1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ktrace.h" 43 #include "opt_kstack_pages.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/bitstring.h> 48 #include <sys/sysproto.h> 49 #include <sys/eventhandler.h> 50 #include <sys/fcntl.h> 51 #include <sys/filedesc.h> 52 #include <sys/jail.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/sysctl.h> 56 #include <sys/lock.h> 57 #include <sys/malloc.h> 58 #include <sys/mutex.h> 59 #include <sys/priv.h> 60 #include <sys/proc.h> 61 #include <sys/procdesc.h> 62 #include <sys/pioctl.h> 63 #include <sys/ptrace.h> 64 #include <sys/racct.h> 65 #include <sys/resourcevar.h> 66 #include <sys/sched.h> 67 #include <sys/syscall.h> 68 #include <sys/vmmeter.h> 69 #include <sys/vnode.h> 70 #include <sys/acct.h> 71 #include <sys/ktr.h> 72 #include <sys/ktrace.h> 73 #include <sys/unistd.h> 74 #include <sys/sdt.h> 75 #include <sys/sx.h> 76 #include <sys/sysent.h> 77 #include <sys/signalvar.h> 78 79 #include <security/audit/audit.h> 80 #include <security/mac/mac_framework.h> 81 82 #include <vm/vm.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_extern.h> 86 #include <vm/uma.h> 87 88 #ifdef KDTRACE_HOOKS 89 #include <sys/dtrace_bsd.h> 90 dtrace_fork_func_t dtrace_fasttrap_fork; 91 #endif 92 93 SDT_PROVIDER_DECLARE(proc); 94 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int"); 95 96 #ifndef _SYS_SYSPROTO_H_ 97 struct fork_args { 98 int dummy; 99 }; 100 #endif 101 102 EVENTHANDLER_LIST_DECLARE(process_fork); 103 104 /* ARGSUSED */ 105 int 106 sys_fork(struct thread *td, struct fork_args *uap) 107 { 108 struct fork_req fr; 109 int error, pid; 110 111 bzero(&fr, sizeof(fr)); 112 fr.fr_flags = RFFDG | RFPROC; 113 fr.fr_pidp = &pid; 114 error = fork1(td, &fr); 115 if (error == 0) { 116 td->td_retval[0] = pid; 117 td->td_retval[1] = 0; 118 } 119 return (error); 120 } 121 122 /* ARGUSED */ 123 int 124 sys_pdfork(struct thread *td, struct pdfork_args *uap) 125 { 126 struct fork_req fr; 127 int error, fd, pid; 128 129 bzero(&fr, sizeof(fr)); 130 fr.fr_flags = RFFDG | RFPROC | RFPROCDESC; 131 fr.fr_pidp = &pid; 132 fr.fr_pd_fd = &fd; 133 fr.fr_pd_flags = uap->flags; 134 /* 135 * It is necessary to return fd by reference because 0 is a valid file 136 * descriptor number, and the child needs to be able to distinguish 137 * itself from the parent using the return value. 138 */ 139 error = fork1(td, &fr); 140 if (error == 0) { 141 td->td_retval[0] = pid; 142 td->td_retval[1] = 0; 143 error = copyout(&fd, uap->fdp, sizeof(fd)); 144 } 145 return (error); 146 } 147 148 /* ARGSUSED */ 149 int 150 sys_vfork(struct thread *td, struct vfork_args *uap) 151 { 152 struct fork_req fr; 153 int error, pid; 154 155 bzero(&fr, sizeof(fr)); 156 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; 157 fr.fr_pidp = &pid; 158 error = fork1(td, &fr); 159 if (error == 0) { 160 td->td_retval[0] = pid; 161 td->td_retval[1] = 0; 162 } 163 return (error); 164 } 165 166 int 167 sys_rfork(struct thread *td, struct rfork_args *uap) 168 { 169 struct fork_req fr; 170 int error, pid; 171 172 /* Don't allow kernel-only flags. */ 173 if ((uap->flags & RFKERNELONLY) != 0) 174 return (EINVAL); 175 176 AUDIT_ARG_FFLAGS(uap->flags); 177 bzero(&fr, sizeof(fr)); 178 fr.fr_flags = uap->flags; 179 fr.fr_pidp = &pid; 180 error = fork1(td, &fr); 181 if (error == 0) { 182 td->td_retval[0] = pid; 183 td->td_retval[1] = 0; 184 } 185 return (error); 186 } 187 188 int nprocs = 1; /* process 0 */ 189 int lastpid = 0; 190 