xref: /freebsd/sys/kern/kern_fork.c (revision 5861f9665471e98e544f6fa3ce73c4912229ff82)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_kdtrace.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysproto.h>
46 #include <sys/eventhandler.h>
47 #include <sys/filedesc.h>
48 #include <sys/jail.h>
49 #include <sys/kernel.h>
50 #include <sys/kthread.h>
51 #include <sys/sysctl.h>
52 #include <sys/lock.h>
53 #include <sys/malloc.h>
54 #include <sys/mutex.h>
55 #include <sys/priv.h>
56 #include <sys/proc.h>
57 #include <sys/pioctl.h>
58 #include <sys/resourcevar.h>
59 #include <sys/sched.h>
60 #include <sys/syscall.h>
61 #include <sys/vmmeter.h>
62 #include <sys/vnode.h>
63 #include <sys/acct.h>
64 #include <sys/ktr.h>
65 #include <sys/ktrace.h>
66 #include <sys/unistd.h>
67 #include <sys/sdt.h>
68 #include <sys/sx.h>
69 #include <sys/signalvar.h>
70 #include <sys/vimage.h>
71 
72 #include <security/audit/audit.h>
73 #include <security/mac/mac_framework.h>
74 
75 #include <vm/vm.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_extern.h>
79 #include <vm/uma.h>
80 
81 #ifdef KDTRACE_HOOKS
82 #include <sys/dtrace_bsd.h>
83 dtrace_fork_func_t	dtrace_fasttrap_fork;
84 #endif
85 
86 SDT_PROVIDER_DECLARE(proc);
87 SDT_PROBE_DEFINE(proc, kernel, , create);
88 SDT_PROBE_ARGTYPE(proc, kernel, , create, 0, "struct proc *");
89 SDT_PROBE_ARGTYPE(proc, kernel, , create, 1, "struct proc *");
90 SDT_PROBE_ARGTYPE(proc, kernel, , create, 2, "int");
91 
92 #ifndef _SYS_SYSPROTO_H_
93 struct fork_args {
94 	int     dummy;
95 };
96 #endif
97 
98 /* ARGSUSED */
99 int
100 fork(td, uap)
101 	struct thread *td;
102 	struct fork_args *uap;
103 {
104 	int error;
105 	struct proc *p2;
106 
107 	error = fork1(td, RFFDG | RFPROC, 0, &p2);
108 	if (error == 0) {
109 		td->td_retval[0] = p2->p_pid;
110 		td->td_retval[1] = 0;
111 	}
112 	return (error);
113 }
114 
115 /* ARGSUSED */
116 int
117 vfork(td, uap)
118 	struct thread *td;
119 	struct vfork_args *uap;
120 {
121 	int error, flags;
122 	struct proc *p2;
123 
124 #ifdef XEN
125 	flags = RFFDG | RFPROC; /* validate that this is still an issue */
126 #else
127 	flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
128 #endif
129 	error = fork1(td, flags, 0, &p2);
130 	if (error == 0) {
131 		td->td_retval[0] = p2->p_pid;
132 		td->td_retval[1] = 0;
133 	}
134 	return (error);
135 }
136 
137 int
138 rfork(td, uap)
139 	struct thread *td;
140 	struct rfork_args *uap;
141 {
142 	struct proc *p2;
143 	int error;
144 
145 	/* Don't allow kernel-only flags. */
146 	if ((uap->flags & RFKERNELONLY) != 0)
147 		return (EINVAL);
148 
149 	AUDIT_ARG_FFLAGS(uap->flags);
150 	error = fork1(td, uap->flags, 0, &p2);
151 	if (error == 0) {
152 		td->td_retval[0] = p2 ? p2->p_pid : 0;
153 		td->td_retval[1] = 0;
154 	}
155 	return (error);
156 }
157 
158 int	nprocs = 1;		/* process 0 */
159 int	lastpid = 0;
160 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
161     "Last used PID");
162 
163 /*
164  * Random component to lastpid generation.  We mix in a random factor to make
165  * it a little harder to predict.  We sanity check the modulus value to avoid
166  * doing it in critical paths.  Don't let it be too small or we pointlessly
167  * waste randomness entropy, and don't let it be impossibly large.  Using a
168  * modulus that is too big causes a LOT more process table scans and slows
169  * down fork processing as the pidchecked caching is defeated.
