1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ktrace.h" 43 #include "opt_kstack_pages.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/bitstring.h> 48 #include <sys/sysproto.h> 49 #include <sys/eventhandler.h> 50 #include <sys/fcntl.h> 51 #include <sys/filedesc.h> 52 #include <sys/jail.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/sysctl.h> 56 #include <sys/lock.h> 57 #include <sys/malloc.h> 58 #include <sys/mutex.h> 59 #include <sys/priv.h> 60 #include <sys/proc.h> 61 #include <sys/procdesc.h> 62 #include <sys/ptrace.h> 63 #include <sys/racct.h> 64 #include <sys/resourcevar.h> 65 #include <sys/sched.h> 66 #include <sys/syscall.h> 67 #include <sys/vmmeter.h> 68 #include <sys/vnode.h> 69 #include <sys/acct.h> 70 #include <sys/ktr.h> 71 #include <sys/ktrace.h> 72 #include <sys/unistd.h> 73 #include <sys/sdt.h> 74 #include <sys/sx.h> 75 #include <sys/sysent.h> 76 #include <sys/signalvar.h> 77 78 #include <security/audit/audit.h> 79 #include <security/mac/mac_framework.h> 80 81 #include <vm/vm.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_extern.h> 85 #include <vm/uma.h> 86 87 #ifdef KDTRACE_HOOKS 88 #include <sys/dtrace_bsd.h> 89 dtrace_fork_func_t dtrace_fasttrap_fork; 90 #endif 91 92 SDT_PROVIDER_DECLARE(proc); 93 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int"); 94 95 #ifndef _SYS_SYSPROTO_H_ 96 struct fork_args { 97 int dummy; 98 }; 99 #endif 100 101 /* ARGSUSED */ 102 int 103 sys_fork(struct thread *td, struct fork_args *uap) 104 { 105 struct fork_req fr; 106 int error, pid; 107 108 bzero(&fr, sizeof(fr)); 109 fr.fr_flags = RFFDG | RFPROC; 110 fr.fr_pidp = &pid; 111 error = fork1(td, &fr); 112 if (error == 0) { 113 td->td_retval[0] = pid; 114 td->td_retval[1] = 0; 115 } 116 return (error); 117 } 118 119 /* ARGUSED */ 120 int 121 sys_pdfork(struct thread *td, struct pdfork_args *uap) 122 { 123 struct fork_req fr; 124 int error, fd, pid; 125 126 bzero(&fr, sizeof(fr)); 127 fr.fr_flags = RFFDG | RFPROC | RFPROCDESC; 128 fr.fr_pidp = &pid; 129 fr.fr_pd_fd = &fd; 130 fr.fr_pd_flags = uap->flags; 131 AUDIT_ARG_FFLAGS(uap->flags); 132 /* 133 * It is necessary to return fd by reference because 0 is a valid file 134 * descriptor number, and the child needs to be able to distinguish 135 * itself from the parent using the return value. 136 */ 137 error = fork1(td, &fr); 138 if (error == 0) { 139 td->td_retval[0] = pid; 140 td->td_retval[1] = 0; 141 error = copyout(&fd, uap->fdp, sizeof(fd)); 142 } 143 return (error); 144 } 145 146 /* ARGSUSED */ 147 int 148 sys_vfork(struct thread *td, struct vfork_args *uap) 149 { 150 struct fork_req fr; 151 int error, pid; 152 153 bzero(&fr, sizeof(fr)); 154 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; 155 fr.fr_pidp = &pid; 156 error = fork1(td, &fr); 157 if (error == 0) { 158 td->td_retval[0] = pid; 159 td->td_retval[1] = 0; 160 } 161 return (error); 162 } 163 164 int 165 sys_rfork(struct thread *td, struct rfork_args *uap) 166 { 167 struct fork_req fr; 168 int error, pid; 169 170 /* Don't allow kernel-only flags. */ 171 if ((uap->flags & RFKERNELONLY) != 0) 172 return (EINVAL); 173 /* RFSPAWN must not appear with others */ 174 if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN) 175 return (EINVAL); 176 177 AUDIT_ARG_FFLAGS(uap->flags); 178 bzero(&fr, sizeof(fr)); 179 if ((uap->flags & RFSPAWN) != 0) { 180 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; 181 fr.fr_flags2 = FR2_DROPSIG_CAUGHT; 182 } else { 183 fr.fr_flags = uap->flags; 184 } 185 fr.fr_pidp = &pid; 186 error = fork1(td, &fr); 187 if (error == 0) { 188 td->td_retval[0] = pid; 189 td->td_retval[1] = 0; 190 } 191 return (error); 192 } 193 194 int __exclusive_cache_line nprocs = 1; /* process 0 */ 195 int lastpid = 0; 196 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 197 "Last used PID"); 198 199 /* 200 * Random component to lastpid generation. We mix in a random factor to make 201 * it a little harder to predict. We sanity check the modulus value to avoid 202 * doing it in critical paths. Don't let it be too small or we pointlessly 203 * waste randomness entropy, and don't let it be impossibly large. Using a 204 * modulus that is too big causes a LOT more process table scans and slows 205 * down fork processing as the pidchecked caching is defeated. 