xref: /freebsd/sys/kern/kern_fork.c (revision 74bf4e164ba5851606a27d4feff27717452583e5)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_mac.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysproto.h>
46 #include <sys/eventhandler.h>
47 #include <sys/filedesc.h>
48 #include <sys/kernel.h>
49 #include <sys/kthread.h>
50 #include <sys/sysctl.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/pioctl.h>
56 #include <sys/resourcevar.h>
57 #include <sys/sched.h>
58 #include <sys/syscall.h>
59 #include <sys/vmmeter.h>
60 #include <sys/vnode.h>
61 #include <sys/acct.h>
62 #include <sys/mac.h>
63 #include <sys/ktr.h>
64 #include <sys/ktrace.h>
65 #include <sys/unistd.h>
66 #include <sys/sx.h>
67 
68 #include <vm/vm.h>
69 #include <vm/pmap.h>
70 #include <vm/vm_map.h>
71 #include <vm/vm_extern.h>
72 #include <vm/uma.h>
73 
74 #include <sys/user.h>
75 #include <machine/critical.h>
76 
77 #ifndef _SYS_SYSPROTO_H_
78 struct fork_args {
79 	int     dummy;
80 };
81 #endif
82 
83 static int forksleep; /* Place for fork1() to sleep on. */
84 
85 /*
86  * MPSAFE
87  */
88 /* ARGSUSED */
89 int
90 fork(td, uap)
91 	struct thread *td;
92 	struct fork_args *uap;
93 {
94 	int error;
95 	struct proc *p2;
96 
97 	error = fork1(td, RFFDG | RFPROC, 0, &p2);
98 	if (error == 0) {
99 		td->td_retval[0] = p2->p_pid;
100 		td->td_retval[1] = 0;
101 	}
102 	return (error);
103 }
104 
105 /*
106  * MPSAFE
107  */
108 /* ARGSUSED */
109 int
110 vfork(td, uap)
111 	struct thread *td;
112 	struct vfork_args *uap;
113 {
114 	int error;
115 	struct proc *p2;
116 
117 	error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, 0, &p2);
118 	if (error == 0) {
119 		td->td_retval[0] = p2->p_pid;
120 		td->td_retval[1] = 0;
121 	}
122 	return (error);
123 }
124 
125 /*
126  * MPSAFE
127  */
128 int
129 rfork(td, uap)
130 	struct thread *td;
131 	struct rfork_args *uap;
132 {
133 	struct proc *p2;
134 	int error;
135 
136 	/* Don't allow kernel-only flags. */
137 	if ((uap->flags & RFKERNELONLY) != 0)
138 		return (EINVAL);
139 
140 	error = fork1(td, uap->flags, 0, &p2);
141 	if (error == 0) {
142 		td->td_retval[0] = p2 ? p2->p_pid : 0;
143 		td->td_retval[1] = 0;
144 	}
145 	return (error);
146 }
147 
148 int	nprocs = 1;		/* process 0 */
149 int	lastpid = 0;
150 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
151     "Last used PID");
152 
153 /*
154  * Random component to lastpid generation.  We mix in a random factor to make
155  * it a little harder to predict.  We sanity check the modulus value to avoid
156  * doing it in critical paths.  Don't let it be too small or we pointlessly
157  * waste randomness entropy, and don't let it be impossibly large.  Using a
158  * modulus that is too big causes a LOT more process table scans and slows
159  * down fork processing as the pidchecked caching is defeated.
