xref: /freebsd/sys/kern/kern_fork.c (revision 547bc083d614f3639f5632d9e39d79e828519318)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 #include "opt_kstack_pages.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/bitstring.h>
48 #include <sys/sysproto.h>
49 #include <sys/eventhandler.h>
50 #include <sys/fcntl.h>
51 #include <sys/filedesc.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/sysctl.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/mutex.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/procdesc.h>
62 #include <sys/pioctl.h>
63 #include <sys/ptrace.h>
64 #include <sys/racct.h>
65 #include <sys/resourcevar.h>
66 #include <sys/sched.h>
67 #include <sys/syscall.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 #include <sys/acct.h>
71 #include <sys/ktr.h>
72 #include <sys/ktrace.h>
73 #include <sys/unistd.h>
74 #include <sys/sdt.h>
75 #include <sys/sx.h>
76 #include <sys/sysent.h>
77 #include <sys/signalvar.h>
78 
79 #include <security/audit/audit.h>
80 #include <security/mac/mac_framework.h>
81 
82 #include <vm/vm.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_extern.h>
86 #include <vm/uma.h>
87 
88 #ifdef KDTRACE_HOOKS
89 #include <sys/dtrace_bsd.h>
90 dtrace_fork_func_t	dtrace_fasttrap_fork;
91 #endif
92 
93 SDT_PROVIDER_DECLARE(proc);
94 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
95 
96 #ifndef _SYS_SYSPROTO_H_
97 struct fork_args {
98 	int     dummy;
99 };
100 #endif
101 
102 EVENTHANDLER_LIST_DECLARE(process_fork);
103 
104 /* ARGSUSED */
105 int
106 sys_fork(struct thread *td, struct fork_args *uap)
107 {
108 	struct fork_req fr;
109 	int error, pid;
110 
111 	bzero(&fr, sizeof(fr));
112 	fr.fr_flags = RFFDG | RFPROC;
113 	fr.fr_pidp = &pid;
114 	error = fork1(td, &fr);
115 	if (error == 0) {
116 		td->td_retval[0] = pid;
117 		td->td_retval[1] = 0;
118 	}
119 	return (error);
120 }
121 
122 /* ARGUSED */
123 int
124 sys_pdfork(struct thread *td, struct pdfork_args *uap)
125 {
126 	struct fork_req fr;
127 	int error, fd, pid;
128 
129 	bzero(&fr, sizeof(fr));
130 	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
131 	fr.fr_pidp = &pid;
132 	fr.fr_pd_fd = &fd;
133 	fr.fr_pd_flags = uap->flags;
134 	/*
135 	 * It is necessary to return fd by reference because 0 is a valid file
136 	 * descriptor number, and the child needs to be able to distinguish
137 	 * itself from the parent using the return value.
138 	 */
139 	error = fork1(td, &fr);
140 	if (error == 0) {
141 		td->td_retval[0] = pid;
142 		td->td_retval[1] = 0;
143 		error = copyout(&fd, uap->fdp, sizeof(fd));
144 	}
145 	return (error);
146 }
147 
148 /* ARGSUSED */
149 int
150 sys_vfork(struct thread *td, struct vfork_args *uap)
151 {
152 	struct fork_req fr;
153 	int error, pid;
154 
155 	bzero(&fr, sizeof(fr));
156 	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
157 	fr.fr_pidp = &pid;
158 	error = fork1(td, &fr);
159 	if (error == 0) {
160 		td->td_retval[0] = pid;
161 		td->td_retval[1] = 0;
162 	}
163 	return (error);
164 }
165 
166 int
167 sys_rfork(struct thread *td, struct rfork_args *uap)
168 {
169 	struct fork_req fr;
170 	int error, pid;
171 
172 	/* Don't allow kernel-only flags. */
173 	if ((uap->flags & RFKERNELONLY) != 0)
174 		return (EINVAL);
175 
176 	AUDIT_ARG_FFLAGS(uap->flags);
177 	bzero(&fr, sizeof(fr));
178 	fr.fr_flags = uap->flags;
179 	fr.fr_pidp = &pid;
180 	error = fork1(td, &fr);
181 	if (error == 0) {
182 		td->td_retval[0] = pid;
183 		td->td_retval[1] = 0;
184 	}
185 	return (error);
186 }
187 
188 int	nprocs = 1;		/* process 0 */
189 int	lastpid = 0;
190 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
191     "Last used PID");
192 
193 /*
194  * Random component to lastpid generation.  We mix in a random factor to make
195  * it a little harder to predict.  We sanity check the modulus value to avoid
196  * doing it in critical paths.  Don't let it be too small or we pointlessly
197  * waste randomness entropy, and don't let it be impossibly large.  Using a
198  * modulus that is too big causes a LOT more process table scans and slows
199  * down fork processing as the pidchecked caching is defeated.