206 */ 207 static int randompid = 0; 208 209 static int 210 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 211 { 212 int error, pid; 213 214 error = sysctl_wire_old_buffer(req, sizeof(int)); 215 if (error != 0) 216 return(error); 217 sx_xlock(&allproc_lock); 218 pid = randompid; 219 error = sysctl_handle_int(oidp, &pid, 0, req); 220 if (error == 0 && req->newptr != NULL) { 221 if (pid == 0) 222 randompid = 0; 223 else if (pid == 1) 224 /* generate a random PID modulus between 100 and 1123 */ 225 randompid = 100 + arc4random() % 1024; 226 else if (pid < 0 || pid > pid_max - 100) 227 /* out of range */ 228 randompid = pid_max - 100; 229 else if (pid < 100) 230 /* Make it reasonable */ 231 randompid = 100; 232 else 233 randompid = pid; 234 } 235 sx_xunlock(&allproc_lock); 236 return (error); 237 } 238 239 SYSCTL_PROC(_kern, OID_AUTO, randompid, 240 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0, 241 sysctl_kern_randompid, "I", 242 "Random PID modulus. Special values: 0: disable, 1: choose random value"); 243 244 extern bitstr_t proc_id_pidmap; 245 extern bitstr_t proc_id_grpidmap; 246 extern bitstr_t proc_id_sessidmap; 247 extern bitstr_t proc_id_reapmap; 248 249 /* 250 * Find an unused process ID 251 * 252 * If RFHIGHPID is set (used during system boot), do not allocate 253 * low-numbered pids. 254 */ 255 static int 256 fork_findpid(int flags) 257 { 258 pid_t result; 259 int trypid, random; 260 261 /* 262 * Avoid calling arc4random with procid_lock held. 263 */ 264 random = 0; 265 if (__predict_false(randompid)) 266 random = arc4random() % randompid; 267 268 mtx_lock(&procid_lock); 269 270 trypid = lastpid + 1; 271 if (flags & RFHIGHPID) { 272 if (trypid < 10) 273 trypid = 10; 274 } else { 275 trypid += random; 276 } 277 retry: 278 if (trypid >= pid_max) 279 trypid = 2; 280 281 bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result); 282 if (result == -1) { 283 KASSERT(trypid != 2, ("unexpectedly ran out of IDs")); 284 trypid = 2; 285 goto retry; 286 } 287 if (bit_test(&proc_id_grpidmap, result) || 288 bit_test(&proc_id_sessidmap, result) || 289 bit_test(&proc_id_reapmap, result)) { 290 trypid = result + 1; 291 goto retry; 292 } 293 294 /* 295 * RFHIGHPID does not mess with the lastpid counter during boot. 296 */ 297 if ((flags & RFHIGHPID) == 0) 298 lastpid = result; 299 300 bit_set(&proc_id_pidmap, result); 301 mtx_unlock(&procid_lock); 302 303 return (result); 304 } 305 306 static int 307 fork_norfproc(struct thread *td, int flags) 308 { 309 int error; 310 struct proc *p1; 311 312 KASSERT((flags & RFPROC) == 0, 313 ("fork_norfproc called with RFPROC set")); 314 p1 = td->td_proc; 315 316 /* 317 * Quiesce other threads if necessary. If RFMEM is not specified we 318 * must ensure that other threads do not concurrently create a second 319 * process sharing the vmspace, see vmspace_unshare(). 320 */ 321 if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS && 322 ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) { 323 PROC_LOCK(p1); 324 if (thread_single(p1, SINGLE_BOUNDARY)) { 325 PROC_UNLOCK(p1); 326 return (ERESTART); 327 } 328 PROC_UNLOCK(p1); 329 } 330 331 error = vm_forkproc(td, NULL, NULL, NULL, flags); 332 if (error) 333 goto fail; 334 335 /* 336 * Close all file descriptors. 