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 191 "Last used PID"); 192 193 /* 194 * Random component to lastpid generation. We mix in a random factor to make 195 * it a little harder to predict. We sanity check the modulus value to avoid 196 * doing it in critical paths. Don't let it be too small or we pointlessly 197 * waste randomness entropy, and don't let it be impossibly large. Using a 198 * modulus that is too big causes a LOT more process table scans and slows 199 * down fork processing as the pidchecked caching is defeated. 200 */ 201 static int randompid = 0; 202 203 static int 204 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 205 { 206 int error, pid; 207 208 error = sysctl_wire_old_buffer(req, sizeof(int)); 209 if (error != 0) 210 return(error); 211 sx_xlock(&allproc_lock); 212 pid = randompid; 213 error = sysctl_handle_int(oidp, &pid, 0, req); 214 if (error == 0 && req->newptr != NULL) { 215 if (pid == 0) 216 randompid = 0; 217 else if (pid == 1) 218 /* generate a random PID modulus between 100 and 1123 */ 219 randompid = 100 + arc4random() % 1024; 220 else if (pid < 0 || pid > pid_max - 100) 221 /* out of range */ 222 randompid = pid_max - 100; 223 else if (pid < 100) 224 /* Make it reasonable */ 225 randompid = 100; 226 else 227 randompid = pid; 228 } 229 sx_xunlock(&allproc_lock); 230 return (error); 231 } 232 233 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 234 0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value"); 235 236 extern bitstr_t proc_id_pidmap; 237 extern bitstr_t proc_id_grpidmap; 238 extern bitstr_t proc_id_sessidmap; 239 extern bitstr_t proc_id_reapmap; 240 241 static int 242 fork_findpid(int flags) 243 { 244 pid_t result; 245 int trypid; 246 247 /* 248 * Find an unused process ID. We remember a range of unused IDs 249 * ready to use (from lastpid+1 through pidchecked-1). 250 * 251 * If RFHIGHPID is set (used during system boot), do not allocate 252 * low-numbered pids. 253 */ 254 trypid = lastpid + 1; 255 if (flags & RFHIGHPID) { 256 if (trypid < 10) 257 trypid = 10; 258 } else { 259 if (randompid) 260 trypid += arc4random() % randompid; 261 } 262 mtx_lock(&procid_lock); 263 retry: 264 /* 265 * If the process ID prototype has wrapped around, 266 * restart somewhat above 0, as the low-numbered procs 267 * tend to include daemons that don't exit. 268 */ 269 if (trypid >= pid_max) { 270 trypid = trypid % pid_max; 271 if (trypid < 100) 272 trypid += 100; 273 } 274 275 bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result); 276 if (result == -1) { 277 trypid = 100; 278 goto retry; 279 } 280 if (bit_test(&proc_id_grpidmap, result) || 281 bit_test(&proc_id_sessidmap, result) || 282 bit_test(&proc_id_reapmap, result)) { 283 trypid++; 284 goto retry; 285 } 286 287 /* 288 * RFHIGHPID does not mess with the lastpid counter during boot. 289 */ 290 if ((flags & RFHIGHPID) == 0) 291 lastpid = result; 292 293 bit_set(&proc_id_pidmap, result); 294 mtx_unlock(&procid_lock); 295 296 return (result); 297 } 298 299 static int 300 fork_norfproc(struct thread *td, int flags) 301 { 302 int error; 303 struct proc *p1; 304 305 KASSERT((flags & RFPROC) == 0, 306 ("fork_norfproc called with RFPROC set")); 307 p1 = td->td_proc; 308 309 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 310 (flags & (RFCFDG | RFFDG))) { 311 PROC_LOCK(p1); 312 if (thread_single(p1, SINGLE_BOUNDARY)) { 313 PROC_UNLOCK(p1); 314 return (ERESTART); 315 } 316 PROC_UNLOCK(p1); 317 } 318 319 error = vm_forkproc(td, NULL, NULL, NULL, flags); 320 if (error) 321 goto fail; 322 323 /* 324 * Close all file descriptors. 