160  */
161 static int randompid = 0;
162 
163 static int
164 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
165 {
166 	int error, pid;
167 
168 	error = sysctl_wire_old_buffer(req, sizeof(int));
169 	if (error != 0)
170 		return(error);
171 	sx_xlock(&allproc_lock);
172 	pid = randompid;
173 	error = sysctl_handle_int(oidp, &pid, 0, req);
174 	if (error == 0 && req->newptr != NULL) {
175 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
176 			pid = PID_MAX - 100;
177 		else if (pid < 2)			/* NOP */
178 			pid = 0;
179 		else if (pid < 100)			/* Make it reasonable */
180 			pid = 100;
181 		randompid = pid;
182 	}
183 	sx_xunlock(&allproc_lock);
184 	return (error);
185 }
186 
187 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
188     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
189 
190 int
191 fork1(td, flags, pages, procp)
192 	struct thread *td;
193 	int flags;
194 	int pages;
195 	struct proc **procp;
196 {
197 	struct proc *p1, *p2, *pptr;
198 	uid_t uid;
199 	struct proc *newproc;
200 	int ok, trypid;
201 	static int curfail, pidchecked = 0;
202 	static struct timeval lastfail;
203 	struct filedesc *fd;
204 	struct filedesc_to_leader *fdtol;
205 	struct thread *td2;
206 	struct kse *ke2;
207 	struct ksegrp *kg2;
208 	struct sigacts *newsigacts;
209 	int error;
210 
211 	/* Can't copy and clear. */
212 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
213 		return (EINVAL);
214 
215 	p1 = td->td_proc;
216 
217 	/*
218 	 * Here we don't create a new process, but we divorce
219 	 * certain parts of a process from itself.
220 	 */
221 	if ((flags & RFPROC) == 0) {
222 		mtx_lock(&Giant);
223 		vm_forkproc(td, NULL, NULL, flags);
224 		mtx_unlock(&Giant);
225 
226 		/*
227 		 * Close all file descriptors.
228 		 */
229 		if (flags & RFCFDG) {
230 			struct filedesc *fdtmp;
231 			FILEDESC_LOCK(td->td_proc->p_fd);
232 			fdtmp = fdinit(td->td_proc->p_fd);
233 			FILEDESC_UNLOCK(td->td_proc->p_fd);
234 			fdfree(td);
235 			p1->p_fd = fdtmp;
236 		}
237 
238 		/*
239 		 * Unshare file descriptors (from parent).
240 		 */
241 		if (flags & RFFDG) {
242 			FILEDESC_LOCK(p1->p_fd);
243 			if (p1->p_fd->fd_refcnt > 1) {
244 				struct filedesc *newfd;
245 
246 				newfd = fdcopy(td->td_proc->p_fd);
247 				FILEDESC_UNLOCK(p1->p_fd);
248 				fdfree(td);
249 				p1->p_fd = newfd;
250 			} else
251 				FILEDESC_UNLOCK(p1->p_fd);
252 		}
253 		*procp = NULL;
254 		return (0);
255 	}
256 
257 	/*
258 	 * Note 1:1 allows for forking with one thread coming out on the
259 	 * other side with the expectation that the process is about to
260 	 * exec.
261 	 */
262 	if (p1->p_flag & P_SA) {
263 		/*
264 		 * Idle the other threads for a second.
265 		 * Since the user space is copied, it must remain stable.
266 		 * In addition, all threads (from the user perspective)
267 		 * need to either be suspended or in the kernel,
268 		 * where they will try restart in the parent and will
269 		 * be aborted in the child.
270 		 */
271 		PROC_LOCK(p1);
272 		if (thread_single(SINGLE_NO_EXIT)) {
273 			/* Abort. Someone else is single threading before us. */
274 			PROC_UNLOCK(p1);
275 			return (ERESTART);
276 		}
277 		PROC_UNLOCK(p1);
278 		/*
279 		 * All other activity in this process
280 		 * is now suspended at the user boundary,
281 		 * (or other safe places if we think of any).
282 		 */
283 	}
284 
285 	/* Allocate new proc. */
286 	newproc = uma_zalloc(proc_zone, M_WAITOK);
287 #ifdef MAC
288 	mac_init_proc(newproc);
289 #endif
290 	knlist_init(&newproc->p_klist, &newproc->p_mtx);
291 
292 	/* We have to lock the process tree while we look for a pid. */
293 	sx_slock(&proctree_lock);
294 
295 	/*
296 	 * Although process entries are dynamically created, we still keep
297 	 * a global limit on the maximum number we will create.  Don't allow
298 	 * a nonprivileged user to use the last ten processes; don't let root
299 	 * exceed the limit. The variable nprocs is the current number of
300 	 * processes, maxproc is the limit.