337 */ 338 if (flags & RFCFDG) { 339 struct filedesc *fdtmp; 340 struct pwddesc *pdtmp; 341 pdtmp = pdinit(td->td_proc->p_pd, false); 342 fdtmp = fdinit(td->td_proc->p_fd, false, NULL); 343 pdescfree(td); 344 fdescfree(td); 345 p1->p_fd = fdtmp; 346 p1->p_pd = pdtmp; 347 } 348 349 /* 350 * Unshare file descriptors (from parent). 351 */ 352 if (flags & RFFDG) { 353 fdunshare(td); 354 pdunshare(td); 355 } 356 357 fail: 358 if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS && 359 ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) { 360 PROC_LOCK(p1); 361 thread_single_end(p1, SINGLE_BOUNDARY); 362 PROC_UNLOCK(p1); 363 } 364 return (error); 365 } 366 367 static void 368 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2, 369 struct vmspace *vm2, struct file *fp_procdesc) 370 { 371 struct proc *p1, *pptr; 372 struct filedesc *fd; 373 struct filedesc_to_leader *fdtol; 374 struct pwddesc *pd; 375 struct sigacts *newsigacts; 376 377 p1 = td->td_proc; 378 379 PROC_LOCK(p1); 380 bcopy(&p1->p_startcopy, &p2->p_startcopy, 381 __rangeof(struct proc, p_startcopy, p_endcopy)); 382 pargs_hold(p2->p_args); 383 PROC_UNLOCK(p1); 384 385 bzero(&p2->p_startzero, 386 __rangeof(struct proc, p_startzero, p_endzero)); 387 388 /* Tell the prison that we exist. */ 389 prison_proc_hold(p2->p_ucred->cr_prison); 390 391 p2->p_state = PRS_NEW; /* protect against others */ 392 p2->p_pid = fork_findpid(fr->fr_flags); 393 AUDIT_ARG_PID(p2->p_pid); 394 395 sx_xlock(&allproc_lock); 396 LIST_INSERT_HEAD(&allproc, p2, p_list); 397 allproc_gen++; 398 sx_xunlock(&allproc_lock); 399 400 sx_xlock(PIDHASHLOCK(p2->p_pid)); 401 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); 402 sx_xunlock(PIDHASHLOCK(p2->p_pid)); 403 404 tidhash_add(td2); 405 406 /* 407 * Malloc things while we don't hold any locks. 408 */ 409 if (fr->fr_flags & RFSIGSHARE) 410 newsigacts = NULL; 411 else 412 newsigacts = sigacts_alloc(); 413 414 /* 415 * Copy filedesc. 416 */ 417 if (fr->fr_flags & RFCFDG) { 418 pd = pdinit(p1->p_pd, false); 419 fd = fdinit(p1->p_fd, false, NULL); 420 fdtol = NULL; 421 } else if (fr->fr_flags & RFFDG) { 422 if (fr->fr_flags2 & FR2_SHARE_PATHS) 423 pd = pdshare(p1->p_pd); 424 else 425 pd = pdcopy(p1->p_pd); 426 fd = fdcopy(p1->p_fd); 427 fdtol = NULL; 428 } else { 429 if (fr->fr_flags2 & FR2_SHARE_PATHS) 430 pd = pdcopy(p1->p_pd); 431 else 432 pd = pdshare(p1->p_pd); 433 fd = fdshare(p1->p_fd); 434 if (p1->p_fdtol == NULL) 435 p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL, 436 p1->p_leader); 437 if ((fr->fr_flags & RFTHREAD) != 0) { 438 /* 439 * Shared file descriptor table, and shared 440 * process leaders. 441 */ 442 fdtol = p1->p_fdtol; 443 FILEDESC_XLOCK(p1->p_fd); 444 fdtol->fdl_refcount++; 445 FILEDESC_XUNLOCK(p1->p_fd); 446 } else { 447 /* 448 * Shared file descriptor table, and different 449 * process leaders. 450 */ 451 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, 452 p1->p_fd, p2); 453 } 454 } 455 /* 456 * Make a proc table entry for the new process. 457 * Start by zeroing the section of proc that is zero-initialized, 458 * then copy the section that is copied directly from the parent. 459 */ 460 461 PROC_LOCK(p2); 462 PROC_LOCK(p1); 463 464 bzero(&td2->td_startzero, 465 __rangeof(struct thread, td_startzero, td_endzero)); 466 467 bcopy(&td->td_startcopy, &td2->td_startcopy, 468 __rangeof(struct thread, td_startcopy, td_endcopy)); 469 470 bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name)); 471 td2->td_sigstk = td->td_sigstk; 472 td2->td_flags = TDF_INMEM; 473 td2->td_lend_user_pri = PRI_MAX; 474 475 #ifdef VIMAGE 476 td2->td_vnet = NULL; 477 td2->td_vnet_lpush = NULL; 478 #endif 479 480 /* 481 * Allow the scheduler to initialize the child. 482 */ 483 thread_lock(td); 484 sched_fork(td, td2); 485 thread_unlock(td); 486 487 /* 488 * Duplicate sub-structures as needed. 