrap module will
733 	 * use pfind() later on.
734 	 */
735 	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
736 		dtrace_fasttrap_fork(p1, p2);
737 #endif
738 	if (fr->fr_flags & RFPPWAIT) {
739 		td->td_pflags |= TDP_RFPPWAIT;
740 		td->td_rfppwait_p = p2;
741 		td->td_dbgflags |= TDB_VFORK;
742 	}
743 	PROC_UNLOCK(p2);
744 
745 	/*
746 	 * Tell any interested parties about the new process.
747 	 */
748 	knote_fork(p1->p_klist, p2->p_pid);
749 
750 	/*
751 	 * Now can be swapped.
752 	 */
753 	_PRELE(p1);
754 	PROC_UNLOCK(p1);
755 	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
756 
757 	if (fr->fr_flags & RFPROCDESC) {
758 		procdesc_finit(p2->p_procdesc, fp_procdesc);
759 		fdrop(fp_procdesc, td);
760 	}
761 
762 	/*
763 	 * Speculative check for PTRACE_FORK. PTRACE_FORK is not
764 	 * synced with forks in progress so it is OK if we miss it
765 	 * if being set atm.
766 	 */
767 	if ((p1->p_ptevents & PTRACE_FORK) != 0) {
768 		sx_xlock(&proctree_lock);
769 		PROC_LOCK(p2);
770 
771 		/*
772 		 * p1->p_ptevents & p1->p_pptr are protected by both
773 		 * process and proctree locks for modifications,
774 		 * so owning proctree_lock allows the race-free read.
775 		 */
776 		if ((p1->p_ptevents & PTRACE_FORK) != 0) {
777 			/*
778 			 * Arrange for debugger to receive the fork event.
779 			 *
780 			 * We can report PL_FLAG_FORKED regardless of
781 			 * P_FOLLOWFORK settings, but it does not make a sense
782 			 * for runaway child.
783 			 */
784 			td->td_dbgflags |= TDB_FORK;
785 			td->td_dbg_forked = p2->p_pid;
786 			td2->td_dbgflags |= TDB_STOPATFORK;
787 			proc_set_traced(p2, true);
788 			CTR2(KTR_PTRACE,
789 			    "do_fork: attaching to new child pid %d: oppid %d",
790 			    p2->p_pid, p2->p_oppid);
791 			proc_reparent(p2, p1->p_pptr, false);
792 		}
793 		PROC_UNLOCK(p2);
794 		sx_xunlock(&proctree_lock);
795 	}
796 
797 	racct_proc_fork_done(p2);
798 
799 	if ((fr->fr_flags & RFSTOPPED) == 0) {
800 		if (fr->fr_pidp != NULL)
801 			*fr->fr_pidp = p2->p_pid;
802 		/*
803 		 * If RFSTOPPED not requested, make child runnable and
804 		 * add to run queue.
805 		 */
806 		thread_lock(td2);
807 		TD_SET_CAN_RUN(td2);
808 		sched_add(td2, SRQ_BORING);
809 	} else {
810 		*fr->fr_procp = p2;
811 	}
812 }
813 
814 static void
815 ast_vfork(struct thread *td, int tda __unused)
816 {
817 	struct proc *p, *p2;
818 
819 	MPASS(td->td_pflags & TDP_RFPPWAIT);
820 
821 	p = td->td_proc;
822 	/*
823 	 * Preserve synchronization semantics of vfork.  If
824 	 * waiting for child to exec or exit, fork set
825 	 * P_PPWAIT on child, and there we sleep on our proc
826 	 * (in case of exit).
827 	 *
828 	 * Do it after the ptracestop() above is finished, to
829 	 * not block our debugger until child execs or exits
830 	 * to finish vfork wait.