200  */
201 static int randompid = 0;
202 
203 static int
204 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
205 {
206 	int error, pid;
207 
208 	error = sysctl_wire_old_buffer(req, sizeof(int));
209 	if (error != 0)
210 		return(error);
211 	sx_xlock(&allproc_lock);
212 	pid = randompid;
213 	error = sysctl_handle_int(oidp, &pid, 0, req);
214 	if (error == 0 && req->newptr != NULL) {
215 		if (pid == 0)
216 			randompid = 0;
217 		else if (pid == 1)
218 			/* generate a random PID modulus between 100 and 1123 */
219 			randompid = 100 + arc4random() % 1024;
220 		else if (pid < 0 || pid > pid_max - 100)
221 			/* out of range */
222 			randompid = pid_max - 100;
223 		else if (pid < 100)
224 			/* Make it reasonable */
225 			randompid = 100;
226 		else
227 			randompid = pid;
228 	}
229 	sx_xunlock(&allproc_lock);
230 	return (error);
231 }
232 
233 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
234     0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value");
235 
236 extern bitstr_t proc_id_pidmap;
237 extern bitstr_t proc_id_grpidmap;
238 extern bitstr_t proc_id_sessidmap;
239 extern bitstr_t proc_id_reapmap;
240 
241 static int
242 fork_findpid(int flags)
243 {
244 	pid_t result;
245 	int trypid;
246 
247 	/*
248 	 * Find an unused process ID.  We remember a range of unused IDs
249 	 * ready to use (from lastpid+1 through pidchecked-1).
250 	 *
251 	 * If RFHIGHPID is set (used during system boot), do not allocate
252 	 * low-numbered pids.
253 	 */
254 	trypid = lastpid + 1;
255 	if (flags & RFHIGHPID) {
256 		if (trypid < 10)
257 			trypid = 10;
258 	} else {
259 		if (randompid)
260 			trypid += arc4random() % randompid;
261 	}
262 	mtx_lock(&procid_lock);
263 retry:
264 	/*
265 	 * If the process ID prototype has wrapped around,
266 	 * restart somewhat above 0, as the low-numbered procs
267 	 * tend to include daemons that don't exit.
268 	 */
269 	if (trypid >= pid_max) {
270 		trypid = trypid % pid_max;
271 		if (trypid < 100)
272 			trypid += 100;
273 	}
274 
275 	bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result);
276 	if (result == -1) {
277 		trypid = 100;
278 		goto retry;
279 	}
280 	if (bit_test(&proc_id_grpidmap, result) ||
281 	    bit_test(&proc_id_sessidmap, result) ||
282 	    bit_test(&proc_id_reapmap, result)) {
283 		trypid++;
284 		goto retry;
285 	}
286 
287 	/*
288 	 * RFHIGHPID does not mess with the lastpid counter during boot.
289 	 */
290 	if ((flags & RFHIGHPID) == 0)
291 		lastpid = result;
292 
293 	bit_set(&proc_id_pidmap, result);
294 	mtx_unlock(&procid_lock);
295 
296 	return (result);
297 }
298 
299 static int
300 fork_norfproc(struct thread *td, int flags)
301 {
302 	int error;
303 	struct proc *p1;
304 
305 	KASSERT((flags & RFPROC) == 0,
306 	    ("fork_norfproc called with RFPROC set"));
307 	p1 = td->td_proc;
308 
309 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
310 	    (flags & (RFCFDG | RFFDG))) {
311 		PROC_LOCK(p1);
312 		if (thread_single(p1, SINGLE_BOUNDARY)) {
313 			PROC_UNLOCK(p1);
314 			return (ERESTART);
315 		}
316 		PROC_UNLOCK(p1);
317 	}
318 
319 	error = vm_forkproc(td, NULL, NULL, NULL, flags);
320 	if (error)
321 		goto fail;
322 
323 	/*
324 	 * Close all file descriptors.