325 */ 326 if (flags & RFCFDG) { 327 struct filedesc *fdtmp; 328 fdtmp = fdinit(td->td_proc->p_fd, false); 329 fdescfree(td); 330 p1->p_fd = fdtmp; 331 } 332 333 /* 334 * Unshare file descriptors (from parent). 335 */ 336 if (flags & RFFDG) 337 fdunshare(td); 338 339 fail: 340 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 341 (flags & (RFCFDG | RFFDG))) { 342 PROC_LOCK(p1); 343 thread_single_end(p1, SINGLE_BOUNDARY); 344 PROC_UNLOCK(p1); 345 } 346 return (error); 347 } 348 349 static void 350 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2, 351 struct vmspace *vm2, struct file *fp_procdesc) 352 { 353 struct proc *p1, *pptr; 354 int trypid; 355 struct filedesc *fd; 356 struct filedesc_to_leader *fdtol; 357 struct sigacts *newsigacts; 358 359 sx_assert(&allproc_lock, SX_XLOCKED); 360 361 p1 = td->td_proc; 362 363 trypid = fork_findpid(fr->fr_flags); 364 p2->p_state = PRS_NEW; /* protect against others */ 365 p2->p_pid = trypid; 366 AUDIT_ARG_PID(p2->p_pid); 367 LIST_INSERT_HEAD(&allproc, p2, p_list); 368 allproc_gen++; 369 sx_xlock(PIDHASHLOCK(p2->p_pid)); 370 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); 371 sx_xunlock(PIDHASHLOCK(p2->p_pid)); 372 PROC_LOCK(p2); 373 PROC_LOCK(p1); 374 375 sx_xunlock(&allproc_lock); 376 377 bcopy(&p1->p_startcopy, &p2->p_startcopy, 378 __rangeof(struct proc, p_startcopy, p_endcopy)); 379 pargs_hold(p2->p_args); 380 381 PROC_UNLOCK(p1); 382 383 bzero(&p2->p_startzero, 384 __rangeof(struct proc, p_startzero, p_endzero)); 385 386 /* Tell the prison that we exist. */ 387 prison_proc_hold(p2->p_ucred->cr_prison); 388 389 PROC_UNLOCK(p2); 390 391 tidhash_add(td2); 392 393 /* 394 * Malloc things while we don't hold any locks. 395 */ 396 if (fr->fr_flags & RFSIGSHARE) 397 newsigacts = NULL; 398 else 399 newsigacts = sigacts_alloc(); 400 401 /* 402 * Copy filedesc. 403 */ 404 if (fr->fr_flags & RFCFDG) { 405 fd = fdinit(p1->p_fd, false); 406 fdtol = NULL; 407 } else if (fr->fr_flags & RFFDG) { 408 fd = fdcopy(p1->p_fd); 409 fdtol = NULL; 410 } else { 411 fd = fdshare(p1->p_fd); 412 if (p1->p_fdtol == NULL) 413 p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL, 414 p1->p_leader); 415 if ((fr->fr_flags & RFTHREAD) != 0) { 416 /* 417 * Shared file descriptor table, and shared 418 * process leaders. 419 */ 420 fdtol = p1->p_fdtol; 421 FILEDESC_XLOCK(p1->p_fd); 422 fdtol->fdl_refcount++; 423 FILEDESC_XUNLOCK(p1->p_fd); 424 } else { 425 /* 426 * Shared file descriptor table, and different 427 * process leaders. 428 */ 429 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, 430 p1->p_fd, p2); 431 } 432 } 433 /* 434 * Make a proc table entry for the new process. 435 * Start by zeroing the section of proc that is zero-initialized, 436 * then copy the section that is copied directly from the parent. 437 */ 438 439 PROC_LOCK(p2); 440 PROC_LOCK(p1); 441 442 bzero(&td2->td_startzero, 443 __rangeof(struct thread, td_startzero, td_endzero)); 444 445 bcopy(&td->td_startcopy, &td2->td_startcopy, 446 __rangeof(struct thread, td_startcopy, td_endcopy)); 447 448 bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name)); 449 td2->td_sigstk = td->td_sigstk; 450 td2->td_flags = TDF_INMEM; 451 td2->td_lend_user_pri = PRI_MAX; 452 453 #ifdef VIMAGE 454 td2->td_vnet = NULL; 455 td2->td_vnet_lpush = NULL; 456 #endif 457 458 /* 459 * Allow the scheduler to initialize the child. 