301 	 */
302 	sx_xlock(&allproc_lock);
303 	uid = td->td_ucred->cr_ruid;
304 	if ((nprocs >= maxproc - 10 &&
305 	    suser_cred(td->td_ucred, SUSER_RUID) != 0) ||
306 	    nprocs >= maxproc) {
307 		error = EAGAIN;
308 		goto fail;
309 	}
310 
311 	/*
312 	 * Increment the count of procs running with this uid. Don't allow
313 	 * a nonprivileged user to exceed their current limit.
314 	 */
315 	PROC_LOCK(p1);
316 	ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
317 		(uid != 0) ? lim_cur(p1, RLIMIT_NPROC) : 0);
318 	PROC_UNLOCK(p1);
319 	if (!ok) {
320 		error = EAGAIN;
321 		goto fail;
322 	}
323 
324 	/*
325 	 * Increment the nprocs resource before blocking can occur.  There
326 	 * are hard-limits as to the number of processes that can run.
327 	 */
328 	nprocs++;
329 
330 	/*
331 	 * Find an unused process ID.  We remember a range of unused IDs
332 	 * ready to use (from lastpid+1 through pidchecked-1).
333 	 *
334 	 * If RFHIGHPID is set (used during system boot), do not allocate
335 	 * low-numbered pids.
336 	 */
337 	trypid = lastpid + 1;
338 	if (flags & RFHIGHPID) {
339 		if (trypid < 10)
340 			trypid = 10;
341 	} else {
342 		if (randompid)
343 			trypid += arc4random() % randompid;
344 	}
345 retry:
346 	/*
347 	 * If the process ID prototype has wrapped around,
348 	 * restart somewhat above 0, as the low-numbered procs
349 	 * tend to include daemons that don't exit.
350 	 */
351 	if (trypid >= PID_MAX) {
352 		trypid = trypid % PID_MAX;
353 		if (trypid < 100)
354 			trypid += 100;
355 		pidchecked = 0;
356 	}
357 	if (trypid >= pidchecked) {
358 		int doingzomb = 0;
359 
360 		pidchecked = PID_MAX;
361 		/*
362 		 * Scan the active and zombie procs to check whether this pid
363 		 * is in use.  Remember the lowest pid that's greater
364 		 * than trypid, so we can avoid checking for a while.
365 		 */
366 		p2 = LIST_FIRST(&allproc);
367 again:
368 		for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
369 			PROC_LOCK(p2);
370 			while (p2->p_pid == trypid ||
371 			    (p2->p_pgrp != NULL &&
372 			    (p2->p_pgrp->pg_id == trypid ||
373 			    (p2->p_session != NULL &&
374 			    p2->p_session->s_sid == trypid)))) {
375 				trypid++;
376 				if (trypid >= pidchecked) {
377 					PROC_UNLOCK(p2);
378 					goto retry;
379 				}
380 			}
381 			if (p2->p_pid > trypid && pidchecked > p2->p_pid)
382 				pidchecked = p2->p_pid;
383 			if (p2->p_pgrp != NULL) {
384 				if (p2->p_pgrp->pg_id > trypid &&
385 				    pidchecked > p2->p_pgrp->pg_id)
386 					pidchecked = p2->p_pgrp->pg_id;
387 				if (p2->p_session != NULL &&
388 				    p2->p_session->s_sid > trypid &&
389 				    pidchecked > p2->p_session->s_sid)
390 					pidchecked = p2->p_session->s_sid;
391 			}
392 			PROC_UNLOCK(p2);
393 		}
394 		if (!doingzomb) {
395 			doingzomb = 1;
396 			p2 = LIST_FIRST(&zombproc);
397 			goto again;
398 		}
399 	}
400 	sx_sunlock(&proctree_lock);
401 
402 	/*
403 	 * RFHIGHPID does not mess with the lastpid counter during boot.
404 	 */
405 	if (flags & RFHIGHPID)
406 		pidchecked = 0;
407 	else
408 		lastpid = trypid;
409 
410 	p2 = newproc;
411 	p2->p_state = PRS_NEW;		/* protect against others */
412 	p2->p_pid = trypid;
413 	LIST_INSERT_HEAD(&allproc, p2, p_list);
414 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
415 	sx_xunlock(&allproc_lock);
416 
417 	/*
418 	 * Malloc things while we don't hold any locks.