170  */
171 static int randompid = 0;
172 
173 static int
174 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
175 {
176 	int error, pid;
177 
178 	error = sysctl_wire_old_buffer(req, sizeof(int));
179 	if (error != 0)
180 		return(error);
181 	sx_xlock(&allproc_lock);
182 	pid = randompid;
183 	error = sysctl_handle_int(oidp, &pid, 0, req);
184 	if (error == 0 && req->newptr != NULL) {
185 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
186 			pid = PID_MAX - 100;
187 		else if (pid < 2)			/* NOP */
188 			pid = 0;
189 		else if (pid < 100)			/* Make it reasonable */
190 			pid = 100;
191 		randompid = pid;
192 	}
193 	sx_xunlock(&allproc_lock);
194 	return (error);
195 }
196 
197 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
198     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
199 
200 int
201 fork1(td, flags, pages, procp)
202 	struct thread *td;
203 	int flags;
204 	int pages;
205 	struct proc **procp;
206 {
207 	struct proc *p1, *p2, *pptr;
208 	struct proc *newproc;
209 	int ok, trypid;
210 	static int curfail, pidchecked = 0;
211 	static struct timeval lastfail;
212 	struct filedesc *fd;
213 	struct filedesc_to_leader *fdtol;
214 	struct thread *td2;
215 	struct sigacts *newsigacts;
216 	struct vmspace *vm2;
217 	vm_ooffset_t mem_charged;
218 	int error;
219 
220 	/* Can't copy and clear. */
221 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
222 		return (EINVAL);
223 
224 	p1 = td->td_proc;
225 
226 	/*
227 	 * Here we don't create a new process, but we divorce
228 	 * certain parts of a process from itself.
229 	 */
230 	if ((flags & RFPROC) == 0) {
231 		if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
232 		    (flags & (RFCFDG | RFFDG))) {
233 			PROC_LOCK(p1);
234 			if (thread_single(SINGLE_BOUNDARY)) {
235 				PROC_UNLOCK(p1);
236 				return (ERESTART);
237 			}
238 			PROC_UNLOCK(p1);
239 		}
240 
241 		error = vm_forkproc(td, NULL, NULL, NULL, flags);
242 		if (error)
243 			goto norfproc_fail;
244 
245 		/*
246 		 * Close all file descriptors.
247 		 */
248 		if (flags & RFCFDG) {
249 			struct filedesc *fdtmp;
250 			fdtmp = fdinit(td->td_proc->p_fd);
251 			fdfree(td);
252 			p1->p_fd = fdtmp;
253 		}
254 
255 		/*
256 		 * Unshare file descriptors (from parent).
257 		 */
258 		if (flags & RFFDG)
259 			fdunshare(p1, td);
260 
261 norfproc_fail:
262 		if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
263 		    (flags & (RFCFDG | RFFDG))) {
264 			PROC_LOCK(p1);
265 			thread_single_end();
266 			PROC_UNLOCK(p1);
267 		}
268 		*procp = NULL;
269 		return (error);
270 	}
271 
272 	/*
273 	 * XXX
274 	 * We did have single-threading code here
275 	 * however it proved un-needed and caused problems
276 	 */
277 
278 	mem_charged = 0;
279 	vm2 = NULL;
280 	/* Allocate new proc. */
281 	newproc = uma_zalloc(proc_zone, M_WAITOK);
282 	if (TAILQ_EMPTY(&newproc->p_threads)) {
283 		td2 = thread_alloc();
284 		if (td2 == NULL) {
285 			error = ENOMEM;
286 			goto fail1;
287 		}
288 		proc_linkup(newproc, td2);
289 	} else
290 		td2 = FIRST_THREAD_IN_PROC(newproc);
291 
292 	/* Allocate and switch to an alternate kstack if specified. */
293 	if (pages != 0) {
294 		if (!vm_thread_new_altkstack(td2, pages)) {
295 			error = ENOMEM;
296 			goto fail1;
297 		}
298 	}
299 	if ((flags & RFMEM) == 0) {
300 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
301 		if (vm2 == NULL) {
302 			error = ENOMEM;
303 			goto fail1;
304 		}
305 		if (!swap_reserve(mem_charged)) {
306 			/*
307 			 * The swap reservation failed. The accounting
308 			 * from the entries of the copied vm2 will be
309 			 * substracted in vmspace_free(), so force the
310 			 * reservation there.