460 */ 461 thread_lock(td); 462 sched_fork(td, td2); 463 thread_unlock(td); 464 465 /* 466 * Duplicate sub-structures as needed. 467 * Increase reference counts on shared objects. 468 */ 469 p2->p_flag = P_INMEM; 470 p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP); 471 p2->p_swtick = ticks; 472 if (p1->p_flag & P_PROFIL) 473 startprofclock(p2); 474 475 if (fr->fr_flags & RFSIGSHARE) { 476 p2->p_sigacts = sigacts_hold(p1->p_sigacts); 477 } else { 478 sigacts_copy(newsigacts, p1->p_sigacts); 479 p2->p_sigacts = newsigacts; 480 } 481 482 if (fr->fr_flags & RFTSIGZMB) 483 p2->p_sigparent = RFTSIGNUM(fr->fr_flags); 484 else if (fr->fr_flags & RFLINUXTHPN) 485 p2->p_sigparent = SIGUSR1; 486 else 487 p2->p_sigparent = SIGCHLD; 488 489 p2->p_textvp = p1->p_textvp; 490 p2->p_fd = fd; 491 p2->p_fdtol = fdtol; 492 493 if (p1->p_flag2 & P2_INHERIT_PROTECTED) { 494 p2->p_flag |= P_PROTECTED; 495 p2->p_flag2 |= P2_INHERIT_PROTECTED; 496 } 497 498 /* 499 * p_limit is copy-on-write. Bump its refcount. 500 */ 501 lim_fork(p1, p2); 502 503 thread_cow_get_proc(td2, p2); 504 505 pstats_fork(p1->p_stats, p2->p_stats); 506 507 PROC_UNLOCK(p1); 508 PROC_UNLOCK(p2); 509 510 /* Bump references to the text vnode (for procfs). */ 511 if (p2->p_textvp) 512 vrefact(p2->p_textvp); 513 514 /* 515 * Set up linkage for kernel based threading. 516 */ 517 if ((fr->fr_flags & RFTHREAD) != 0) { 518 mtx_lock(&ppeers_lock); 519 p2->p_peers = p1->p_peers; 520 p1->p_peers = p2; 521 p2->p_leader = p1->p_leader; 522 mtx_unlock(&ppeers_lock); 523 PROC_LOCK(p1->p_leader); 524 if ((p1->p_leader->p_flag & P_WEXIT) != 0) { 525 PROC_UNLOCK(p1->p_leader); 526 /* 527 * The task leader is exiting, so process p1 is 528 * going to be killed shortly. Since p1 obviously 529 * isn't dead yet, we know that the leader is either 530 * sending SIGKILL's to all the processes in this 531 * task or is sleeping waiting for all the peers to 532 * exit. We let p1 complete the fork, but we need 533 * to go ahead and kill the new process p2 since 534 * the task leader may not get a chance to send 535 * SIGKILL to it. We leave it on the list so that 536 * the task leader will wait for this new process 537 * to commit suicide. 538 */ 539 PROC_LOCK(p2); 540 kern_psignal(p2, SIGKILL); 541 PROC_UNLOCK(p2); 542 } else 543 PROC_UNLOCK(p1->p_leader); 544 } else { 545 p2->p_peers = NULL; 546 p2->p_leader = p2; 547 } 548 549 sx_xlock(&proctree_lock); 550 PGRP_LOCK(p1->p_pgrp); 551 PROC_LOCK(p2); 552 PROC_LOCK(p1); 553 554 /* 555 * Preserve some more flags in subprocess. P_PROFIL has already 556 * been preserved. 557 */ 558 p2->p_flag |= p1->p_flag & P_SUGID; 559 td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING; 560 SESS_LOCK(p1->p_session); 561 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) 562 p2->p_flag |= P_CONTROLT; 563 SESS_UNLOCK(p1->p_session); 564 if (fr->fr_flags & RFPPWAIT) 565 p2->p_flag |= P_PPWAIT; 566 567 p2->p_pgrp = p1->p_pgrp; 568 LIST_INSERT_AFTER(p1, p2, p_pglist); 569 PGRP_UNLOCK(p1->p_pgrp); 570 LIST_INIT(&p2->p_children); 571 LIST_INIT(&p2->p_orphans); 572 573 callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0); 574 575 /* 576 * If PF_FORK is set, the child process inherits the 577 * procfs ioctl flags from its parent. 578 */ 579 if (p1->p_pfsflags & PF_FORK) { 580 p2->p_stops = p1->p_stops; 581 p2->p_pfsflags = p1->p_pfsflags; 582 } 583 584 /* 585 * This begins the section where we must prevent the parent 586 * from being swapped. 