xref: /freebsd/sys/kern/kern_fork.c (revision 721351876cd4d3a8a700f62d2061331fa951a488)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_kdtrace.h"
41 #include "opt_ktrace.h"
42 #include "opt_mac.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysproto.h>
47 #include <sys/eventhandler.h>
48 #include <sys/filedesc.h>
49 #include <sys/kernel.h>
50 #include <sys/kthread.h>
51 #include <sys/sysctl.h>
52 #include <sys/lock.h>
53 #include <sys/malloc.h>
54 #include <sys/mutex.h>
55 #include <sys/priv.h>
56 #include <sys/proc.h>
57 #include <sys/pioctl.h>
58 #include <sys/resourcevar.h>
59 #include <sys/sched.h>
60 #include <sys/syscall.h>
61 #include <sys/vmmeter.h>
62 #include <sys/vnode.h>
63 #include <sys/acct.h>
64 #include <sys/ktr.h>
65 #include <sys/ktrace.h>
66 #include <sys/unistd.h>
67 #include <sys/sdt.h>
68 #include <sys/sx.h>
69 #include <sys/signalvar.h>
70 
71 #include <security/audit/audit.h>
72 #include <security/mac/mac_framework.h>
73 
74 #include <vm/vm.h>
75 #include <vm/pmap.h>
76 #include <vm/vm_map.h>
77 #include <vm/vm_extern.h>
78 #include <vm/uma.h>
79 
80 #ifdef KDTRACE_HOOKS
81 #include <sys/dtrace_bsd.h>
82 dtrace_fork_func_t	dtrace_fasttrap_fork;
83 #endif
84 
85 SDT_PROVIDER_DECLARE(proc);
86 SDT_PROBE_DEFINE(proc, kernel, , create);
87 SDT_PROBE_ARGTYPE(proc, kernel, , create, 0, "struct proc *");
88 SDT_PROBE_ARGTYPE(proc, kernel, , create, 1, "struct proc *");
89 SDT_PROBE_ARGTYPE(proc, kernel, , create, 2, "int");
90 
91 #ifndef _SYS_SYSPROTO_H_
92 struct fork_args {
93 	int     dummy;
94 };
95 #endif
96 
97 /* ARGSUSED */
98 int
99 fork(td, uap)
100 	struct thread *td;
101 	struct fork_args *uap;
102 {
103 	int error;
104 	struct proc *p2;
105 
106 	error = fork1(td, RFFDG | RFPROC, 0, &p2);
107 	if (error == 0) {
108 		td->td_retval[0] = p2->p_pid;
109 		td->td_retval[1] = 0;
110 	}
111 	return (error);
112 }
113 
114 /* ARGSUSED */
115 int
116 vfork(td, uap)
117 	struct thread *td;
118 	struct vfork_args *uap;
119 {
120 	int error;
121 	struct proc *p2;
122 
123 	error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, 0, &p2);
124 	if (error == 0) {
125 		td->td_retval[0] = p2->p_pid;
126 		td->td_retval[1] = 0;
127 	}
128 	return (error);
129 }
130 
131 int
132 rfork(td, uap)
133 	struct thread *td;
134 	struct rfork_args *uap;
135 {
136 	struct proc *p2;
137 	int error;
138 
139 	/* Don't allow kernel-only flags. */
140 	if ((uap->flags & RFKERNELONLY) != 0)
141 		return (EINVAL);
142 
143 	AUDIT_ARG(fflags, uap->flags);
144 	error = fork1(td, uap->flags, 0, &p2);
145 	if (error == 0) {
146 		td->td_retval[0] = p2 ? p2->p_pid : 0;
147 		td->td_retval[1] = 0;
148 	}
149 	return (error);
150 }
151 
152 int	nprocs = 1;		/* process 0 */
153 int	lastpid = 0;
154 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
155     "Last used PID");
156 
157 /*
158  * Random component to lastpid generation.  We mix in a random factor to make
159  * it a little harder to predict.  We sanity check the modulus value to avoid
160  * doing it in critical paths.  Don't let it be too small or we pointlessly
161  * waste randomness entropy, and don't let it be impossibly large.  Using a
162  * modulus that is too big causes a LOT more process table scans and slows
163  * down fork processing as the pidchecked caching is defeated.