311 			 */
312 			swap_reserve_force(mem_charged);
313 			error = ENOMEM;
314 			goto fail1;
315 		}
316 	} else
317 		vm2 = NULL;
318 #ifdef MAC
319 	mac_proc_init(newproc);
320 #endif
321 	knlist_init_mtx(&newproc->p_klist, &newproc->p_mtx);
322 	STAILQ_INIT(&newproc->p_ktr);
323 
324 	/* We have to lock the process tree while we look for a pid. */
325 	sx_slock(&proctree_lock);
326 
327 	/*
328 	 * Although process entries are dynamically created, we still keep
329 	 * a global limit on the maximum number we will create.  Don't allow
330 	 * a nonprivileged user to use the last ten processes; don't let root
331 	 * exceed the limit. The variable nprocs is the current number of
332 	 * processes, maxproc is the limit.
333 	 */
334 	sx_xlock(&allproc_lock);
335 	if ((nprocs >= maxproc - 10 && priv_check_cred(td->td_ucred,
336 	    PRIV_MAXPROC, 0) != 0) || nprocs >= maxproc) {
337 		error = EAGAIN;
338 		goto fail;
339 	}
340 
341 	/*
342 	 * Increment the count of procs running with this uid. Don't allow
343 	 * a nonprivileged user to exceed their current limit.
344 	 *
345 	 * XXXRW: Can we avoid privilege here if it's not needed?
346 	 */
347 	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
348 	if (error == 0)
349 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
350 	else {
351 		PROC_LOCK(p1);
352 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
353 		    lim_cur(p1, RLIMIT_NPROC));
354 		PROC_UNLOCK(p1);
355 	}
356 	if (!ok) {
357 		error = EAGAIN;
358 		goto fail;
359 	}
360 
361 	/*
362 	 * Increment the nprocs resource before blocking can occur.  There
363 	 * are hard-limits as to the number of processes that can run.
364 	 */
365 	nprocs++;
366 #ifdef VIMAGE
367 	P_TO_VPROCG(p1)->nprocs++;
368 #endif
369 
370 	/*
371 	 * Find an unused process ID.  We remember a range of unused IDs
372 	 * ready to use (from lastpid+1 through pidchecked-1).
373 	 *
374 	 * If RFHIGHPID is set (used during system boot), do not allocate
375 	 * low-numbered pids.
376 	 */
377 	trypid = lastpid + 1;
378 	if (flags & RFHIGHPID) {
379 		if (trypid < 10)
380 			trypid = 10;
381 	} else {
382 		if (randompid)
383 			trypid += arc4random() % randompid;
384 	}
385 retry:
386 	/*
387 	 * If the process ID prototype has wrapped around,
388 	 * restart somewhat above 0, as the low-numbered procs
389 	 * tend to include daemons that don't exit.
390 	 */
391 	if (trypid >= PID_MAX) {
392 		trypid = trypid % PID_MAX;
393 		if (trypid < 100)
394 			trypid += 100;
395 		pidchecked = 0;
396 	}
397 	if (trypid >= pidchecked) {
398 		int doingzomb = 0;
399 
400 		pidchecked = PID_MAX;
401 		/*
402 		 * Scan the active and zombie procs to check whether this pid
403 		 * is in use.  Remember the lowest pid that's greater
404 		 * than trypid, so we can avoid checking for a while.