587 */ 588 _PHOLD(p1); 589 PROC_UNLOCK(p1); 590 591 /* 592 * Attach the new process to its parent. 593 * 594 * If RFNOWAIT is set, the newly created process becomes a child 595 * of init. This effectively disassociates the child from the 596 * parent. 597 */ 598 if ((fr->fr_flags & RFNOWAIT) != 0) { 599 pptr = p1->p_reaper; 600 p2->p_reaper = pptr; 601 } else { 602 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ? 603 p1 : p1->p_reaper; 604 pptr = p1; 605 } 606 p2->p_pptr = pptr; 607 p2->p_oppid = pptr->p_pid; 608 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); 609 LIST_INIT(&p2->p_reaplist); 610 LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling); 611 if (p2->p_reaper == p1 && p1 != initproc) { 612 p2->p_reapsubtree = p2->p_pid; 613 proc_id_set_cond(PROC_ID_REAP, p2->p_pid); 614 } 615 sx_xunlock(&proctree_lock); 616 617 /* Inform accounting that we have forked. */ 618 p2->p_acflag = AFORK; 619 PROC_UNLOCK(p2); 620 621 #ifdef KTRACE 622 ktrprocfork(p1, p2); 623 #endif 624 625 /* 626 * Finish creating the child process. It will return via a different 627 * execution path later. (ie: directly into user mode) 628 */ 629 vm_forkproc(td, p2, td2, vm2, fr->fr_flags); 630 631 if (fr->fr_flags == (RFFDG | RFPROC)) { 632 VM_CNT_INC(v_forks); 633 VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize + 634 p2->p_vmspace->vm_ssize); 635 } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { 636 VM_CNT_INC(v_vforks); 637 VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize + 638 p2->p_vmspace->vm_ssize); 639 } else if (p1 == &proc0) { 640 VM_CNT_INC(v_kthreads); 641 VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize + 642 p2->p_vmspace->vm_ssize); 643 } else { 644 VM_CNT_INC(v_rforks); 645 VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize + 646 p2->p_vmspace->vm_ssize); 647 } 648 649 /* 650 * Associate the process descriptor with the process before anything 651 * can happen that might cause that process to need the descriptor. 652 * However, don't do this until after fork(2) can no longer fail. 653 */ 654 if (fr->fr_flags & RFPROCDESC) 655 procdesc_new(p2, fr->fr_pd_flags); 656 657 /* 658 * Both processes are set up, now check if any loadable modules want 659 * to adjust anything. 660 */ 661 EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags); 662 663 /* 664 * Set the child start time and mark the process as being complete. 665 */ 666 PROC_LOCK(p2); 667 PROC_LOCK(p1); 668 microuptime(&p2->p_stats->p_start); 669 PROC_SLOCK(p2); 670 p2->p_state = PRS_NORMAL; 671 PROC_SUNLOCK(p2); 672 673 #ifdef KDTRACE_HOOKS 674 /* 675 * Tell the DTrace fasttrap provider about the new process so that any 676 * tracepoints inherited from the parent can be removed. We have to do 677 * this only after p_state is PRS_NORMAL since the fasttrap module will 678 * use pfind() later on. 679 */ 680 if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork) 681 dtrace_fasttrap_fork(p1, p2); 682 #endif 683 if (fr->fr_flags & RFPPWAIT) { 684 td->td_pflags |= TDP_RFPPWAIT; 685 td->td_rfppwait_p = p2; 686 td->td_dbgflags |= TDB_VFORK; 687 } 688 PROC_UNLOCK(p2); 689 690 /* 691 * Tell any interested parties about the new process. 692 */ 693 knote_fork(p1->p_klist, p2->p_pid); 694 695 /* 696 * Now can be swapped. 