164  */
165 static int randompid = 0;
166 
167 static int
168 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
169 {
170 	int error, pid;
171 
172 	error = sysctl_wire_old_buffer(req, sizeof(int));
173 	if (error != 0)
174 		return(error);
175 	sx_xlock(&allproc_lock);
176 	pid = randompid;
177 	error = sysctl_handle_int(oidp, &pid, 0, req);
178 	if (error == 0 && req->newptr != NULL) {
179 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
180 			pid = PID_MAX - 100;
181 		else if (pid < 2)			/* NOP */
182 			pid = 0;
183 		else if (pid < 100)			/* Make it reasonable */
184 			pid = 100;
185 		randompid = pid;
186 	}
187 	sx_xunlock(&allproc_lock);
188 	return (error);
189 }
190 
191 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
192     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
193 
194 int
195 fork1(td, flags, pages, procp)
196 	struct thread *td;
197 	int flags;
198 	int pages;
199 	struct proc **procp;
200 {
201 	struct proc *p1, *p2, *pptr;
202 	struct proc *newproc;
203 	int ok, trypid;
204 	static int curfail, pidchecked = 0;
205 	static struct timeval lastfail;
206 	struct filedesc *fd;
207 	struct filedesc_to_leader *fdtol;
208 	struct thread *td2;
209 	struct sigacts *newsigacts;
210 	struct vmspace *vm2;
211 	int error;
212 
213 	/* Can't copy and clear. */
214 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
215 		return (EINVAL);
216 
217 	p1 = td->td_proc;
218 
219 	/*
220 	 * Here we don't create a new process, but we divorce
221 	 * certain parts of a process from itself.
222 	 */
223 	if ((flags & RFPROC) == 0) {
224 		if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
225 		    (flags & (RFCFDG | RFFDG))) {
226 			PROC_LOCK(p1);
227 			if (thread_single(SINGLE_BOUNDARY)) {
228 				PROC_UNLOCK(p1);
229 				return (ERESTART);
230 			}
231 			PROC_UNLOCK(p1);
232 		}
233 
234 		error = vm_forkproc(td, NULL, NULL, NULL, flags);
235 		if (error)
236 			goto norfproc_fail;
237 
238 		/*
239 		 * Close all file descriptors.
240 		 */
241 		if (flags & RFCFDG) {
242 			struct filedesc *fdtmp;
243 			fdtmp = fdinit(td->td_proc->p_fd);
244 			fdfree(td);
245 			p1->p_fd = fdtmp;
246 		}
247 
248 		/*
249 		 * Unshare file descriptors (from parent).
250 		 */
251 		if (flags & RFFDG)
252 			fdunshare(p1, td);
253 
254 norfproc_fail:
255 		if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
256 		    (flags & (RFCFDG | RFFDG))) {
257 			PROC_LOCK(p1);
258 			thread_single_end();
259 			PROC_UNLOCK(p1);
260 		}
261 		*procp = NULL;
262 		return (error);
263 	}
264 
265 	/*
266 	 * XXX
267 	 * We did have single-threading code here
268 	 * however it proved un-needed and caused problems
269 	 */
270 
271 	vm2 = NULL;
272 	/* Allocate new proc. */
273 	newproc = uma_zalloc(proc_zone, M_WAITOK);
274 	if (TAILQ_EMPTY(&newproc->p_threads)) {
275 		td2 = thread_alloc();
276 		if (td2 == NULL) {
277 			error = ENOMEM;
278 			goto fail1;
279 		}
280 		proc_linkup(newproc, td2);
281 	} else
282 		td2 = FIRST_THREAD_IN_PROC(newproc);
283 
284 	/* Allocate and switch to an alternate kstack if specified. */
285 	if (pages != 0) {
286 		if (!vm_thread_new_altkstack(td2, pages)) {
287 			error = ENOMEM;
288 			goto fail1;
289 		}
290 	}
291 	if ((flags & RFMEM) == 0) {
292 		vm2 = vmspace_fork(p1->p_vmspace);
293 		if (vm2 == NULL) {
294 			error = ENOMEM;
295 			goto fail1;
296 		}
297 	}
298 #ifdef MAC
299 	mac_proc_init(newproc);
300 #endif
301 	knlist_init(&newproc->p_klist, &newproc->p_mtx, NULL, NULL, NULL);
302 	STAILQ_INIT(&newproc->p_ktr);
303 
304 	/* We have to lock the process tree while we look for a pid. */
305 	sx_slock(&proctree_lock);
306 
307 	/*
308 	 * Although process entries are dynamically created, we still keep
309 	 * a global limit on the maximum number we will create.  Don't allow
310 	 * a nonprivileged user to use the last ten processes; don't let root
311 	 * exceed the limit. The variable nprocs is the current number of
312 	 * processes, maxproc is the limit.