325 	 */
326 	if (flags & RFCFDG) {
327 		struct filedesc *fdtmp;
328 		fdtmp = fdinit(td->td_proc->p_fd, false);
329 		fdescfree(td);
330 		p1->p_fd = fdtmp;
331 	}
332 
333 	/*
334 	 * Unshare file descriptors (from parent).
335 	 */
336 	if (flags & RFFDG)
337 		fdunshare(td);
338 
339 fail:
340 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
341 	    (flags & (RFCFDG | RFFDG))) {
342 		PROC_LOCK(p1);
343 		thread_single_end(p1, SINGLE_BOUNDARY);
344 		PROC_UNLOCK(p1);
345 	}
346 	return (error);
347 }
348 
349 static void
350 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
351     struct vmspace *vm2, struct file *fp_procdesc)
352 {
353 	struct proc *p1, *pptr;
354 	int trypid;
355 	struct filedesc *fd;
356 	struct filedesc_to_leader *fdtol;
357 	struct sigacts *newsigacts;
358 
359 	sx_assert(&allproc_lock, SX_XLOCKED);
360 
361 	p1 = td->td_proc;
362 
363 	trypid = fork_findpid(fr->fr_flags);
364 	p2->p_state = PRS_NEW;		/* protect against others */
365 	p2->p_pid = trypid;
366 	AUDIT_ARG_PID(p2->p_pid);
367 	LIST_INSERT_HEAD(&allproc, p2, p_list);
368 	allproc_gen++;
369 	sx_xlock(PIDHASHLOCK(p2->p_pid));
370 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
371 	sx_xunlock(PIDHASHLOCK(p2->p_pid));
372 	PROC_LOCK(p2);
373 	PROC_LOCK(p1);
374 
375 	sx_xunlock(&allproc_lock);
376 
377 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
378 	    __rangeof(struct proc, p_startcopy, p_endcopy));
379 	pargs_hold(p2->p_args);
380 
381 	PROC_UNLOCK(p1);
382 
383 	bzero(&p2->p_startzero,
384 	    __rangeof(struct proc, p_startzero, p_endzero));
385 
386 	/* Tell the prison that we exist. */
387 	prison_proc_hold(p2->p_ucred->cr_prison);
388 
389 	PROC_UNLOCK(p2);
390 
391 	tidhash_add(td2);
392 
393 	/*
394 	 * Malloc things while we don't hold any locks.
395 	 */
396 	if (fr->fr_flags & RFSIGSHARE)
397 		newsigacts = NULL;
398 	else
399 		newsigacts = sigacts_alloc();
400 
401 	/*
402 	 * Copy filedesc.
403 	 */
404 	if (fr->fr_flags & RFCFDG) {
405 		fd = fdinit(p1->p_fd, false);
406 		fdtol = NULL;
407 	} else if (fr->fr_flags & RFFDG) {
408 		fd = fdcopy(p1->p_fd);
409 		fdtol = NULL;
410 	} else {
411 		fd = fdshare(p1->p_fd);
412 		if (p1->p_fdtol == NULL)
413 			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
414 			    p1->p_leader);
415 		if ((fr->fr_flags & RFTHREAD) != 0) {
416 			/*
417 			 * Shared file descriptor table, and shared
418 			 * process leaders.
419 			 */
420 			fdtol = p1->p_fdtol;
421 			FILEDESC_XLOCK(p1->p_fd);
422 			fdtol->fdl_refcount++;
423 			FILEDESC_XUNLOCK(p1->p_fd);
424 		} else {
425 			/*
426 			 * Shared file descriptor table, and different
427 			 * process leaders.
428 			 */
429 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
430 			    p1->p_fd, p2);
431 		}
432 	}
433 	/*
434 	 * Make a proc table entry for the new process.
435 	 * Start by zeroing the section of proc that is zero-initialized,
436 	 * then copy the section that is copied directly from the parent.