697 */ 698 _PRELE(p1); 699 PROC_UNLOCK(p1); 700 SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags); 701 702 if (fr->fr_flags & RFPROCDESC) { 703 procdesc_finit(p2->p_procdesc, fp_procdesc); 704 fdrop(fp_procdesc, td); 705 } 706 707 /* 708 * Speculative check for PTRACE_FORK. PTRACE_FORK is not 709 * synced with forks in progress so it is OK if we miss it 710 * if being set atm. 711 */ 712 if ((p1->p_ptevents & PTRACE_FORK) != 0) { 713 sx_xlock(&proctree_lock); 714 PROC_LOCK(p2); 715 716 /* 717 * p1->p_ptevents & p1->p_pptr are protected by both 718 * process and proctree locks for modifications, 719 * so owning proctree_lock allows the race-free read. 720 */ 721 if ((p1->p_ptevents & PTRACE_FORK) != 0) { 722 /* 723 * Arrange for debugger to receive the fork event. 724 * 725 * We can report PL_FLAG_FORKED regardless of 726 * P_FOLLOWFORK settings, but it does not make a sense 727 * for runaway child. 728 */ 729 td->td_dbgflags |= TDB_FORK; 730 td->td_dbg_forked = p2->p_pid; 731 td2->td_dbgflags |= TDB_STOPATFORK; 732 proc_set_traced(p2, true); 733 CTR2(KTR_PTRACE, 734 "do_fork: attaching to new child pid %d: oppid %d", 735 p2->p_pid, p2->p_oppid); 736 proc_reparent(p2, p1->p_pptr, false); 737 } 738 PROC_UNLOCK(p2); 739 sx_xunlock(&proctree_lock); 740 } 741 742 racct_proc_fork_done(p2); 743 744 if ((fr->fr_flags & RFSTOPPED) == 0) { 745 if (fr->fr_pidp != NULL) 746 *fr->fr_pidp = p2->p_pid; 747 /* 748 * If RFSTOPPED not requested, make child runnable and 749 * add to run queue. 750 */ 751 thread_lock(td2); 752 TD_SET_CAN_RUN(td2); 753 sched_add(td2, SRQ_BORING); 754 thread_unlock(td2); 755 } else { 756 *fr->fr_procp = p2; 757 } 758 } 759 760 int 761 fork1(struct thread *td, struct fork_req *fr) 762 { 763 struct proc *p1, *newproc; 764 struct thread *td2; 765 struct vmspace *vm2; 766 struct file *fp_procdesc; 767 vm_ooffset_t mem_charged; 768 int error, nprocs_new, ok; 769 static int curfail; 770 static struct timeval lastfail; 771 int flags, pages; 772 773 flags = fr->fr_flags; 774 pages = fr->fr_pages; 775 776 if ((flags & RFSTOPPED) != 0) 777 MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL); 778 else 779 MPASS(fr->fr_procp == NULL); 780 781 /* Check for the undefined or unimplemented flags. */ 782 if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0) 783 return (EINVAL); 784 785 /* Signal value requires RFTSIGZMB. */ 786 if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0) 787 return (EINVAL); 788 789 /* Can't copy and clear. */ 790 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) 791 return (EINVAL); 792 793 /* Check the validity of the signal number. */ 794 if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG) 795 return (EINVAL); 796 797 if ((flags & RFPROCDESC) != 0) { 798 /* Can't not create a process yet get a process descriptor. */ 799 if ((flags & RFPROC) == 0) 800 return (EINVAL); 801 802 /* Must provide a place to put a procdesc if creating one. */ 803 if (fr->fr_pd_fd == NULL) 804 return (EINVAL); 805 806 /* Check if we are using supported flags. */ 807 if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0) 808 return (EINVAL); 809 } 810 811 p1 = td->td_proc; 812 813 /* 814 * Here we don't create a new process, but we divorce 815 * certain parts of a process from itself. 816 */ 817 if ((flags & RFPROC) == 0) { 818 if (fr->fr_procp != NULL) 819 *fr->fr_procp = NULL; 820 else if (fr->fr_pidp != NULL) 821 *fr->fr_pidp = 0; 822 return (fork_norfproc(td, flags)); 823 } 824 825 fp_procdesc = NULL; 826 newproc = NULL; 827 vm2 = NULL; 828 829 /* 830 * Increment the nprocs resource before allocations occur. 