313 	 */
314 	sx_xlock(&allproc_lock);
315 	if ((nprocs >= maxproc - 10 && priv_check_cred(td->td_ucred,
316 	    PRIV_MAXPROC, 0) != 0) || nprocs >= maxproc) {
317 		error = EAGAIN;
318 		goto fail;
319 	}
320 
321 	/*
322 	 * Increment the count of procs running with this uid. Don't allow
323 	 * a nonprivileged user to exceed their current limit.
324 	 *
325 	 * XXXRW: Can we avoid privilege here if it's not needed?
326 	 */
327 	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
328 	if (error == 0)
329 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
330 	else {
331 		PROC_LOCK(p1);
332 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
333 		    lim_cur(p1, RLIMIT_NPROC));
334 		PROC_UNLOCK(p1);
335 	}
336 	if (!ok) {
337 		error = EAGAIN;
338 		goto fail;
339 	}
340 
341 	/*
342 	 * Increment the nprocs resource before blocking can occur.  There
343 	 * are hard-limits as to the number of processes that can run.
344 	 */
345 	nprocs++;
346 
347 	/*
348 	 * Find an unused process ID.  We remember a range of unused IDs
349 	 * ready to use (from lastpid+1 through pidchecked-1).
350 	 *
351 	 * If RFHIGHPID is set (used during system boot), do not allocate
352 	 * low-numbered pids.
353 	 */
354 	trypid = lastpid + 1;
355 	if (flags & RFHIGHPID) {
356 		if (trypid < 10)
357 			trypid = 10;
358 	} else {
359 		if (randompid)
360 			trypid += arc4random() % randompid;
361 	}
362 retry:
363 	/*
364 	 * If the process ID prototype has wrapped around,
365 	 * restart somewhat above 0, as the low-numbered procs
366 	 * tend to include daemons that don't exit.
367 	 */
368 	if (trypid >= PID_MAX) {
369 		trypid = trypid % PID_MAX;
370 		if (trypid < 100)
371 			trypid += 100;
372 		pidchecked = 0;
373 	}
374 	if (trypid >= pidchecked) {
375 		int doingzomb = 0;
376 
377 		pidchecked = PID_MAX;
378 		/*
379 		 * Scan the active and zombie procs to check whether this pid
380 		 * is in use.  Remember the lowest pid that's greater
381 		 * than trypid, so we can avoid checking for a while.