831 	 */
832 	td->td_pflags &= ~TDP_RFPPWAIT;
833 	p2 = td->td_rfppwait_p;
834 again:
835 	PROC_LOCK(p2);
836 	while (p2->p_flag & P_PPWAIT) {
837 		PROC_LOCK(p);
838 		if (thread_suspend_check_needed()) {
839 			PROC_UNLOCK(p2);
840 			thread_suspend_check(0);
841 			PROC_UNLOCK(p);
842 			goto again;
843 		} else {
844 			PROC_UNLOCK(p);
845 		}
846 		cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz);
847 	}
848 	PROC_UNLOCK(p2);
849 
850 	if (td->td_dbgflags & TDB_VFORK) {
851 		PROC_LOCK(p);
852 		if (p->p_ptevents & PTRACE_VFORK)
853 			ptracestop(td, SIGTRAP, NULL);
854 		td->td_dbgflags &= ~TDB_VFORK;
855 		PROC_UNLOCK(p);
856 	}
857 }
858 
859 int
860 fork1(struct thread *td, struct fork_req *fr)
861 {
862 	struct proc *p1, *newproc;
863 	struct thread *td2;
864 	struct vmspace *vm2;
865 	struct ucred *cred;
866 	struct file *fp_procdesc;
867 	vm_ooffset_t mem_charged;
868 	int error, nprocs_new;
869 	static int curfail;
870 	static struct timeval lastfail;
871 	int flags, pages;
872 
873 	flags = fr->fr_flags;
874 	pages = fr->fr_pages;
875 
876 	if ((flags & RFSTOPPED) != 0)
877 		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
878 	else
879 		MPASS(fr->fr_procp == NULL);
880 
881 	/* Check for the undefined or unimplemented flags. */
882 	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
883 		return (EINVAL);
884 
885 	/* Signal value requires RFTSIGZMB. */
886 	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
887 		return (EINVAL);
888 
889 	/* Can't copy and clear. */
890 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
891 		return (EINVAL);
892 
893 	/* Check the validity of the signal number. */
894 	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
895 		return (EINVAL);
896 
897 	if ((flags & RFPROCDESC) != 0) {
898 		/* Can't not create a process yet get a process descriptor. */
899 		if ((flags & RFPROC) == 0)
900 			return (EINVAL);
901 
902 		/* Must provide a place to put a procdesc if creating one. */
903 		if (fr->fr_pd_fd == NULL)
904 			return (EINVAL);
905 
906 		/* Check if we are using supported flags. */
907 		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
908 			return (EINVAL);
909 	}
910 
911 	p1 = td->td_proc;
912 
913 	/*
914 	 * Here we don't create a new process, but we divorce
915 	 * certain parts of a process from itself.
916 	 */
917 	if ((flags & RFPROC) == 0) {
918 		if (fr->fr_procp != NULL)
919 			*fr->fr_procp = NULL;
920 		else if (fr->fr_pidp != NULL)
921 			*fr->fr_pidp = 0;
922 		return (fork_norfproc(td, flags));
923 	}
924 
925 	fp_procdesc = NULL;
926 	newproc = NULL;
927 	vm2 = NULL;
928 
929 	/*
930 	 * Increment the nprocs resource before allocations occur.
931 	 * Although process entries are dynamically created, we still
932 	 * keep a global limit on the maximum number we will
933 	 * create. There are hard-limits as to the number of processes
934 	 * that can run, established by the KVA and memory usage for
935 	 * the process data.
936 	 *
937 	 * Don't allow a nonprivileged user to use the last ten
938 	 * processes; don't let root exceed the limit.
939 	 */
940 	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
941 	if (nprocs_new >= maxproc - 10) {
942 		if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 ||
943 		    nprocs_new >= maxproc) {
944 			error = EAGAIN;
945 			sx_xlock(&allproc_lock);
946 			if (ppsratecheck(&lastfail, &curfail, 1)) {
947 				printf("maxproc limit exceeded by uid %u "
948 				    "(pid %d); see tuning(7) and "
949 				    "login.conf(5)\n",
950 				    td->td_ucred->cr_ruid, p1->p_pid);
951 			}
952 			sx_xunlock(&allproc_lock);
953 			goto fail2;
954 		}
955 	}
956 
957 	/*
958 	 * If required, create a process descriptor in the parent first; we
959 	 * will abandon it if something goes wrong. We don't finit() until
960 	 * later.