419 	 */
420 	if (flags & RFSIGSHARE)
421 		newsigacts = NULL;
422 	else
423 		newsigacts = sigacts_alloc();
424 
425 	/*
426 	 * Copy filedesc.
427 	 */
428 	if (flags & RFCFDG) {
429 		FILEDESC_LOCK(td->td_proc->p_fd);
430 		fd = fdinit(td->td_proc->p_fd);
431 		FILEDESC_UNLOCK(td->td_proc->p_fd);
432 		fdtol = NULL;
433 	} else if (flags & RFFDG) {
434 		FILEDESC_LOCK(p1->p_fd);
435 		fd = fdcopy(td->td_proc->p_fd);
436 		FILEDESC_UNLOCK(p1->p_fd);
437 		fdtol = NULL;
438 	} else {
439 		fd = fdshare(p1->p_fd);
440 		if (p1->p_fdtol == NULL)
441 			p1->p_fdtol =
442 				filedesc_to_leader_alloc(NULL,
443 							 NULL,
444 							 p1->p_leader);
445 		if ((flags & RFTHREAD) != 0) {
446 			/*
447 			 * Shared file descriptor table and
448 			 * shared process leaders.
449 			 */
450 			fdtol = p1->p_fdtol;
451 			FILEDESC_LOCK(p1->p_fd);
452 			fdtol->fdl_refcount++;
453 			FILEDESC_UNLOCK(p1->p_fd);
454 		} else {
455 			/*
456 			 * Shared file descriptor table, and
457 			 * different process leaders
458 			 */
459 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
460 							 p1->p_fd,
461 							 p2);
462 		}
463 	}
464 	/*
465 	 * Make a proc table entry for the new process.
466 	 * Start by zeroing the section of proc that is zero-initialized,
467 	 * then copy the section that is copied directly from the parent.
468 	 */
469 	td2 = FIRST_THREAD_IN_PROC(p2);
470 	kg2 = FIRST_KSEGRP_IN_PROC(p2);
471 	ke2 = FIRST_KSE_IN_KSEGRP(kg2);
472 
473 	/* Allocate and switch to an alternate kstack if specified. */
474 	if (pages != 0)
475 		vm_thread_new_altkstack(td2, pages);
476 
477 	PROC_LOCK(p2);
478 	PROC_LOCK(p1);
479 
480 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
481 
482 	bzero(&p2->p_startzero,
483 	    (unsigned) RANGEOF(struct proc, p_startzero, p_endzero));
484 	bzero(&ke2->ke_startzero,
485 	    (unsigned) RANGEOF(struct kse, ke_startzero, ke_endzero));
486 	bzero(&td2->td_startzero,
487 	    (unsigned) RANGEOF(struct thread, td_startzero, td_endzero));
488 	bzero(&kg2->kg_startzero,
489 	    (unsigned) RANGEOF(struct ksegrp, kg_startzero, kg_endzero));
490 
491 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
492 	    (unsigned) RANGEOF(struct proc, p_startcopy, p_endcopy));
493 	bcopy(&td->td_startcopy, &td2->td_startcopy,
494 	    (unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy));
495 	bcopy(&td->td_ksegrp->kg_startcopy, &kg2->kg_startcopy,
496 	    (unsigned) RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy));
497 #undef RANGEOF
498 
499 	td2->td_sigstk = td->td_sigstk;
500 
501 	/* Set up the thread as an active thread (as if runnable). */
502 	ke2->ke_state = KES_THREAD;
503 	ke2->ke_thread = td2;
504 	td2->td_kse = ke2;
505 
506 	/*
507 	 * Duplicate sub-structures as needed.
508 	 * Increase reference counts on shared objects.
509 	 * The p_stats substruct is set in vm_forkproc.
510 	 */
511 	p2->p_flag = 0;
512 	if (p1->p_flag & P_PROFIL)
513 		startprofclock(p2);
514 	mtx_lock_spin(&sched_lock);
515 	p2->p_sflag = PS_INMEM;
516 	/*
517 	 * Allow the scheduler to adjust the priority of the child and
518 	 * parent while we hold the sched_lock.