437 	 */
438 
439 	PROC_LOCK(p2);
440 	PROC_LOCK(p1);
441 
442 	bzero(&td2->td_startzero,
443 	    __rangeof(struct thread, td_startzero, td_endzero));
444 
445 	bcopy(&td->td_startcopy, &td2->td_startcopy,
446 	    __rangeof(struct thread, td_startcopy, td_endcopy));
447 
448 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
449 	td2->td_sigstk = td->td_sigstk;
450 	td2->td_flags = TDF_INMEM;
451 	td2->td_lend_user_pri = PRI_MAX;
452 
453 #ifdef VIMAGE
454 	td2->td_vnet = NULL;
455 	td2->td_vnet_lpush = NULL;
456 #endif
457 
458 	/*
459 	 * Allow the scheduler to initialize the child.
460 	 */
461 	thread_lock(td);
462 	sched_fork(td, td2);
463 	thread_unlock(td);
464 
465 	/*
466 	 * Duplicate sub-structures as needed.
467 	 * Increase reference counts on shared objects.
468 	 */
469 	p2->p_flag = P_INMEM;
470 	p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP);
471 	p2->p_swtick = ticks;
472 	if (p1->p_flag & P_PROFIL)
473 		startprofclock(p2);
474 
475 	if (fr->fr_flags & RFSIGSHARE) {
476 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
477 	} else {
478 		sigacts_copy(newsigacts, p1->p_sigacts);
479 		p2->p_sigacts = newsigacts;
480 	}
481 
482 	if (fr->fr_flags & RFTSIGZMB)
483 	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
484 	else if (fr->fr_flags & RFLINUXTHPN)
485 	        p2->p_sigparent = SIGUSR1;
486 	else
487 	        p2->p_sigparent = SIGCHLD;
488 
489 	p2->p_textvp = p1->p_textvp;
490 	p2->p_fd = fd;
491 	p2->p_fdtol = fdtol;
492 
493 	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
494 		p2->p_flag |= P_PROTECTED;
495 		p2->p_flag2 |= P2_INHERIT_PROTECTED;
496 	}
497 
498 	/*
499 	 * p_limit is copy-on-write.  Bump its refcount.
500 	 */
501 	lim_fork(p1, p2);
502 
503 	thread_cow_get_proc(td2, p2);
504 
505 	pstats_fork(p1->p_stats, p2->p_stats);
506 
507 	PROC_UNLOCK(p1);
508 	PROC_UNLOCK(p2);
509 
510 	/* Bump references to the text vnode (for procfs). */
511 	if (p2->p_textvp)
512 		vrefact(p2->p_textvp);
513 
514 	/*
515 	 * Set up linkage for kernel based threading.
516 	 */
517 	if ((fr->fr_flags & RFTHREAD) != 0) {
518 		mtx_lock(&ppeers_lock);
519 		p2->p_peers = p1->p_peers;
520 		p1->p_peers = p2;
521 		p2->p_leader = p1->p_leader;
522 		mtx_unlock(&ppeers_lock);
523 		PROC_LOCK(p1->p_leader);
524 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
525 			PROC_UNLOCK(p1->p_leader);
526 			/*
527 			 * The task leader is exiting, so process p1 is
528 			 * going to be killed shortly.  Since p1 obviously
529 			 * isn't dead yet, we know that the leader is either
530 			 * sending SIGKILL's to all the processes in this
531 			 * task or is sleeping waiting for all the peers to
532 			 * exit.  We let p1 complete the fork, but we need
533 			 * to go ahead and kill the new process p2 since
534 			 * the task leader may not get a chance to send
535 			 * SIGKILL to it.  We leave it on the list so that
536 			 * the task leader will wait for this new process
537 			 * to commit suicide.
538 			 */
539 			PROC_LOCK(p2);
540 			kern_psignal(p2, SIGKILL);
541 			PROC_UNLOCK(p2);
542 		} else
543 			PROC_UNLOCK(p1->p_leader);
544 	} else {
545 		p2->p_peers = NULL;
546 		p2->p_leader = p2;
547 	}
548 
549 	sx_xlock(&proctree_lock);
550 	PGRP_LOCK(p1->p_pgrp);
551 	PROC_LOCK(p2);
552 	PROC_LOCK(p1);
553 
554 	/*
555 	 * Preserve some more flags in subprocess.  P_PROFIL has already
556 	 * been preserved.