961 	 */
962 	if (flags & RFPROCDESC) {
963 		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
964 		    fr->fr_pd_flags, fr->fr_pd_fcaps);
965 		if (error != 0)
966 			goto fail2;
967 		AUDIT_ARG_FD(*fr->fr_pd_fd);
968 	}
969 
970 	mem_charged = 0;
971 	if (pages == 0)
972 		pages = kstack_pages;
973 	/* Allocate new proc. */
974 	newproc = uma_zalloc(proc_zone, M_WAITOK);
975 	td2 = FIRST_THREAD_IN_PROC(newproc);
976 	if (td2 == NULL) {
977 		td2 = thread_alloc(pages);
978 		if (td2 == NULL) {
979 			error = ENOMEM;
980 			goto fail2;
981 		}
982 		proc_linkup(newproc, td2);
983 	} else {
984 		kmsan_thread_alloc(td2);
985 		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
986 			if (td2->td_kstack != 0)
987 				vm_thread_dispose(td2);
988 			if (!thread_alloc_stack(td2, pages)) {
989 				error = ENOMEM;
990 				goto fail2;
991 			}
992 		}
993 	}
994 
995 	if ((flags & RFMEM) == 0) {
996 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
997 		if (vm2 == NULL) {
998 			error = ENOMEM;
999 			goto fail2;
1000 		}
1001 		if (!swap_reserve(mem_charged)) {
1002 			/*
1003 			 * The swap reservation failed. The accounting
1004 			 * from the entries of the copied vm2 will be
1005 			 * subtracted in vmspace_free(), so force the
1006 			 * reservation there.
1007 			 */
1008 			swap_reserve_force(mem_charged);
1009 			error = ENOMEM;
1010 			goto fail2;
1011 		}
1012 	} else
1013 		vm2 = NULL;
1014 
1015 	/*
1016 	 * XXX: This is ugly; when we copy resource usage, we need to bump
1017 	 *      per-cred resource counters.
1018 	 */
1019 	proc_set_cred_init(newproc, td->td_ucred);
1020 
1021 	/*
1022 	 * Initialize resource accounting for the child process.
1023 	 */
1024 	error = racct_proc_fork(p1, newproc);
1025 	if (error != 0) {
1026 		error = EAGAIN;
1027 		goto fail1;
1028 	}
1029 
1030 #ifdef MAC
1031 	mac_proc_init(newproc);
1032 #endif
1033 	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
1034 	STAILQ_INIT(&newproc->p_ktr);
1035 
1036 	/*
1037 	 * Increment the count of procs running with this uid. Don't allow
1038 	 * a nonprivileged user to exceed their current limit.
1039 	 */
1040 	cred = td->td_ucred;
1041 	if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) {
1042 		if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0)
1043 			goto fail0;
1044 		chgproccnt(cred->cr_ruidinfo, 1, 0);
1045 	}
1046 
1047 	do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
1048 	return (0);
1049 fail0:
1050 	error = EAGAIN;
1051 #ifdef MAC
1052 	mac_proc_destroy(newproc);
1053 #endif
1054 	racct_proc_exit(newproc);
1055 fail1:
1056 	proc_unset_cred(newproc);
1057 fail2:
1058 	if (vm2 != NULL)
1059 		vmspace_free(vm2);
1060 	uma_zfree(proc_zone, newproc);
1061 	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
1062 		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1063 		fdrop(fp_procdesc, td);
1064 	}
1065 	atomic_add_int(&nprocs, -1);
1066 	pause("fork", hz / 2);
1067 	return (error);
1068 }
1069 
1070 /*
1071  * Handle the return of a child process from fork1().  This function
1072  * is called from the MD fork_trampoline() entry point.