831 * Although process entries are dynamically created, we still 832 * keep a global limit on the maximum number we will 833 * create. There are hard-limits as to the number of processes 834 * that can run, established by the KVA and memory usage for 835 * the process data. 836 * 837 * Don't allow a nonprivileged user to use the last ten 838 * processes; don't let root exceed the limit. 839 */ 840 nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1; 841 if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0) || nprocs_new >= maxproc) { 842 error = EAGAIN; 843 sx_xlock(&allproc_lock); 844 if (ppsratecheck(&lastfail, &curfail, 1)) { 845 printf("maxproc limit exceeded by uid %u (pid %d); " 846 "see tuning(7) and login.conf(5)\n", 847 td->td_ucred->cr_ruid, p1->p_pid); 848 } 849 sx_xunlock(&allproc_lock); 850 goto fail2; 851 } 852 853 /* 854 * If required, create a process descriptor in the parent first; we 855 * will abandon it if something goes wrong. We don't finit() until 856 * later. 857 */ 858 if (flags & RFPROCDESC) { 859 error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd, 860 fr->fr_pd_flags, fr->fr_pd_fcaps); 861 if (error != 0) 862 goto fail2; 863 } 864 865 mem_charged = 0; 866 if (pages == 0) 867 pages = kstack_pages; 868 /* Allocate new proc. */ 869 newproc = uma_zalloc(proc_zone, M_WAITOK); 870 td2 = FIRST_THREAD_IN_PROC(newproc); 871 if (td2 == NULL) { 872 td2 = thread_alloc(pages); 873 if (td2 == NULL) { 874 error = ENOMEM; 875 goto fail2; 876 } 877 proc_linkup(newproc, td2); 878 } else { 879 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) { 880 if (td2->td_kstack != 0) 881 vm_thread_dispose(td2); 882 if (!thread_alloc_stack(td2, pages)) { 883 error = ENOMEM; 884 goto fail2; 885 } 886 } 887 } 888 889 if ((flags & RFMEM) == 0) { 890 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged); 891 if (vm2 == NULL) { 892 error = ENOMEM; 893 goto fail2; 894 } 895 if (!swap_reserve(mem_charged)) { 896 /* 897 * The swap reservation failed. The accounting 898 * from the entries of the copied vm2 will be 899 * subtracted in vmspace_free(), so force the 900 * reservation there. 901 */ 902 swap_reserve_force(mem_charged); 903 error = ENOMEM; 904 goto fail2; 905 } 906 } else 907 vm2 = NULL; 908 909 /* 910 * XXX: This is ugly; when we copy resource usage, we need to bump 911 * per-cred resource counters. 912 */ 913 proc_set_cred_init(newproc, crhold(td->td_ucred)); 914 915 /* 916 * Initialize resource accounting for the child process. 917 */ 918 error = racct_proc_fork(p1, newproc); 919 if (error != 0) { 920 error = EAGAIN; 921 goto fail1; 922 } 923 924 #ifdef MAC 925 mac_proc_init(newproc); 926 #endif 927 newproc->p_klist = knlist_alloc(&newproc->p_mtx); 928 STAILQ_INIT(&newproc->p_ktr); 929 930 sx_xlock(&allproc_lock); 931 932 /* 933 * Increment the count of procs running with this uid. Don't allow 934 * a nonprivileged user to exceed their current limit. 935 * 936 * XXXRW: Can we avoid privilege here if it's not needed? 937 */ 938 error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT); 939 if (error == 0) 940 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0); 941 else { 942 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 943 lim_cur(td, RLIMIT_NPROC)); 944 } 945 if (ok) { 946 do_fork(td, fr, newproc, td2, vm2, fp_procdesc); 947 return (0); 948 } 949 950 error = EAGAIN; 951 sx_xunlock(&allproc_lock); 952 #ifdef MAC 953 mac_proc_destroy(newproc); 954 #endif 955 racct_proc_exit(newproc); 956 fail1: 957 crfree(newproc->p_ucred); 958 newproc->p_ucred = NULL; 959 fail2: 960 if (vm2 != NULL) 961 vmspace_free(vm2); 962 uma_zfree(proc_zone, newproc); 963 if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) { 964 fdclose(td, fp_procdesc, *fr->fr_pd_fd); 965 fdrop(fp_procdesc, td); 966 } 967 atomic_add_int(&nprocs, -1); 968 pause("fork", hz / 2); 969 return (error); 970 } 971 972 /* 973 * Handle the return of a child process from fork1(). This function 974 * is called from the MD fork_trampoline() entry point. 