557 	 */
558 	p2->p_flag |= p1->p_flag & P_SUGID;
559 	td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING;
560 	SESS_LOCK(p1->p_session);
561 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
562 		p2->p_flag |= P_CONTROLT;
563 	SESS_UNLOCK(p1->p_session);
564 	if (fr->fr_flags & RFPPWAIT)
565 		p2->p_flag |= P_PPWAIT;
566 
567 	p2->p_pgrp = p1->p_pgrp;
568 	LIST_INSERT_AFTER(p1, p2, p_pglist);
569 	PGRP_UNLOCK(p1->p_pgrp);
570 	LIST_INIT(&p2->p_children);
571 	LIST_INIT(&p2->p_orphans);
572 
573 	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
574 
575 	/*
576 	 * If PF_FORK is set, the child process inherits the
577 	 * procfs ioctl flags from its parent.
578 	 */
579 	if (p1->p_pfsflags & PF_FORK) {
580 		p2->p_stops = p1->p_stops;
581 		p2->p_pfsflags = p1->p_pfsflags;
582 	}
583 
584 	/*
585 	 * This begins the section where we must prevent the parent
586 	 * from being swapped.
587 	 */
588 	_PHOLD(p1);
589 	PROC_UNLOCK(p1);
590 
591 	/*
592 	 * Attach the new process to its parent.
593 	 *
594 	 * If RFNOWAIT is set, the newly created process becomes a child
595 	 * of init.  This effectively disassociates the child from the
596 	 * parent.
597 	 */
598 	if ((fr->fr_flags & RFNOWAIT) != 0) {
599 		pptr = p1->p_reaper;
600 		p2->p_reaper = pptr;
601 	} else {
602 		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
603 		    p1 : p1->p_reaper;
604 		pptr = p1;
605 	}
606 	p2->p_pptr = pptr;
607 	p2->p_oppid = pptr->p_pid;
608 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
609 	LIST_INIT(&p2->p_reaplist);
610 	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
611 	if (p2->p_reaper == p1 && p1 != initproc) {
612 		p2->p_reapsubtree = p2->p_pid;
613 		proc_id_set_cond(PROC_ID_REAP, p2->p_pid);
614 	}
615 	sx_xunlock(&proctree_lock);
616 
617 	/* Inform accounting that we have forked. */
618 	p2->p_acflag = AFORK;
619 	PROC_UNLOCK(p2);
620 
621 #ifdef KTRACE
622 	ktrprocfork(p1, p2);
623 #endif
624 
625 	/*
626 	 * Finish creating the child process.  It will return via a different
627 	 * execution path later.  (ie: directly into user mode)
628 	 */
629 	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
630 
631 	if (fr->fr_flags == (RFFDG | RFPROC)) {
632 		VM_CNT_INC(v_forks);
633 		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
634 		    p2->p_vmspace->vm_ssize);
635 	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
636 		VM_CNT_INC(v_vforks);
637 		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
638 		    p2->p_vmspace->vm_ssize);
639 	} else if (p1 == &proc0) {
640 		VM_CNT_INC(v_kthreads);
641 		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
642 		    p2->p_vmspace->vm_ssize);
643 	} else {
644 		VM_CNT_INC(v_rforks);
645 		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
646 		    p2->p_vmspace->vm_ssize);
647 	}
648 
649 	/*
650 	 * Associate the process descriptor with the process before anything
651 	 * can happen that might cause that process to need the descriptor.
652 	 * However, don't do this until after fork(2) can no longer fail.
653 	 */
654 	if (fr->fr_flags & RFPROCDESC)
655 		procdesc_new(p2, fr->fr_pd_flags);
656 
657 	/*
658 	 * Both processes are set up, now check if any loadable modules want
659 	 * to adjust anything.
660 	 */
661 	EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
662 
663 	/*
664 	 * Set the child start time and mark the process as being complete.
665 	 */
666 	PROC_LOCK(p2);
667 	PROC_LOCK(p1);
668 	microuptime(&p2->p_stats->p_start);
669 	PROC_SLOCK(p2);
670 	p2->p_state = PRS_NORMAL;
671 	PROC_SUNLOCK(p2);
672 
673 #ifdef KDTRACE_HOOKS
674 	/*
675 	 * Tell the DTrace fasttrap provider about the new process so that any
676 	 * tracepoints inherited from the parent can be removed. We have to do
677 	 * this only after p_state is PRS_NORMAL since the fasttrap module will
678 	 * use pfind() later on.