405 		 */
406 		p2 = LIST_FIRST(&allproc);
407 again:
408 		for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
409 			while (p2->p_pid == trypid ||
410 			    (p2->p_pgrp != NULL &&
411 			    (p2->p_pgrp->pg_id == trypid ||
412 			    (p2->p_session != NULL &&
413 			    p2->p_session->s_sid == trypid)))) {
414 				trypid++;
415 				if (trypid >= pidchecked)
416 					goto retry;
417 			}
418 			if (p2->p_pid > trypid && pidchecked > p2->p_pid)
419 				pidchecked = p2->p_pid;
420 			if (p2->p_pgrp != NULL) {
421 				if (p2->p_pgrp->pg_id > trypid &&
422 				    pidchecked > p2->p_pgrp->pg_id)
423 					pidchecked = p2->p_pgrp->pg_id;
424 				if (p2->p_session != NULL &&
425 				    p2->p_session->s_sid > trypid &&
426 				    pidchecked > p2->p_session->s_sid)
427 					pidchecked = p2->p_session->s_sid;
428 			}
429 		}
430 		if (!doingzomb) {
431 			doingzomb = 1;
432 			p2 = LIST_FIRST(&zombproc);
433 			goto again;
434 		}
435 	}
436 	sx_sunlock(&proctree_lock);
437 
438 	/*
439 	 * RFHIGHPID does not mess with the lastpid counter during boot.
440 	 */
441 	if (flags & RFHIGHPID)
442 		pidchecked = 0;
443 	else
444 		lastpid = trypid;
445 
446 	p2 = newproc;
447 	p2->p_state = PRS_NEW;		/* protect against others */
448 	p2->p_pid = trypid;
449 	/*
450 	 * Allow the scheduler to initialize the child.
451 	 */
452 	thread_lock(td);
453 	sched_fork(td, td2);
454 	thread_unlock(td);
455 	AUDIT_ARG_PID(p2->p_pid);
456 	LIST_INSERT_HEAD(&allproc, p2, p_list);
457 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
458 
459 	PROC_LOCK(p2);
460 	PROC_LOCK(p1);
461 
462 	sx_xunlock(&allproc_lock);
463 
464 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
465 	    __rangeof(struct proc, p_startcopy, p_endcopy));
466 	pargs_hold(p2->p_args);
467 	PROC_UNLOCK(p1);
468 
469 	bzero(&p2->p_startzero,
470 	    __rangeof(struct proc, p_startzero, p_endzero));
471 
472 	p2->p_ucred = crhold(td->td_ucred);
473 
474 	/* Tell the prison that we exist. */
475 	prison_proc_hold(p2->p_ucred->cr_prison);
476 
477 	PROC_UNLOCK(p2);
478 
479 	/*
480 	 * Malloc things while we don't hold any locks.
481 	 */
482 	if (flags & RFSIGSHARE)
483 		newsigacts = NULL;
484 	else
485 		newsigacts = sigacts_alloc();
486 
487 	/*
488 	 * Copy filedesc.
489 	 */
490 	if (flags & RFCFDG) {
491 		fd = fdinit(p1->p_fd);
492 		fdtol = NULL;
493 	} else if (flags & RFFDG) {
494 		fd = fdcopy(p1->p_fd);
495 		fdtol = NULL;
496 	} else {
497 		fd = fdshare(p1->p_fd);
498 		if (p1->p_fdtol == NULL)
499 			p1->p_fdtol =
500 				filedesc_to_leader_alloc(NULL,
501 							 NULL,
502 							 p1->p_leader);
503 		if ((flags & RFTHREAD) != 0) {
504 			/*
505 			 * Shared file descriptor table and
506 			 * shared process leaders.
507 			 */
508 			fdtol = p1->p_fdtol;
509 			FILEDESC_XLOCK(p1->p_fd);
510 			fdtol->fdl_refcount++;
511 			FILEDESC_XUNLOCK(p1->p_fd);
512 		} else {
513 			/*
514 			 * Shared file descriptor table, and
515 			 * different process leaders
516 			 */
517 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
518 							 p1->p_fd,
519 							 p2);
520 		}
521 	}
522 	/*
523 	 * Make a proc table entry for the new process.
524 	 * Start by zeroing the section of proc that is zero-initialized,
525 	 * then copy the section that is copied directly from the parent.