382 		 */
383 		p2 = LIST_FIRST(&allproc);
384 again:
385 		for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
386 			while (p2->p_pid == trypid ||
387 			    (p2->p_pgrp != NULL &&
388 			    (p2->p_pgrp->pg_id == trypid ||
389 			    (p2->p_session != NULL &&
390 			    p2->p_session->s_sid == trypid)))) {
391 				trypid++;
392 				if (trypid >= pidchecked)
393 					goto retry;
394 			}
395 			if (p2->p_pid > trypid && pidchecked > p2->p_pid)
396 				pidchecked = p2->p_pid;
397 			if (p2->p_pgrp != NULL) {
398 				if (p2->p_pgrp->pg_id > trypid &&
399 				    pidchecked > p2->p_pgrp->pg_id)
400 					pidchecked = p2->p_pgrp->pg_id;
401 				if (p2->p_session != NULL &&
402 				    p2->p_session->s_sid > trypid &&
403 				    pidchecked > p2->p_session->s_sid)
404 					pidchecked = p2->p_session->s_sid;
405 			}
406 		}
407 		if (!doingzomb) {
408 			doingzomb = 1;
409 			p2 = LIST_FIRST(&zombproc);
410 			goto again;
411 		}
412 	}
413 	sx_sunlock(&proctree_lock);
414 
415 	/*
416 	 * RFHIGHPID does not mess with the lastpid counter during boot.
417 	 */
418 	if (flags & RFHIGHPID)
419 		pidchecked = 0;
420 	else
421 		lastpid = trypid;
422 
423 	p2 = newproc;
424 	p2->p_state = PRS_NEW;		/* protect against others */
425 	p2->p_pid = trypid;
426 	/*
427 	 * Allow the scheduler to initialize the child.
428 	 */
429 	thread_lock(td);
430 	sched_fork(td, td2);
431 	thread_unlock(td);
432 	AUDIT_ARG(pid, p2->p_pid);
433 	LIST_INSERT_HEAD(&allproc, p2, p_list);
434 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
435 
436 	PROC_LOCK(p2);
437 	PROC_LOCK(p1);
438 
439 	sx_xunlock(&allproc_lock);
440 
441 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
442 	    __rangeof(struct proc, p_startcopy, p_endcopy));
443 	PROC_UNLOCK(p1);
444 
445 	bzero(&p2->p_startzero,
446 	    __rangeof(struct proc, p_startzero, p_endzero));
447 
448 	p2->p_ucred = crhold(td->td_ucred);
449 	PROC_UNLOCK(p2);
450 
451 	/*
452 	 * Malloc things while we don't hold any locks.
453 	 */
454 	if (flags & RFSIGSHARE)
455 		newsigacts = NULL;
456 	else
457 		newsigacts = sigacts_alloc();
458 
459 	/*
460 	 * Copy filedesc.
461 	 */
462 	if (flags & RFCFDG) {
463 		fd = fdinit(p1->p_fd);
464 		fdtol = NULL;
465 	} else if (flags & RFFDG) {
466 		fd = fdcopy(p1->p_fd);
467 		fdtol = NULL;
468 	} else {
469 		fd = fdshare(p1->p_fd);
470 		if (p1->p_fdtol == NULL)
471 			p1->p_fdtol =
472 				filedesc_to_leader_alloc(NULL,
473 							 NULL,
474 							 p1->p_leader);
475 		if ((flags & RFTHREAD) != 0) {
476 			/*
477 			 * Shared file descriptor table and
478 			 * shared process leaders.
479 			 */
480 			fdtol = p1->p_fdtol;
481 			FILEDESC_XLOCK(p1->p_fd);
482 			fdtol->fdl_refcount++;
483 			FILEDESC_XUNLOCK(p1->p_fd);
484 		} else {
485 			/*
486 			 * Shared file descriptor table, and
487 			 * different process leaders
488 			 */
489 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
490 							 p1->p_fd,
491 							 p2);
492 		}
493 	}
494 	/*
495 	 * Make a proc table entry for the new process.
496 	 * Start by zeroing the section of proc that is zero-initialized,
497 	 * then copy the section that is copied directly from the parent.