679 	 */
680 	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
681 		dtrace_fasttrap_fork(p1, p2);
682 #endif
683 	if (fr->fr_flags & RFPPWAIT) {
684 		td->td_pflags |= TDP_RFPPWAIT;
685 		td->td_rfppwait_p = p2;
686 		td->td_dbgflags |= TDB_VFORK;
687 	}
688 	PROC_UNLOCK(p2);
689 
690 	/*
691 	 * Tell any interested parties about the new process.
692 	 */
693 	knote_fork(p1->p_klist, p2->p_pid);
694 
695 	/*
696 	 * Now can be swapped.
697 	 */
698 	_PRELE(p1);
699 	PROC_UNLOCK(p1);
700 	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
701 
702 	if (fr->fr_flags & RFPROCDESC) {
703 		procdesc_finit(p2->p_procdesc, fp_procdesc);
704 		fdrop(fp_procdesc, td);
705 	}
706 
707 	/*
708 	 * Speculative check for PTRACE_FORK. PTRACE_FORK is not
709 	 * synced with forks in progress so it is OK if we miss it
710 	 * if being set atm.
711 	 */
712 	if ((p1->p_ptevents & PTRACE_FORK) != 0) {
713 		sx_xlock(&proctree_lock);
714 		PROC_LOCK(p2);
715 
716 		/*
717 		 * p1->p_ptevents & p1->p_pptr are protected by both
718 		 * process and proctree locks for modifications,
719 		 * so owning proctree_lock allows the race-free read.
720 		 */
721 		if ((p1->p_ptevents & PTRACE_FORK) != 0) {
722 			/*
723 			 * Arrange for debugger to receive the fork event.
724 			 *
725 			 * We can report PL_FLAG_FORKED regardless of
726 			 * P_FOLLOWFORK settings, but it does not make a sense
727 			 * for runaway child.
728 			 */
729 			td->td_dbgflags |= TDB_FORK;
730 			td->td_dbg_forked = p2->p_pid;
731 			td2->td_dbgflags |= TDB_STOPATFORK;
732 			proc_set_traced(p2, true);
733 			CTR2(KTR_PTRACE,
734 			    "do_fork: attaching to new child pid %d: oppid %d",
735 			    p2->p_pid, p2->p_oppid);
736 			proc_reparent(p2, p1->p_pptr, false);
737 		}
738 		PROC_UNLOCK(p2);
739 		sx_xunlock(&proctree_lock);
740 	}
741 
742 	racct_proc_fork_done(p2);
743 
744 	if ((fr->fr_flags & RFSTOPPED) == 0) {
745 		if (fr->fr_pidp != NULL)
746 			*fr->fr_pidp = p2->p_pid;
747 		/*
748 		 * If RFSTOPPED not requested, make child runnable and
749 		 * add to run queue.
750 		 */
751 		thread_lock(td2);
752 		TD_SET_CAN_RUN(td2);
753 		sched_add(td2, SRQ_BORING);
754 		thread_unlock(td2);
755 	} else {
756 		*fr->fr_procp = p2;
757 	}
758 }
759 
760 int
761 fork1(struct thread *td, struct fork_req *fr)
762 {
763 	struct proc *p1, *newproc;
764 	struct thread *td2;
765 	struct vmspace *vm2;
766 	struct file *fp_procdesc;
767 	vm_ooffset_t mem_charged;
768 	int error, nprocs_new, ok;
769 	static int curfail;
770 	static struct timeval lastfail;
771 	int flags, pages;
772 
773 	flags = fr->fr_flags;
774 	pages = fr->fr_pages;
775 
776 	if ((flags & RFSTOPPED) != 0)
777 		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
778 	else
779 		MPASS(fr->fr_procp == NULL);
780 
781 	/* Check for the undefined or unimplemented flags. */
782 	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
783 		return (EINVAL);
784 
785 	/* Signal value requires RFTSIGZMB. */
786 	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
787 		return (EINVAL);
788 
789 	/* Can't copy and clear. */
790 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
791 		return (EINVAL);
792 
793 	/* Check the validity of the signal number. */
794 	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
795 		return (EINVAL);
796 
797 	if ((flags & RFPROCDESC) != 0) {
798 		/* Can't not create a process yet get a process descriptor. */
799 		if ((flags & RFPROC) == 0)
800 			return (EINVAL);
801 
802 		/* Must provide a place to put a procdesc if creating one. */
803 		if (fr->fr_pd_fd == NULL)
804 			return (EINVAL);
805 
806 		/* Check if we are using supported flags. */
807 		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
808 			return (EINVAL);
809 	}
810 
811 	p1 = td->td_proc;
812 
813 	/*
814 	 * Here we don't create a new process, but we divorce
815 	 * certain parts of a process from itself.