489 * Increase reference counts on shared objects. 490 */ 491 p2->p_flag = P_INMEM; 492 p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE | 493 P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC | 494 P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP | 495 P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC); 496 p2->p_swtick = ticks; 497 if (p1->p_flag & P_PROFIL) 498 startprofclock(p2); 499 500 if (fr->fr_flags & RFSIGSHARE) { 501 p2->p_sigacts = sigacts_hold(p1->p_sigacts); 502 } else { 503 sigacts_copy(newsigacts, p1->p_sigacts); 504 p2->p_sigacts = newsigacts; 505 if ((fr->fr_flags2 & (FR2_DROPSIG_CAUGHT | FR2_KPROC)) != 0) { 506 mtx_lock(&p2->p_sigacts->ps_mtx); 507 if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0) 508 sig_drop_caught(p2); 509 if ((fr->fr_flags2 & FR2_KPROC) != 0) 510 p2->p_sigacts->ps_flag |= PS_NOCLDWAIT; 511 mtx_unlock(&p2->p_sigacts->ps_mtx); 512 } 513 } 514 515 if (fr->fr_flags & RFTSIGZMB) 516 p2->p_sigparent = RFTSIGNUM(fr->fr_flags); 517 else if (fr->fr_flags & RFLINUXTHPN) 518 p2->p_sigparent = SIGUSR1; 519 else 520 p2->p_sigparent = SIGCHLD; 521 522 if ((fr->fr_flags2 & FR2_KPROC) != 0) { 523 p2->p_flag |= P_SYSTEM | P_KPROC; 524 td2->td_pflags |= TDP_KTHREAD; 525 } 526 527 p2->p_textvp = p1->p_textvp; 528 p2->p_fd = fd; 529 p2->p_fdtol = fdtol; 530 p2->p_pd = pd; 531 532 if (p1->p_flag2 & P2_INHERIT_PROTECTED) { 533 p2->p_flag |= P_PROTECTED; 534 p2->p_flag2 |= P2_INHERIT_PROTECTED; 535 } 536 537 /* 538 * p_limit is copy-on-write. Bump its refcount. 539 */ 540 lim_fork(p1, p2); 541 542 thread_cow_get_proc(td2, p2); 543 544 pstats_fork(p1->p_stats, p2->p_stats); 545 546 PROC_UNLOCK(p1); 547 PROC_UNLOCK(p2); 548 549 /* Bump references to the text vnode (for procfs). */ 550 if (p2->p_textvp) 551 vrefact(p2->p_textvp); 552 553 /* 554 * Set up linkage for kernel based threading. 555 */ 556 if ((fr->fr_flags & RFTHREAD) != 0) { 557 mtx_lock(&ppeers_lock); 558 p2->p_peers = p1->p_peers; 559 p1->p_peers = p2; 560 p2->p_leader = p1->p_leader; 561 mtx_unlock(&ppeers_lock); 562 PROC_LOCK(p1->p_leader); 563 if ((p1->p_leader->p_flag & P_WEXIT) != 0) { 564 PROC_UNLOCK(p1->p_leader); 565 /* 566 * The task leader is exiting, so process p1 is 567 * going to be killed shortly. Since p1 obviously 568 * isn't dead yet, we know that the leader is either 569 * sending SIGKILL's to all the processes in this 570 * task or is sleeping waiting for all the peers to 571 * exit. We let p1 complete the fork, but we need 572 * to go ahead and kill the new process p2 since 573 * the task leader may not get a chance to send 574 * SIGKILL to it. We leave it on the list so that 575 * the task leader will wait for this new process 576 * to commit suicide. 577 */ 578 PROC_LOCK(p2); 579 kern_psignal(p2, SIGKILL); 580 PROC_UNLOCK(p2); 581 } else 582 PROC_UNLOCK(p1->p_leader); 583 } else { 584 p2->p_peers = NULL; 585 p2->p_leader = p2; 586 } 587 588 sx_xlock(&proctree_lock); 589 PGRP_LOCK(p1->p_pgrp); 590 PROC_LOCK(p2); 591 PROC_LOCK(p1); 592 593 /* 594 * Preserve some more flags in subprocess. P_PROFIL has already 595 * been preserved. 596 */ 597 p2->p_flag |= p1->p_flag & P_SUGID; 598 td2->td_pflags |= (td->td_pflags & (TDP_ALTSTACK | 599 TDP_SIGFASTBLOCK)) | TDP_FORKING; 600 SESS_LOCK(p1->p_session); 601 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) 602 p2->p_flag |= P_CONTROLT; 603 SESS_UNLOCK(p1->p_session); 604 if (fr->fr_flags & RFPPWAIT) 605 p2->p_flag |= P_PPWAIT; 606 607 p2->p_pgrp = p1->p_pgrp; 608 LIST_INSERT_AFTER(p1, p2, p_pglist); 609 PGRP_UNLOCK(p1->p_pgrp); 610 LIST_INIT(&p2->p_children); 611 LIST_INIT(&p2->p_orphans); 612 613 callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0); 614 TAILQ_INIT(&p2->p_kqtim_stop); 615 616 /* 617 * This begins the section where we must prevent the parent 618 * from being swapped. 