498 	 */
499 
500 	PROC_LOCK(p2);
501 	PROC_LOCK(p1);
502 
503 	bzero(&td2->td_startzero,
504 	    __rangeof(struct thread, td_startzero, td_endzero));
505 
506 	bcopy(&td->td_startcopy, &td2->td_startcopy,
507 	    __rangeof(struct thread, td_startcopy, td_endcopy));
508 
509 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
510 	td2->td_sigstk = td->td_sigstk;
511 	td2->td_sigmask = td->td_sigmask;
512 	td2->td_flags = TDF_INMEM;
513 
514 	/*
515 	 * Duplicate sub-structures as needed.
516 	 * Increase reference counts on shared objects.
517 	 */
518 	p2->p_flag = P_INMEM;
519 	p2->p_swtick = ticks;
520 	if (p1->p_flag & P_PROFIL)
521 		startprofclock(p2);
522 	td2->td_ucred = crhold(p2->p_ucred);
523 	pargs_hold(p2->p_args);
524 
525 	if (flags & RFSIGSHARE) {
526 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
527 	} else {
528 		sigacts_copy(newsigacts, p1->p_sigacts);
529 		p2->p_sigacts = newsigacts;
530 	}
531 	if (flags & RFLINUXTHPN)
532 	        p2->p_sigparent = SIGUSR1;
533 	else
534 	        p2->p_sigparent = SIGCHLD;
535 
536 	p2->p_textvp = p1->p_textvp;
537 	p2->p_fd = fd;
538 	p2->p_fdtol = fdtol;
539 
540 	/*
541 	 * p_limit is copy-on-write.  Bump its refcount.
542 	 */
543 	lim_fork(p1, p2);
544 
545 	pstats_fork(p1->p_stats, p2->p_stats);
546 
547 	PROC_UNLOCK(p1);
548 	PROC_UNLOCK(p2);
549 
550 	/* Bump references to the text vnode (for procfs) */
551 	if (p2->p_textvp)
552 		vref(p2->p_textvp);
553 
554 	/*
555 	 * Set up linkage for kernel based threading.
556 	 */
557 	if ((flags & RFTHREAD) != 0) {
558 		mtx_lock(&ppeers_lock);
559 		p2->p_peers = p1->p_peers;
560 		p1->p_peers = p2;
561 		p2->p_leader = p1->p_leader;
562 		mtx_unlock(&ppeers_lock);
563 		PROC_LOCK(p1->p_leader);
564 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
565 			PROC_UNLOCK(p1->p_leader);
566 			/*
567 			 * The task leader is exiting, so process p1 is
568 			 * going to be killed shortly.  Since p1 obviously
569 			 * isn't dead yet, we know that the leader is either
570 			 * sending SIGKILL's to all the processes in this
571 			 * task or is sleeping waiting for all the peers to
572 			 * exit.  We let p1 complete the fork, but we need
573 			 * to go ahead and kill the new process p2 since
574 			 * the task leader may not get a chance to send
575 			 * SIGKILL to it.  We leave it on the list so that
576 			 * the task leader will wait for this new process
577 			 * to commit suicide.
578 			 */
579 			PROC_LOCK(p2);
580 			psignal(p2, SIGKILL);
581 			PROC_UNLOCK(p2);
582 		} else
583 			PROC_UNLOCK(p1->p_leader);
584 	} else {
585 		p2->p_peers = NULL;
586 		p2->p_leader = p2;
587 	}
588 
589 	sx_xlock(&proctree_lock);
590 	PGRP_LOCK(p1->p_pgrp);
591 	PROC_LOCK(p2);
592 	PROC_LOCK(p1);
593 
594 	/*
595 	 * Preserve some more flags in subprocess.  P_PROFIL has already
596 	 * been preserved.
597 	 */
598 	p2->p_flag |= p1->p_flag & P_SUGID;
599 	td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
600 	SESS_LOCK(p1->p_session);
601 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
602 		p2->p_flag |= P_CONTROLT;
603 	SESS_UNLOCK(p1->p_session);
604 	if (flags & RFPPWAIT)
605 		p2->p_flag |= P_PPWAIT;
606 
607 	p2->p_pgrp = p1->p_pgrp;
608 	LIST_INSERT_AFTER(p1, p2, p_pglist);
609 	PGRP_UNLOCK(p1->p_pgrp);
610 	LIST_INIT(&p2->p_children);
611 
612 	callout_init(&p2->p_itcallout, CALLOUT_MPSAFE);
613 
614 #ifdef KTRACE
615 	/*
616 	 * Copy traceflag and tracefile if enabled.