526 	 */
527 
528 	PROC_LOCK(p2);
529 	PROC_LOCK(p1);
530 
531 	bzero(&td2->td_startzero,
532 	    __rangeof(struct thread, td_startzero, td_endzero));
533 
534 	bcopy(&td->td_startcopy, &td2->td_startcopy,
535 	    __rangeof(struct thread, td_startcopy, td_endcopy));
536 
537 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
538 	td2->td_sigstk = td->td_sigstk;
539 	td2->td_sigmask = td->td_sigmask;
540 	td2->td_flags = TDF_INMEM;
541 
542 #ifdef VIMAGE
543 	td2->td_vnet = NULL;
544 	td2->td_vnet_lpush = NULL;
545 #endif
546 
547 	/*
548 	 * Duplicate sub-structures as needed.
549 	 * Increase reference counts on shared objects.
550 	 */
551 	p2->p_flag = P_INMEM;
552 	p2->p_swtick = ticks;
553 	if (p1->p_flag & P_PROFIL)
554 		startprofclock(p2);
555 	td2->td_ucred = crhold(p2->p_ucred);
556 
557 	if (flags & RFSIGSHARE) {
558 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
559 	} else {
560 		sigacts_copy(newsigacts, p1->p_sigacts);
561 		p2->p_sigacts = newsigacts;
562 	}
563 	if (flags & RFLINUXTHPN)
564 	        p2->p_sigparent = SIGUSR1;
565 	else
566 	        p2->p_sigparent = SIGCHLD;
567 
568 	p2->p_textvp = p1->p_textvp;
569 	p2->p_fd = fd;
570 	p2->p_fdtol = fdtol;
571 
572 	/*
573 	 * p_limit is copy-on-write.  Bump its refcount.
574 	 */
575 	lim_fork(p1, p2);
576 
577 	pstats_fork(p1->p_stats, p2->p_stats);
578 
579 	PROC_UNLOCK(p1);
580 	PROC_UNLOCK(p2);
581 
582 	/* Bump references to the text vnode (for procfs) */
583 	if (p2->p_textvp)
584 		vref(p2->p_textvp);
585 
586 	/*
587 	 * Set up linkage for kernel based threading.
588 	 */
589 	if ((flags & RFTHREAD) != 0) {
590 		mtx_lock(&ppeers_lock);
591 		p2->p_peers = p1->p_peers;
592 		p1->p_peers = p2;
593 		p2->p_leader = p1->p_leader;
594 		mtx_unlock(&ppeers_lock);
595 		PROC_LOCK(p1->p_leader);
596 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
597 			PROC_UNLOCK(p1->p_leader);
598 			/*
599 			 * The task leader is exiting, so process p1 is
600 			 * going to be killed shortly.  Since p1 obviously
601 			 * isn't dead yet, we know that the leader is either
602 			 * sending SIGKILL's to all the processes in this
603 			 * task or is sleeping waiting for all the peers to
604 			 * exit.  We let p1 complete the fork, but we need
605 			 * to go ahead and kill the new process p2 since
606 			 * the task leader may not get a chance to send
607 			 * SIGKILL to it.  We leave it on the list so that
608 			 * the task leader will wait for this new process
609 			 * to commit suicide.
610 			 */
611 			PROC_LOCK(p2);
612 			psignal(p2, SIGKILL);
613 			PROC_UNLOCK(p2);
614 		} else
615 			PROC_UNLOCK(p1->p_leader);
616 	} else {
617 		p2->p_peers = NULL;
618 		p2->p_leader = p2;
619 	}
620 
621 	sx_xlock(&proctree_lock);
622 	PGRP_LOCK(p1->p_pgrp);
623 	PROC_LOCK(p2);
624 	PROC_LOCK(p1);
625 
626 	/*
627 	 * Preserve some more flags in subprocess.  P_PROFIL has already
628 	 * been preserved.