619 */ 620 _PHOLD(p1); 621 PROC_UNLOCK(p1); 622 623 /* 624 * Attach the new process to its parent. 625 * 626 * If RFNOWAIT is set, the newly created process becomes a child 627 * of init. This effectively disassociates the child from the 628 * parent. 629 */ 630 if ((fr->fr_flags & RFNOWAIT) != 0) { 631 pptr = p1->p_reaper; 632 p2->p_reaper = pptr; 633 } else { 634 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ? 635 p1 : p1->p_reaper; 636 pptr = p1; 637 } 638 p2->p_pptr = pptr; 639 p2->p_oppid = pptr->p_pid; 640 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); 641 LIST_INIT(&p2->p_reaplist); 642 LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling); 643 if (p2->p_reaper == p1 && p1 != initproc) { 644 p2->p_reapsubtree = p2->p_pid; 645 proc_id_set_cond(PROC_ID_REAP, p2->p_pid); 646 } 647 sx_xunlock(&proctree_lock); 648 649 /* Inform accounting that we have forked. */ 650 p2->p_acflag = AFORK; 651 PROC_UNLOCK(p2); 652 653 #ifdef KTRACE 654 ktrprocfork(p1, p2); 655 #endif 656 657 /* 658 * Finish creating the child process. It will return via a different 659 * execution path later. (ie: directly into user mode) 660 */ 661 vm_forkproc(td, p2, td2, vm2, fr->fr_flags); 662 663 if (fr->fr_flags == (RFFDG | RFPROC)) { 664 VM_CNT_INC(v_forks); 665 VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize + 666 p2->p_vmspace->vm_ssize); 667 } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { 668 VM_CNT_INC(v_vforks); 669 VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize + 670 p2->p_vmspace->vm_ssize); 671 } else if (p1 == &proc0) { 672 VM_CNT_INC(v_kthreads); 673 VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize + 674 p2->p_vmspace->vm_ssize); 675 } else { 676 VM_CNT_INC(v_rforks); 677 VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize + 678 p2->p_vmspace->vm_ssize); 679 } 680 681 /* 682 * Associate the process descriptor with the process before anything 683 * can happen that might cause that process to need the descriptor. 684 * However, don't do this until after fork(2) can no longer fail. 685 */ 686 if (fr->fr_flags & RFPROCDESC) 687 procdesc_new(p2, fr->fr_pd_flags); 688 689 /* 690 * Both processes are set up, now check if any loadable modules want 691 * to adjust anything. 692 */ 693 EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags); 694 695 /* 696 * Set the child start time and mark the process as being complete. 697 */ 698 PROC_LOCK(p2); 699 PROC_LOCK(p1); 700 microuptime(&p2->p_stats->p_start); 701 PROC_SLOCK(p2); 702 p2->p_state = PRS_NORMAL; 703 PROC_SUNLOCK(p2); 704 705 #ifdef KDTRACE_HOOKS 706 /* 707 * Tell the DTrace fasttrap provider about the new process so that any 708 * tracepoints inherited from the parent can be removed. We have to do 709 * this only after p_state is PRS_NORMAL since the fasttrap module will 710 * use pfind() later on. 711 */ 712 if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork) 713 dtrace_fasttrap_fork(p1, p2); 714 #endif 715 if (fr->fr_flags & RFPPWAIT) { 716 td->td_pflags |= TDP_RFPPWAIT; 717 td->td_rfppwait_p = p2; 718 td->td_dbgflags |= TDB_VFORK; 719 } 720 PROC_UNLOCK(p2); 721 722 /* 723 * Tell any interested parties about the new process. 724 */ 725 knote_fork(p1->p_klist, p2->p_pid); 726 727 /* 728 * Now can be swapped. 729 */ 730 _PRELE(p1); 731 PROC_UNLOCK(p1); 732 SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags); 733 734 if (fr->fr_flags & RFPROCDESC) { 735 procdesc_finit(p2->p_procdesc, fp_procdesc); 736 fdrop(fp_procdesc, td); 737 } 738 739 /* 740 * Speculative check for PTRACE_FORK. PTRACE_FORK is not 741 * synced with forks in progress so it is OK if we miss it 742 * if being set atm. 743 */ 744 if ((p1->p_ptevents & PTRACE_FORK) != 0) { 745 sx_xlock(&proctree_lock); 746 PROC_LOCK(p2); 747 748 /* 749 * p1->p_ptevents & p1->p_pptr are protected by both 750 * process and proctree locks for modifications, 751 * so owning proctree_lock allows the race-free read. 752 */ 753 if ((p1->p_ptevents & PTRACE_FORK) != 0) { 754 /* 755 * Arrange for debugger to receive the fork event. 