617 	 */
618 	mtx_lock(&ktrace_mtx);
619 	KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
620 	if (p1->p_traceflag & KTRFAC_INHERIT) {
621 		p2->p_traceflag = p1->p_traceflag;
622 		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
623 			VREF(p2->p_tracevp);
624 			KASSERT(p1->p_tracecred != NULL,
625 			    ("ktrace vnode with no cred"));
626 			p2->p_tracecred = crhold(p1->p_tracecred);
627 		}
628 	}
629 	mtx_unlock(&ktrace_mtx);
630 #endif
631 
632 	/*
633 	 * If PF_FORK is set, the child process inherits the
634 	 * procfs ioctl flags from its parent.
635 	 */
636 	if (p1->p_pfsflags & PF_FORK) {
637 		p2->p_stops = p1->p_stops;
638 		p2->p_pfsflags = p1->p_pfsflags;
639 	}
640 
641 #ifdef KDTRACE_HOOKS
642 	/*
643 	 * Tell the DTrace fasttrap provider about the new process
644 	 * if it has registered an interest.
645 	 */
646 	if (dtrace_fasttrap_fork)
647 		dtrace_fasttrap_fork(p1, p2);
648 #endif
649 
650 	/*
651 	 * This begins the section where we must prevent the parent
652 	 * from being swapped.
653 	 */
654 	_PHOLD(p1);
655 	PROC_UNLOCK(p1);
656 
657 	/*
658 	 * Attach the new process to its parent.
659 	 *
660 	 * If RFNOWAIT is set, the newly created process becomes a child
661 	 * of init.  This effectively disassociates the child from the
662 	 * parent.
663 	 */
664 	if (flags & RFNOWAIT)
665 		pptr = initproc;
666 	else
667 		pptr = p1;
668 	p2->p_pptr = pptr;
669 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
670 	sx_xunlock(&proctree_lock);
671 
672 	/* Inform accounting that we have forked. */
673 	p2->p_acflag = AFORK;
674 	PROC_UNLOCK(p2);
675 
676 	/*
677 	 * Finish creating the child process.  It will return via a different
678 	 * execution path later.  (ie: directly into user mode)
679 	 */
680 	vm_forkproc(td, p2, td2, vm2, flags);
681 
682 	if (flags == (RFFDG | RFPROC)) {
683 		PCPU_INC(cnt.v_forks);
684 		PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize +
685 		    p2->p_vmspace->vm_ssize);
686 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
687 		PCPU_INC(cnt.v_vforks);
688 		PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
689 		    p2->p_vmspace->vm_ssize);
690 	} else if (p1 == &proc0) {
691 		PCPU_INC(cnt.v_kthreads);
692 		PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
693 		    p2->p_vmspace->vm_ssize);
694 	} else {
695 		PCPU_INC(cnt.v_rforks);
696 		PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
697 		    p2->p_vmspace->vm_ssize);
698 	}
699 
700 	/*
701 	 * Both processes are set up, now check if any loadable modules want
702 	 * to adjust anything.
703 	 *   What if they have an error? XXX
704 	 */
705 	EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
706 
707 	/*
708 	 * Set the child start time and mark the process as being complete.
709 	 */
710 	microuptime(&p2->p_stats->p_start);
711 	PROC_SLOCK(p2);
712 	p2->p_state = PRS_NORMAL;
713 	PROC_SUNLOCK(p2);
714 
715 	/*
716 	 * If RFSTOPPED not requested, make child runnable and add to
717 	 * run queue.
718 	 */
719 	if ((flags & RFSTOPPED) == 0) {
720 		thread_lock(td2);
721 		TD_SET_CAN_RUN(td2);
722 		sched_add(td2, SRQ_BORING);
723 		thread_unlock(td2);
724 	}
725 
726 	/*
727 	 * Now can be swapped.