519 	 */
520 	sched_fork(td, p2);
521 
522 	mtx_unlock_spin(&sched_lock);
523 	p2->p_ucred = crhold(td->td_ucred);
524 	td2->td_ucred = crhold(p2->p_ucred);	/* XXXKSE */
525 
526 	pargs_hold(p2->p_args);
527 
528 	if (flags & RFSIGSHARE) {
529 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
530 	} else {
531 		sigacts_copy(newsigacts, p1->p_sigacts);
532 		p2->p_sigacts = newsigacts;
533 	}
534 	if (flags & RFLINUXTHPN)
535 	        p2->p_sigparent = SIGUSR1;
536 	else
537 	        p2->p_sigparent = SIGCHLD;
538 
539 	p2->p_textvp = p1->p_textvp;
540 	p2->p_fd = fd;
541 	p2->p_fdtol = fdtol;
542 
543 	/*
544 	 * p_limit is copy-on-write.  Bump its refcount.
545 	 */
546 	p2->p_limit = lim_hold(p1->p_limit);
547 	PROC_UNLOCK(p1);
548 	PROC_UNLOCK(p2);
549 
550 	/* Bump references to the text vnode (for procfs) */
551 	if (p2->p_textvp)
552 		vref(p2->p_textvp);
553 
554 	/*
555 	 * Set up linkage for kernel based threading.
556 	 */
557 	if ((flags & RFTHREAD) != 0) {
558 		mtx_lock(&ppeers_lock);
559 		p2->p_peers = p1->p_peers;
560 		p1->p_peers = p2;
561 		p2->p_leader = p1->p_leader;
562 		mtx_unlock(&ppeers_lock);
563 		PROC_LOCK(p1->p_leader);
564 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
565 			PROC_UNLOCK(p1->p_leader);
566 			/*
567 			 * The task leader is exiting, so process p1 is
568 			 * going to be killed shortly.  Since p1 obviously
569 			 * isn't dead yet, we know that the leader is either
570 			 * sending SIGKILL's to all the processes in this
571 			 * task or is sleeping waiting for all the peers to
572 			 * exit.  We let p1 complete the fork, but we need
573 			 * to go ahead and kill the new process p2 since
574 			 * the task leader may not get a chance to send
575 			 * SIGKILL to it.  We leave it on the list so that
576 			 * the task leader will wait for this new process
577 			 * to commit suicide.
578 			 */
579 			PROC_LOCK(p2);
580 			psignal(p2, SIGKILL);
581 			PROC_UNLOCK(p2);
582 		} else
583 			PROC_UNLOCK(p1->p_leader);
584 	} else {
585 		p2->p_peers = NULL;
586 		p2->p_leader = p2;
587 	}
588 
589 	sx_xlock(&proctree_lock);
590 	PGRP_LOCK(p1->p_pgrp);
591 	PROC_LOCK(p2);
592 	PROC_LOCK(p1);
593 
594 	/*
595 	 * Preserve some more flags in subprocess.  P_PROFIL has already
596 	 * been preserved.
597 	 */
598 	p2->p_flag |= p1->p_flag & P_SUGID;
599 	td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
600 	SESS_LOCK(p1->p_session);
601 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
602 		p2->p_flag |= P_CONTROLT;
603 	SESS_UNLOCK(p1->p_session);
604 	if (flags & RFPPWAIT)
605 		p2->p_flag |= P_PPWAIT;
606 
607 	p2->p_pgrp = p1->p_pgrp;
608 	LIST_INSERT_AFTER(p1, p2, p_pglist);
609 	PGRP_UNLOCK(p1->p_pgrp);
610 	LIST_INIT(&p2->p_children);
611 
612 	callout_init(&p2->p_itcallout, CALLOUT_MPSAFE);
613 
614 #ifdef KTRACE
615 	/*
616 	 * Copy traceflag and tracefile if enabled.