816 	 */
817 	if ((flags & RFPROC) == 0) {
818 		if (fr->fr_procp != NULL)
819 			*fr->fr_procp = NULL;
820 		else if (fr->fr_pidp != NULL)
821 			*fr->fr_pidp = 0;
822 		return (fork_norfproc(td, flags));
823 	}
824 
825 	fp_procdesc = NULL;
826 	newproc = NULL;
827 	vm2 = NULL;
828 
829 	/*
830 	 * Increment the nprocs resource before allocations occur.
831 	 * Although process entries are dynamically created, we still
832 	 * keep a global limit on the maximum number we will
833 	 * create. There are hard-limits as to the number of processes
834 	 * that can run, established by the KVA and memory usage for
835 	 * the process data.
836 	 *
837 	 * Don't allow a nonprivileged user to use the last ten
838 	 * processes; don't let root exceed the limit.
839 	 */
840 	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
841 	if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0) || nprocs_new >= maxproc) {
842 		error = EAGAIN;
843 		sx_xlock(&allproc_lock);
844 		if (ppsratecheck(&lastfail, &curfail, 1)) {
845 			printf("maxproc limit exceeded by uid %u (pid %d); "
846 			    "see tuning(7) and login.conf(5)\n",
847 			    td->td_ucred->cr_ruid, p1->p_pid);
848 		}
849 		sx_xunlock(&allproc_lock);
850 		goto fail2;
851 	}
852 
853 	/*
854 	 * If required, create a process descriptor in the parent first; we
855 	 * will abandon it if something goes wrong. We don't finit() until
856 	 * later.
857 	 */
858 	if (flags & RFPROCDESC) {
859 		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
860 		    fr->fr_pd_flags, fr->fr_pd_fcaps);
861 		if (error != 0)
862 			goto fail2;
863 	}
864 
865 	mem_charged = 0;
866 	if (pages == 0)
867 		pages = kstack_pages;
868 	/* Allocate new proc. */
869 	newproc = uma_zalloc(proc_zone, M_WAITOK);
870 	td2 = FIRST_THREAD_IN_PROC(newproc);
871 	if (td2 == NULL) {
872 		td2 = thread_alloc(pages);
873 		if (td2 == NULL) {
874 			error = ENOMEM;
875 			goto fail2;
876 		}
877 		proc_linkup(newproc, td2);
878 	} else {
879 		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
880 			if (td2->td_kstack != 0)
881 				vm_thread_dispose(td2);
882 			if (!thread_alloc_stack(td2, pages)) {
883 				error = ENOMEM;
884 				goto fail2;
885 			}
886 		}
887 	}
888 
889 	if ((flags & RFMEM) == 0) {
890 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
891 		if (vm2 == NULL) {
892 			error = ENOMEM;
893 			goto fail2;
894 		}
895 		if (!swap_reserve(mem_charged)) {
896 			/*
897 			 * The swap reservation failed. The accounting
898 			 * from the entries of the copied vm2 will be
899 			 * subtracted in vmspace_free(), so force the
900 			 * reservation there.
901 			 */
902 			swap_reserve_force(mem_charged);
903 			error = ENOMEM;
904 			goto fail2;
905 		}
906 	} else
907 		vm2 = NULL;
908 
909 	/*
910 	 * XXX: This is ugly; when we copy resource usage, we need to bump
911 	 *      per-cred resource counters.
912 	 */
913 	proc_set_cred_init(newproc, crhold(td->td_ucred));
914 
915 	/*
916 	 * Initialize resource accounting for the child process.