728 	 */
729 	PROC_LOCK(p1);
730 	_PRELE(p1);
731 
732 	/*
733 	 * Tell any interested parties about the new process.
734 	 */
735 	KNOTE_LOCKED(&p1->p_klist, NOTE_FORK | p2->p_pid);
736 
737 	PROC_UNLOCK(p1);
738 
739 	SDT_PROBE(proc, kernel, , create, p2, p1, flags, 0, 0);
740 
741 	/*
742 	 * Preserve synchronization semantics of vfork.  If waiting for
743 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
744 	 * proc (in case of exit).
745 	 */
746 	PROC_LOCK(p2);
747 	while (p2->p_flag & P_PPWAIT)
748 		msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
749 	PROC_UNLOCK(p2);
750 
751 	/*
752 	 * Return child proc pointer to parent.
753 	 */
754 	*procp = p2;
755 	return (0);
756 fail:
757 	sx_sunlock(&proctree_lock);
758 	if (ppsratecheck(&lastfail, &curfail, 1))
759 		printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n",
760 		    td->td_ucred->cr_ruid);
761 	sx_xunlock(&allproc_lock);
762 #ifdef MAC
763 	mac_proc_destroy(newproc);
764 #endif
765 fail1:
766 	if (vm2 != NULL)
767 		vmspace_free(vm2);
768 	uma_zfree(proc_zone, newproc);
769 	pause("fork", hz / 2);
770 	return (error);
771 }
772 
773 /*
774  * Handle the return of a child process from fork1().  This function
775  * is called from the MD fork_trampoline() entry point.
776  */
777 void
778 fork_exit(callout, arg, frame)
779 	void (*callout)(void *, struct trapframe *);
780 	void *arg;
781 	struct trapframe *frame;
782 {
783 	struct proc *p;
784 	struct thread *td;
785 	struct thread *dtd;
786 
787 	td = curthread;
788 	p = td->td_proc;
789 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
790 
791 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
792 		td, td->td_sched, p->p_pid, td->td_name);
793 
794 	sched_fork_exit(td);
795 	/*
796 	* Processes normally resume in mi_switch() after being
797 	* cpu_switch()'ed to, but when children start up they arrive here
798 	* instead, so we must do much the same things as mi_switch() would.
799 	*/
800 	if ((dtd = PCPU_GET(deadthread))) {
801 		PCPU_SET(deadthread, NULL);
802 		thread_stash(dtd);
803 	}
804 	thread_unlock(td);
805 
806 	/*
807 	 * cpu_set_fork_handler intercepts this function call to
808 	 * have this call a non-return function to stay in kernel mode.
809 	 * initproc has its own fork handler, but it does return.
810 	 */
811 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
812 	callout(arg, frame);
813 
814 	/*
815 	 * Check if a kernel thread misbehaved and returned from its main
816 	 * function.
817 	 */
818 	if (p->p_flag & P_KTHREAD) {
819 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
820 		    td->td_name, p->p_pid);
821 		kproc_exit(0);
822 	}
823 	mtx_assert(&Giant, MA_NOTOWNED);
824 
825 	EVENTHANDLER_INVOKE(schedtail, p);
826 }
827 
828 /*
829  * Simplified back end of syscall(), used when returning from fork()
830  * directly into user mode.  Giant is not held on entry, and must not
831  * be held on return.  This function is passed in to fork_exit() as the
832  * first parameter and is called when returning to a new userland process.
833  */
834 void
835 fork_return(td, frame)
836 	struct thread *td;
837 	struct trapframe *frame;
838 {
839 
840 	userret(td, frame);
841 #ifdef KTRACE
842 	if (KTRPOINT(td, KTR_SYSRET))
843 		ktrsysret(SYS_fork, 0, 0);
844 #endif
845 	mtx_assert(&Giant, MA_NOTOWNED);
846 }
847