617 	 */
618 	mtx_lock(&ktrace_mtx);
619 	KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
620 	if (p1->p_traceflag & KTRFAC_INHERIT) {
621 		p2->p_traceflag = p1->p_traceflag;
622 		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
623 			VREF(p2->p_tracevp);
624 			KASSERT(p1->p_tracecred != NULL,
625 			    ("ktrace vnode with no cred"));
626 			p2->p_tracecred = crhold(p1->p_tracecred);
627 		}
628 	}
629 	mtx_unlock(&ktrace_mtx);
630 #endif
631 
632 	/*
633 	 * If PF_FORK is set, the child process inherits the
634 	 * procfs ioctl flags from its parent.
635 	 */
636 	if (p1->p_pfsflags & PF_FORK) {
637 		p2->p_stops = p1->p_stops;
638 		p2->p_pfsflags = p1->p_pfsflags;
639 	}
640 
641 	/*
642 	 * This begins the section where we must prevent the parent
643 	 * from being swapped.
644 	 */
645 	_PHOLD(p1);
646 	PROC_UNLOCK(p1);
647 
648 	/*
649 	 * Attach the new process to its parent.
650 	 *
651 	 * If RFNOWAIT is set, the newly created process becomes a child
652 	 * of init.  This effectively disassociates the child from the
653 	 * parent.
654 	 */
655 	if (flags & RFNOWAIT)
656 		pptr = initproc;
657 	else
658 		pptr = p1;
659 	p2->p_pptr = pptr;
660 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
661 	sx_xunlock(&proctree_lock);
662 
663 	/* Inform accounting that we have forked. */
664 	p2->p_acflag = AFORK;
665 	PROC_UNLOCK(p2);
666 
667 	/*
668 	 * Finish creating the child process.  It will return via a different
669 	 * execution path later.  (ie: directly into user mode)
670 	 */
671 	mtx_lock(&Giant);
672 	vm_forkproc(td, p2, td2, flags);
673 
674 	if (flags == (RFFDG | RFPROC)) {
675 		cnt.v_forks++;
676 		cnt.v_forkpages += p2->p_vmspace->vm_dsize +
677 		    p2->p_vmspace->vm_ssize;
678 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
679 		cnt.v_vforks++;
680 		cnt.v_vforkpages += p2->p_vmspace->vm_dsize +
681 		    p2->p_vmspace->vm_ssize;
682 	} else if (p1 == &proc0) {
683 		cnt.v_kthreads++;
684 		cnt.v_kthreadpages += p2->p_vmspace->vm_dsize +
685 		    p2->p_vmspace->vm_ssize;
686 	} else {
687 		cnt.v_rforks++;
688 		cnt.v_rforkpages += p2->p_vmspace->vm_dsize +
689 		    p2->p_vmspace->vm_ssize;
690 	}
691 	mtx_unlock(&Giant);
692 
693 	/*
694 	 * Both processes are set up, now check if any loadable modules want
695 	 * to adjust anything.
696 	 *   What if they have an error? XXX
697 	 */
698 	EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
699 
700 	/*
701 	 * Set the child start time and mark the process as being complete.
702 	 */
703 	microuptime(&p2->p_stats->p_start);
704 	mtx_lock_spin(&sched_lock);
705 	p2->p_state = PRS_NORMAL;
706 
707 	/*
708 	 * If RFSTOPPED not requested, make child runnable and add to
709 	 * run queue.
710 	 */
711 	if ((flags & RFSTOPPED) == 0) {
712 		TD_SET_CAN_RUN(td2);
713 		setrunqueue(td2);
714 	}
715 	mtx_unlock_spin(&sched_lock);
716 
717 	/*
718 	 * Now can be swapped.
719 	 */
720 	PROC_LOCK(p1);
721 	_PRELE(p1);
722 
723 	/*
724 	 * Tell any interested parties about the new process.
725 	 */
726 	KNOTE_LOCKED(&p1->p_klist, NOTE_FORK | p2->p_pid);
727 
728 	PROC_UNLOCK(p1);
729 
730 	/*
731 	 * Preserve synchronization semantics of vfork.  If waiting for
732 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
733 	 * proc (in case of exit).