756 * 757 * We can report PL_FLAG_FORKED regardless of 758 * P_FOLLOWFORK settings, but it does not make a sense 759 * for runaway child. 760 */ 761 td->td_dbgflags |= TDB_FORK; 762 td->td_dbg_forked = p2->p_pid; 763 td2->td_dbgflags |= TDB_STOPATFORK; 764 proc_set_traced(p2, true); 765 CTR2(KTR_PTRACE, 766 "do_fork: attaching to new child pid %d: oppid %d", 767 p2->p_pid, p2->p_oppid); 768 proc_reparent(p2, p1->p_pptr, false); 769 } 770 PROC_UNLOCK(p2); 771 sx_xunlock(&proctree_lock); 772 } 773 774 racct_proc_fork_done(p2); 775 776 if ((fr->fr_flags & RFSTOPPED) == 0) { 777 if (fr->fr_pidp != NULL) 778 *fr->fr_pidp = p2->p_pid; 779 /* 780 * If RFSTOPPED not requested, make child runnable and 781 * add to run queue. 782 */ 783 thread_lock(td2); 784 TD_SET_CAN_RUN(td2); 785 sched_add(td2, SRQ_BORING); 786 } else { 787 *fr->fr_procp = p2; 788 } 789 } 790 791 void 792 fork_rfppwait(struct thread *td) 793 { 794 struct proc *p, *p2; 795 796 MPASS(td->td_pflags & TDP_RFPPWAIT); 797 798 p = td->td_proc; 799 /* 800 * Preserve synchronization semantics of vfork. If 801 * waiting for child to exec or exit, fork set 802 * P_PPWAIT on child, and there we sleep on our proc 803 * (in case of exit). 804 * 805 * Do it after the ptracestop() above is finished, to 806 * not block our debugger until child execs or exits 807 * to finish vfork wait. 808 */ 809 td->td_pflags &= ~TDP_RFPPWAIT; 810 p2 = td->td_rfppwait_p; 811 again: 812 PROC_LOCK(p2); 813 while (p2->p_flag & P_PPWAIT) { 814 PROC_LOCK(p); 815 if (thread_suspend_check_needed()) { 816 PROC_UNLOCK(p2); 817 thread_suspend_check(0); 818 PROC_UNLOCK(p); 819 goto again; 820 } else { 821 PROC_UNLOCK(p); 822 } 823 cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz); 824 } 825 PROC_UNLOCK(p2); 826 827 if (td->td_dbgflags & TDB_VFORK) { 828 PROC_LOCK(p); 829 if (p->p_ptevents & PTRACE_VFORK) 830 ptracestop(td, SIGTRAP, NULL); 831 td->td_dbgflags &= ~TDB_VFORK; 832 PROC_UNLOCK(p); 833 } 834 } 835 836 int 837 fork1(struct thread *td, struct fork_req *fr) 838 { 839 struct proc *p1, *newproc; 840 struct thread *td2; 841 struct vmspace *vm2; 842 struct ucred *cred; 843 struct file *fp_procdesc; 844 vm_ooffset_t mem_charged; 845 int error, nprocs_new; 846 static int curfail; 847 static struct timeval lastfail; 848 int flags, pages; 849 850 flags = fr->fr_flags; 851 pages = fr->fr_pages; 852 853 if ((flags & RFSTOPPED) != 0) 854 MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL); 855 else 856 MPASS(fr->fr_procp == NULL); 857 858 /* Check for the undefined or unimplemented flags. */ 859 if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0) 860 return (EINVAL); 861 862 /* Signal value requires RFTSIGZMB. */ 863 if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0) 864 return (EINVAL); 865 866 /* Can't copy and clear. */ 867 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) 868 return (EINVAL); 869 870 /* Check the validity of the signal number. */ 871 if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG) 872 return (EINVAL); 873 874 if ((flags & RFPROCDESC) != 0) { 875 /* Can't not create a process yet get a process descriptor. */ 876 if ((flags & RFPROC) == 0) 877 return (EINVAL); 878 879 /* Must provide a place to put a procdesc if creating one. */ 880 if (fr->fr_pd_fd == NULL) 881 return (EINVAL); 882 883 /* Check if we are using supported flags. */ 884 if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0) 885 return (EINVAL); 886 } 887 888 p1 = td->td_proc; 889 890 /* 891 * Here we don't create a new process, but we divorce 892 * certain parts of a process from itself. 