975 */ 976 void 977 fork_exit(void (*callout)(void *, struct trapframe *), void *arg, 978 struct trapframe *frame) 979 { 980 struct proc *p; 981 struct thread *td; 982 struct thread *dtd; 983 984 td = curthread; 985 p = td->td_proc; 986 KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new")); 987 988 CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)", 989 td, td_get_sched(td), p->p_pid, td->td_name); 990 991 sched_fork_exit(td); 992 /* 993 * Processes normally resume in mi_switch() after being 994 * cpu_switch()'ed to, but when children start up they arrive here 995 * instead, so we must do much the same things as mi_switch() would. 996 */ 997 if ((dtd = PCPU_GET(deadthread))) { 998 PCPU_SET(deadthread, NULL); 999 thread_stash(dtd); 1000 } 1001 thread_unlock(td); 1002 1003 /* 1004 * cpu_fork_kthread_handler intercepts this function call to 1005 * have this call a non-return function to stay in kernel mode. 1006 * initproc has its own fork handler, but it does return. 1007 */ 1008 KASSERT(callout != NULL, ("NULL callout in fork_exit")); 1009 callout(arg, frame); 1010 1011 /* 1012 * Check if a kernel thread misbehaved and returned from its main 1013 * function. 1014 */ 1015 if (p->p_flag & P_KPROC) { 1016 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n", 1017 td->td_name, p->p_pid); 1018 kthread_exit(); 1019 } 1020 mtx_assert(&Giant, MA_NOTOWNED); 1021 1022 if (p->p_sysent->sv_schedtail != NULL) 1023 (p->p_sysent->sv_schedtail)(td); 1024 td->td_pflags &= ~TDP_FORKING; 1025 } 1026 1027 /* 1028 * Simplified back end of syscall(), used when returning from fork() 1029 * directly into user mode. This function is passed in to fork_exit() 1030 * as the first parameter and is called when returning to a new 1031 * userland process. 1032 */ 1033 void 1034 fork_return(struct thread *td, struct trapframe *frame) 1035 { 1036 struct proc *p; 1037 1038 p = td->td_proc; 1039 if (td->td_dbgflags & TDB_STOPATFORK) { 1040 PROC_LOCK(p); 1041 if ((p->p_flag & P_TRACED) != 0) { 1042 /* 1043 * Inform the debugger if one is still present. 1044 */ 1045 td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP; 1046 ptracestop(td, SIGSTOP, NULL); 1047 td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX); 1048 } else { 1049 /* 1050 * ... otherwise clear the request. 1051 */ 1052 td->td_dbgflags &= ~TDB_STOPATFORK; 1053 } 1054 PROC_UNLOCK(p); 1055 } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) { 1056 /* 1057 * This is the start of a new thread in a traced 1058 * process. Report a system call exit event. 1059 */ 1060 PROC_LOCK(p); 1061 td->td_dbgflags |= TDB_SCX; 1062 _STOPEVENT(p, S_SCX, td->td_sa.code); 1063 if ((p->p_ptevents & PTRACE_SCX) != 0 || 1064 (td->td_dbgflags & TDB_BORN) != 0) 1065 ptracestop(td, SIGTRAP, NULL); 1066 td->td_dbgflags &= ~(TDB_SCX | TDB_BORN); 1067 PROC_UNLOCK(p); 1068 } 1069 1070 userret(td, frame); 1071 1072 #ifdef KTRACE 1073 if (KTRPOINT(td, KTR_SYSRET)) 1074 ktrsysret(SYS_fork, 0, 0); 1075 #endif 1076 } 1077