734 	 */
735 	PROC_LOCK(p2);
736 	while (p2->p_flag & P_PPWAIT)
737 		msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
738 	PROC_UNLOCK(p2);
739 
740 	/*
741 	 * If other threads are waiting, let them continue now.
742 	 */
743 	if (p1->p_flag & P_SA) {
744 		PROC_LOCK(p1);
745 		thread_single_end();
746 		PROC_UNLOCK(p1);
747 	}
748 
749 	/*
750 	 * Return child proc pointer to parent.
751 	 */
752 	*procp = p2;
753 	return (0);
754 fail:
755 	sx_sunlock(&proctree_lock);
756 	if (ppsratecheck(&lastfail, &curfail, 1))
757 		printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n",
758 			uid);
759 	sx_xunlock(&allproc_lock);
760 #ifdef MAC
761 	mac_destroy_proc(newproc);
762 #endif
763 	uma_zfree(proc_zone, newproc);
764 	if (p1->p_flag & P_SA) {
765 		PROC_LOCK(p1);
766 		thread_single_end();
767 		PROC_UNLOCK(p1);
768 	}
769 	tsleep(&forksleep, PUSER, "fork", hz / 2);
770 	return (error);
771 }
772 
773 /*
774  * Handle the return of a child process from fork1().  This function
775  * is called from the MD fork_trampoline() entry point.
776  */
777 void
778 fork_exit(callout, arg, frame)
779 	void (*callout)(void *, struct trapframe *);
780 	void *arg;
781 	struct trapframe *frame;
782 {
783 	struct proc *p;
784 	struct thread *td;
785 
786 	/*
787 	 * Finish setting up thread glue so that it begins execution in a
788 	 * non-nested critical section with sched_lock held but not recursed.
789 	 */
790 	td = curthread;
791 	p = td->td_proc;
792 	td->td_oncpu = PCPU_GET(cpuid);
793 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
794 
795 	sched_lock.mtx_lock = (uintptr_t)td;
796 	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
797 	cpu_critical_fork_exit();
798 	CTR4(KTR_PROC, "fork_exit: new thread %p (kse %p, pid %d, %s)",
799 		td, td->td_kse, p->p_pid, p->p_comm);
800 
801 	/*
802 	 * Processes normally resume in mi_switch() after being
803 	 * cpu_switch()'ed to, but when children start up they arrive here
804 	 * instead, so we must do much the same things as mi_switch() would.
805 	 */
806 
807 	if ((td = PCPU_GET(deadthread))) {
808 		PCPU_SET(deadthread, NULL);
809 		thread_stash(td);
810 	}
811 	td = curthread;
812 	mtx_unlock_spin(&sched_lock);
813 
814 	/*
815 	 * cpu_set_fork_handler intercepts this function call to
816 	 * have this call a non-return function to stay in kernel mode.
817 	 * initproc has its own fork handler, but it does return.
818 	 */
819 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
820 	callout(arg, frame);
821 
822 	/*
823 	 * Check if a kernel thread misbehaved and returned from its main
824 	 * function.
825 	 */
826 	PROC_LOCK(p);
827 	if (p->p_flag & P_KTHREAD) {
828 		PROC_UNLOCK(p);
829 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
830 		    p->p_comm, p->p_pid);
831 		kthread_exit(0);
832 	}
833 	PROC_UNLOCK(p);
834 #ifdef DIAGNOSTIC
835 	cred_free_thread(td);
836 #endif
837 	mtx_assert(&Giant, MA_NOTOWNED);
838 }
839 
840 /*
841  * Simplified back end of syscall(), used when returning from fork()
842  * directly into user mode.  Giant is not held on entry, and must not
843  * be held on return.  This function is passed in to fork_exit() as the
844  * first parameter and is called when returning to a new userland process.
845  */
846 void
847 fork_return(td, frame)
848 	struct thread *td;
849 	struct trapframe *frame;
850 {
851 
852 	userret(td, frame, 0);
853 #ifdef KTRACE
854 	if (KTRPOINT(td, KTR_SYSRET))
855 		ktrsysret(SYS_fork, 0, 0);
856 #endif
857 	mtx_assert(&Giant, MA_NOTOWNED);
858 }
859