893 */ 894 if ((flags & RFPROC) == 0) { 895 if (fr->fr_procp != NULL) 896 *fr->fr_procp = NULL; 897 else if (fr->fr_pidp != NULL) 898 *fr->fr_pidp = 0; 899 return (fork_norfproc(td, flags)); 900 } 901 902 fp_procdesc = NULL; 903 newproc = NULL; 904 vm2 = NULL; 905 906 /* 907 * Increment the nprocs resource before allocations occur. 908 * Although process entries are dynamically created, we still 909 * keep a global limit on the maximum number we will 910 * create. There are hard-limits as to the number of processes 911 * that can run, established by the KVA and memory usage for 912 * the process data. 913 * 914 * Don't allow a nonprivileged user to use the last ten 915 * processes; don't let root exceed the limit. 916 */ 917 nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1; 918 if (nprocs_new >= maxproc - 10) { 919 if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 || 920 nprocs_new >= maxproc) { 921 error = EAGAIN; 922 sx_xlock(&allproc_lock); 923 if (ppsratecheck(&lastfail, &curfail, 1)) { 924 printf("maxproc limit exceeded by uid %u " 925 "(pid %d); see tuning(7) and " 926 "login.conf(5)\n", 927 td->td_ucred->cr_ruid, p1->p_pid); 928 } 929 sx_xunlock(&allproc_lock); 930 goto fail2; 931 } 932 } 933 934 /* 935 * If required, create a process descriptor in the parent first; we 936 * will abandon it if something goes wrong. We don't finit() until 937 * later. 938 */ 939 if (flags & RFPROCDESC) { 940 error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd, 941 fr->fr_pd_flags, fr->fr_pd_fcaps); 942 if (error != 0) 943 goto fail2; 944 AUDIT_ARG_FD(*fr->fr_pd_fd); 945 } 946 947 mem_charged = 0; 948 if (pages == 0) 949 pages = kstack_pages; 950 /* Allocate new proc. */ 951 newproc = uma_zalloc(proc_zone, M_WAITOK); 952 td2 = FIRST_THREAD_IN_PROC(newproc); 953 if (td2 == NULL) { 954 td2 = thread_alloc(pages); 955 if (td2 == NULL) { 956 error = ENOMEM; 957 goto fail2; 958 } 959 proc_linkup(newproc, td2); 960 } else { 961 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) { 962 if (td2->td_kstack != 0) 963 vm_thread_dispose(td2); 964 if (!thread_alloc_stack(td2, pages)) { 965 error = ENOMEM; 966 goto fail2; 967 } 968 } 969 } 970 971 if ((flags & RFMEM) == 0) { 972 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged); 973 if (vm2 == NULL) { 974 error = ENOMEM; 975 goto fail2; 976 } 977 if (!swap_reserve(mem_charged)) { 978 /* 979 * The swap reservation failed. The accounting 980 * from the entries of the copied vm2 will be 981 * subtracted in vmspace_free(), so force the 982 * reservation there. 983 */ 984 swap_reserve_force(mem_charged); 985 error = ENOMEM; 986 goto fail2; 987 } 988 } else 989 vm2 = NULL; 990 991 /* 992 * XXX: This is ugly; when we copy resource usage, we need to bump 993 * per-cred resource counters. 994 */ 995 proc_set_cred_init(newproc, td->td_ucred); 996 997 /* 998 * Initialize resource accounting for the child process. 999 */ 1000 error = racct_proc_fork(p1, newproc); 1001 if (error != 0) { 1002 error = EAGAIN; 1003 goto fail1; 1004 } 1005 1006 #ifdef MAC 1007 mac_proc_init(newproc); 1008 #endif 1009 newproc->p_klist = knlist_alloc(&newproc->p_mtx); 1010 STAILQ_INIT(&newproc->p_ktr); 1011 1012 /* 1013 * Increment the count of procs running with this uid. Don't allow 1014 * a nonprivileged user to exceed their current limit. 