1073  */
1074 void
1075 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1076     struct trapframe *frame)
1077 {
1078 	struct proc *p;
1079 	struct thread *td;
1080 	struct thread *dtd;
1081 
1082 	kmsan_mark(frame, sizeof(*frame), KMSAN_STATE_INITED);
1083 
1084 	td = curthread;
1085 	p = td->td_proc;
1086 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1087 
1088 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1089 	    td, td_get_sched(td), p->p_pid, td->td_name);
1090 
1091 	sched_fork_exit(td);
1092 	/*
1093 	* Processes normally resume in mi_switch() after being
1094 	* cpu_switch()'ed to, but when children start up they arrive here
1095 	* instead, so we must do much the same things as mi_switch() would.
1096 	*/
1097 	if ((dtd = PCPU_GET(deadthread))) {
1098 		PCPU_SET(deadthread, NULL);
1099 		thread_stash(dtd);
1100 	}
1101 	thread_unlock(td);
1102 
1103 	/*
1104 	 * cpu_fork_kthread_handler intercepts this function call to
1105 	 * have this call a non-return function to stay in kernel mode.
1106 	 * initproc has its own fork handler, but it does return.
1107 	 */
1108 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1109 	callout(arg, frame);
1110 
1111 	/*
1112 	 * Check if a kernel thread misbehaved and returned from its main
1113 	 * function.
1114 	 */
1115 	if (p->p_flag & P_KPROC) {
1116 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1117 		    td->td_name, p->p_pid);
1118 		kthread_exit();
1119 	}
1120 	mtx_assert(&Giant, MA_NOTOWNED);
1121 
1122 	if (p->p_sysent->sv_schedtail != NULL)
1123 		(p->p_sysent->sv_schedtail)(td);
1124 }
1125 
1126 /*
1127  * Simplified back end of syscall(), used when returning from fork()
1128  * directly into user mode.  This function is passed in to fork_exit()
1129  * as the first parameter and is called when returning to a new
1130  * userland process.
1131  */
1132 void
1133 fork_return(struct thread *td, struct trapframe *frame)
1134 {
1135 	struct proc *p;
1136 
1137 	p = td->td_proc;
1138 	if (td->td_dbgflags & TDB_STOPATFORK) {
1139 		PROC_LOCK(p);
1140 		if ((p->p_flag & P_TRACED) != 0) {
1141 			/*
1142 			 * Inform the debugger if one is still present.
1143 			 */
1144 			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1145 			ptracestop(td, SIGSTOP, NULL);
1146 			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1147 		} else {
1148 			/*
1149 			 * ... otherwise clear the request.
1150 			 */
1151 			td->td_dbgflags &= ~TDB_STOPATFORK;
1152 		}
1153 		PROC_UNLOCK(p);
1154 	} else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
1155  		/*
1156 		 * This is the start of a new thread in a traced
1157 		 * process.  Report a system call exit event.
1158 		 */
1159 		PROC_LOCK(p);
1160 		td->td_dbgflags |= TDB_SCX;
1161 		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1162 		    (td->td_dbgflags & TDB_BORN) != 0)
1163 			ptracestop(td, SIGTRAP, NULL);
1164 		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1165 		PROC_UNLOCK(p);
1166 	}
1167 
1168 	/*
1169 	 * If the prison was killed mid-fork, die along with it.
1170 	 */
1171 	if (!prison_isalive(td->td_ucred->cr_prison))
1172 		exit1(td, 0, SIGKILL);
1173 
1174 	userret(td, frame);
1175 
1176 #ifdef KTRACE
1177 	if (KTRPOINT(td, KTR_SYSRET))
1178 		ktrsysret(SYS_fork, 0, 0);
1179 #endif
1180 }
1181 
1182 static void
1183 fork_init(void *arg __unused)
1184 {
1185 	ast_register(TDA_VFORK, ASTR_ASTF_REQUIRED | ASTR_TDP, TDP_RFPPWAIT,
1186 	    ast_vfork);
1187 }
1188 SYSINIT(fork, SI_SUB_INTRINSIC, SI_ORDER_ANY, fork_init, NULL);
1189