629 	 */
630 	p2->p_flag |= p1->p_flag & P_SUGID;
631 	td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
632 	SESS_LOCK(p1->p_session);
633 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
634 		p2->p_flag |= P_CONTROLT;
635 	SESS_UNLOCK(p1->p_session);
636 	if (flags & RFPPWAIT)
637 		p2->p_flag |= P_PPWAIT;
638 
639 	p2->p_pgrp = p1->p_pgrp;
640 	LIST_INSERT_AFTER(p1, p2, p_pglist);
641 	PGRP_UNLOCK(p1->p_pgrp);
642 	LIST_INIT(&p2->p_children);
643 
644 	callout_init(&p2->p_itcallout, CALLOUT_MPSAFE);
645 
646 #ifdef KTRACE
647 	/*
648 	 * Copy traceflag and tracefile if enabled.
649 	 */
650 	mtx_lock(&ktrace_mtx);
651 	KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
652 	if (p1->p_traceflag & KTRFAC_INHERIT) {
653 		p2->p_traceflag = p1->p_traceflag;
654 		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
655 			VREF(p2->p_tracevp);
656 			KASSERT(p1->p_tracecred != NULL,
657 			    ("ktrace vnode with no cred"));
658 			p2->p_tracecred = crhold(p1->p_tracecred);
659 		}
660 	}
661 	mtx_unlock(&ktrace_mtx);
662 #endif
663 
664 	/*
665 	 * If PF_FORK is set, the child process inherits the
666 	 * procfs ioctl flags from its parent.
667 	 */
668 	if (p1->p_pfsflags & PF_FORK) {
669 		p2->p_stops = p1->p_stops;
670 		p2->p_pfsflags = p1->p_pfsflags;
671 	}
672 
673 #ifdef KDTRACE_HOOKS
674 	/*
675 	 * Tell the DTrace fasttrap provider about the new process
676 	 * if it has registered an interest.
677 	 */
678 	if (dtrace_fasttrap_fork)
679 		dtrace_fasttrap_fork(p1, p2);
680 #endif
681 
682 	/*
683 	 * This begins the section where we must prevent the parent
684 	 * from being swapped.
685 	 */
686 	_PHOLD(p1);
687 	PROC_UNLOCK(p1);
688 
689 	/*
690 	 * Attach the new process to its parent.
691 	 *
692 	 * If RFNOWAIT is set, the newly created process becomes a child
693 	 * of init.  This effectively disassociates the child from the
694 	 * parent.
695 	 */
696 	if (flags & RFNOWAIT)
697 		pptr = initproc;
698 	else
699 		pptr = p1;
700 	p2->p_pptr = pptr;
701 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
702 	sx_xunlock(&proctree_lock);
703 
704 	/* Inform accounting that we have forked. */
705 	p2->p_acflag = AFORK;
706 	PROC_UNLOCK(p2);
707 
708 	/*
709 	 * Finish creating the child process.  It will return via a different
710 	 * execution path later.  (ie: directly into user mode)
711 	 */
712 	vm_forkproc(td, p2, td2, vm2, flags);
713 
714 	if (flags == (RFFDG | RFPROC)) {
715 		PCPU_INC(cnt.v_forks);
716 		PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize +
717 		    p2->p_vmspace->vm_ssize);
718 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
719 		PCPU_INC(cnt.v_vforks);
720 		PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
721 		    p2->p_vmspace->vm_ssize);
722 	} else if (p1 == &proc0) {
723 		PCPU_INC(cnt.v_kthreads);
724 		PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
725 		    p2->p_vmspace->vm_ssize);
726 	} else {
727 		PCPU_INC(cnt.v_rforks);
728 		PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
729 		    p2->p_vmspace->vm_ssize);
730 	}
731 
732 	/*
733 	 * Both processes are set up, now check if any loadable modules want
734 	 * to adjust anything.
735 	 *   What if they have an error? XXX
736 	 */
737 	EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
738 
739 	/*
740 	 * Set the child start time and mark the process as being complete.
741 	 */
742 	microuptime(&p2->p_stats->p_start);
743 	PROC_SLOCK(p2);
744 	p2->p_state = PRS_NORMAL;
745 	PROC_SUNLOCK(p2);
746 
747 	/*
748 	 * If RFSTOPPED not requested, make child runnable and add to
749 	 * run queue.