1015 */ 1016 cred = td->td_ucred; 1017 if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) { 1018 if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0) 1019 goto fail0; 1020 chgproccnt(cred->cr_ruidinfo, 1, 0); 1021 } 1022 1023 do_fork(td, fr, newproc, td2, vm2, fp_procdesc); 1024 return (0); 1025 fail0: 1026 error = EAGAIN; 1027 #ifdef MAC 1028 mac_proc_destroy(newproc); 1029 #endif 1030 racct_proc_exit(newproc); 1031 fail1: 1032 proc_unset_cred(newproc); 1033 fail2: 1034 if (vm2 != NULL) 1035 vmspace_free(vm2); 1036 uma_zfree(proc_zone, newproc); 1037 if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) { 1038 fdclose(td, fp_procdesc, *fr->fr_pd_fd); 1039 fdrop(fp_procdesc, td); 1040 } 1041 atomic_add_int(&nprocs, -1); 1042 pause("fork", hz / 2); 1043 return (error); 1044 } 1045 1046 /* 1047 * Handle the return of a child process from fork1(). This function 1048 * is called from the MD fork_trampoline() entry point. 1049 */ 1050 void 1051 fork_exit(void (*callout)(void *, struct trapframe *), void *arg, 1052 struct trapframe *frame) 1053 { 1054 struct proc *p; 1055 struct thread *td; 1056 struct thread *dtd; 1057 1058 td = curthread; 1059 p = td->td_proc; 1060 KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new")); 1061 1062 CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)", 1063 td, td_get_sched(td), p->p_pid, td->td_name); 1064 1065 sched_fork_exit(td); 1066 /* 1067 * Processes normally resume in mi_switch() after being 1068 * cpu_switch()'ed to, but when children start up they arrive here 1069 * instead, so we must do much the same things as mi_switch() would. 1070 */ 1071 if ((dtd = PCPU_GET(deadthread))) { 1072 PCPU_SET(deadthread, NULL); 1073 thread_stash(dtd); 1074 } 1075 thread_unlock(td); 1076 1077 /* 1078 * cpu_fork_kthread_handler intercepts this function call to 1079 * have this call a non-return function to stay in kernel mode. 1080 * initproc has its own fork handler, but it does return. 1081 */ 1082 KASSERT(callout != NULL, ("NULL callout in fork_exit")); 1083 callout(arg, frame); 1084 1085 /* 1086 * Check if a kernel thread misbehaved and returned from its main 1087 * function. 1088 */ 1089 if (p->p_flag & P_KPROC) { 1090 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n", 1091 td->td_name, p->p_pid); 1092 kthread_exit(); 1093 } 1094 mtx_assert(&Giant, MA_NOTOWNED); 1095 1096 if (p->p_sysent->sv_schedtail != NULL) 1097 (p->p_sysent->sv_schedtail)(td); 1098 td->td_pflags &= ~TDP_FORKING; 1099 } 1100 1101 /* 1102 * Simplified back end of syscall(), used when returning from fork() 1103 * directly into user mode. This function is passed in to fork_exit() 1104 * as the first parameter and is called when returning to a new 1105 * userland process. 1106 */ 1107 void 1108 fork_return(struct thread *td, struct trapframe *frame) 1109 { 1110 struct proc *p; 1111 1112 p = td->td_proc; 1113 if (td->td_dbgflags & TDB_STOPATFORK) { 1114 PROC_LOCK(p); 1115 if ((p->p_flag & P_TRACED) != 0) { 1116 /* 1117 * Inform the debugger if one is still present. 1118 */ 1119 td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP; 1120 ptracestop(td, SIGSTOP, NULL); 1121 td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX); 1122 } else { 1123 /* 1124 * ... otherwise clear the request. 1125 */ 1126 td->td_dbgflags &= ~TDB_STOPATFORK; 1127 } 1128 PROC_UNLOCK(p); 1129 } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) { 1130 /* 1131 * This is the start of a new thread in a traced 1132 * process. Report a system call exit event. 1133 */ 1134 PROC_LOCK(p); 1135 td->td_dbgflags |= TDB_SCX; 1136 if ((p->p_ptevents & PTRACE_SCX) != 0 || 1137 (td->td_dbgflags & TDB_BORN) != 0) 1138 ptracestop(td, SIGTRAP, NULL); 1139 td->td_dbgflags &= ~(TDB_SCX | TDB_BORN); 1140 PROC_UNLOCK(p); 1141 } 1142 1143 /* 1144 * If the prison was killed mid-fork, die along with it. 1145 */ 1146 if (!prison_isalive(td->td_ucred->cr_prison)) 1147 exit1(td, 0, SIGKILL); 1148 1149 userret(td, frame); 1150 1151 #ifdef KTRACE 1152 if (KTRPOINT(td, KTR_SYSRET)) 1153 ktrsysret(SYS_fork, 0, 0); 1154 #endif 1155 } 1156