750 	 */
751 	if ((flags & RFSTOPPED) == 0) {
752 		thread_lock(td2);
753 		TD_SET_CAN_RUN(td2);
754 		sched_add(td2, SRQ_BORING);
755 		thread_unlock(td2);
756 	}
757 
758 	/*
759 	 * Now can be swapped.
760 	 */
761 	PROC_LOCK(p1);
762 	_PRELE(p1);
763 	PROC_UNLOCK(p1);
764 
765 	/*
766 	 * Tell any interested parties about the new process.
767 	 */
768 	knote_fork(&p1->p_klist, p2->p_pid);
769 	SDT_PROBE(proc, kernel, , create, p2, p1, flags, 0, 0);
770 
771 	/*
772 	 * Preserve synchronization semantics of vfork.  If waiting for
773 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
774 	 * proc (in case of exit).
775 	 */
776 	PROC_LOCK(p2);
777 	while (p2->p_flag & P_PPWAIT)
778 		cv_wait(&p2->p_pwait, &p2->p_mtx);
779 	PROC_UNLOCK(p2);
780 
781 	/*
782 	 * Return child proc pointer to parent.
783 	 */
784 	*procp = p2;
785 	return (0);
786 fail:
787 	sx_sunlock(&proctree_lock);
788 	if (ppsratecheck(&lastfail, &curfail, 1))
789 		printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n",
790 		    td->td_ucred->cr_ruid);
791 	sx_xunlock(&allproc_lock);
792 #ifdef MAC
793 	mac_proc_destroy(newproc);
794 #endif
795 fail1:
796 	if (vm2 != NULL)
797 		vmspace_free(vm2);
798 	uma_zfree(proc_zone, newproc);
799 	pause("fork", hz / 2);
800 	return (error);
801 }
802 
803 /*
804  * Handle the return of a child process from fork1().  This function
805  * is called from the MD fork_trampoline() entry point.
806  */
807 void
808 fork_exit(callout, arg, frame)
809 	void (*callout)(void *, struct trapframe *);
810 	void *arg;
811 	struct trapframe *frame;
812 {
813 	struct proc *p;
814 	struct thread *td;
815 	struct thread *dtd;
816 
817 	td = curthread;
818 	p = td->td_proc;
819 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
820 
821 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
822 		td, td->td_sched, p->p_pid, td->td_name);
823 
824 	sched_fork_exit(td);
825 	/*
826 	* Processes normally resume in mi_switch() after being
827 	* cpu_switch()'ed to, but when children start up they arrive here
828 	* instead, so we must do much the same things as mi_switch() would.
829 	*/
830 	if ((dtd = PCPU_GET(deadthread))) {
831 		PCPU_SET(deadthread, NULL);
832 		thread_stash(dtd);
833 	}
834 	thread_unlock(td);
835 
836 	/*
837 	 * cpu_set_fork_handler intercepts this function call to
838 	 * have this call a non-return function to stay in kernel mode.
839 	 * initproc has its own fork handler, but it does return.
840 	 */
841 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
842 	callout(arg, frame);
843 
844 	/*
845 	 * Check if a kernel thread misbehaved and returned from its main
846 	 * function.
847 	 */
848 	if (p->p_flag & P_KTHREAD) {
849 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
850 		    td->td_name, p->p_pid);
851 		kproc_exit(0);
852 	}
853 	mtx_assert(&Giant, MA_NOTOWNED);
854 
855 	EVENTHANDLER_INVOKE(schedtail, p);
856 }
857 
858 /*
859  * Simplified back end of syscall(), used when returning from fork()
860  * directly into user mode.  Giant is not held on entry, and must not
861  * be held on return.  This function is passed in to fork_exit() as the
862  * first parameter and is called when returning to a new userland process.
863  */
864 void
865 fork_return(td, frame)
866 	struct thread *td;
867 	struct trapframe *frame;
868 {
869 
870 	userret(td, frame);
871 #ifdef KTRACE
872 	if (KTRPOINT(td, KTR_SYSRET))
873 		ktrsysret(SYS_fork, 0, 0);
874 #endif
875 	mtx_assert(&Giant, MA_NOTOWNED);
876 }
877