917 	 */
918 	error = racct_proc_fork(p1, newproc);
919 	if (error != 0) {
920 		error = EAGAIN;
921 		goto fail1;
922 	}
923 
924 #ifdef MAC
925 	mac_proc_init(newproc);
926 #endif
927 	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
928 	STAILQ_INIT(&newproc->p_ktr);
929 
930 	sx_xlock(&allproc_lock);
931 
932 	/*
933 	 * Increment the count of procs running with this uid. Don't allow
934 	 * a nonprivileged user to exceed their current limit.
935 	 *
936 	 * XXXRW: Can we avoid privilege here if it's not needed?
937 	 */
938 	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT);
939 	if (error == 0)
940 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
941 	else {
942 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
943 		    lim_cur(td, RLIMIT_NPROC));
944 	}
945 	if (ok) {
946 		do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
947 		return (0);
948 	}
949 
950 	error = EAGAIN;
951 	sx_xunlock(&allproc_lock);
952 #ifdef MAC
953 	mac_proc_destroy(newproc);
954 #endif
955 	racct_proc_exit(newproc);
956 fail1:
957 	crfree(newproc->p_ucred);
958 	newproc->p_ucred = NULL;
959 fail2:
960 	if (vm2 != NULL)
961 		vmspace_free(vm2);
962 	uma_zfree(proc_zone, newproc);
963 	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
964 		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
965 		fdrop(fp_procdesc, td);
966 	}
967 	atomic_add_int(&nprocs, -1);
968 	pause("fork", hz / 2);
969 	return (error);
970 }
971 
972 /*
973  * Handle the return of a child process from fork1().  This function
974  * is called from the MD fork_trampoline() entry point.
975  */
976 void
977 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
978     struct trapframe *frame)
979 {
980 	struct proc *p;
981 	struct thread *td;
982 	struct thread *dtd;
983 
984 	td = curthread;
985 	p = td->td_proc;
986 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
987 
988 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
989 	    td, td_get_sched(td), p->p_pid, td->td_name);
990 
991 	sched_fork_exit(td);
992 	/*
993 	* Processes normally resume in mi_switch() after being
994 	* cpu_switch()'ed to, but when children start up they arrive here
995 	* instead, so we must do much the same things as mi_switch() would.
996 	*/
997 	if ((dtd = PCPU_GET(deadthread))) {
998 		PCPU_SET(deadthread, NULL);
999 		thread_stash(dtd);
1000 	}
1001 	thread_unlock(td);
1002 
1003 	/*
1004 	 * cpu_fork_kthread_handler intercepts this function call to
1005 	 * have this call a non-return function to stay in kernel mode.
1006 	 * initproc has its own fork handler, but it does return.
1007 	 */
1008 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1009 	callout(arg, frame);
1010 
1011 	/*
1012 	 * Check if a kernel thread misbehaved and returned from its main
1013 	 * function.
1014 	 */
1015 	if (p->p_flag & P_KPROC) {
1016 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1017 		    td->td_name, p->p_pid);
1018 		kthread_exit();
1019 	}
1020 	mtx_assert(&Giant, MA_NOTOWNED);
1021 
1022 	if (p->p_sysent->sv_schedtail != NULL)
1023 		(p->p_sysent->sv_schedtail)(td);
1024 	td->td_pflags &= ~TDP_FORKING;
1025 }
1026 
1027 /*
1028  * Simplified back end of syscall(), used when returning from fork()
1029  * directly into user mode.  This function is passed in to fork_exit()
1030  * as the first parameter and is called when returning to a new
1031  * userland process.
1032  */
1033 void
1034 fork_return(struct thread *td, struct trapframe *frame)
1035 {
1036 	struct proc *p;
1037 
1038 	p = td->td_proc;
1039 	if (td->td_dbgflags & TDB_STOPATFORK) {
1040 		PROC_LOCK(p);
1041 		if ((p->p_flag & P_TRACED) != 0) {
1042 			/*
1043 			 * Inform the debugger if one is still present.
1044 			 */
1045 			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1046 			ptracestop(td, SIGSTOP, NULL);
1047 			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1048 		} else {
1049 			/*
1050 			 * ... otherwise clear the request.
1051 			 */
1052 			td->td_dbgflags &= ~TDB_STOPATFORK;
1053 		}
1054 		PROC_UNLOCK(p);
1055 	} else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
1056  		/*
1057 		 * This is the start of a new thread in a traced
1058 		 * process.  Report a system call exit event.
1059 		 */
1060 		PROC_LOCK(p);
1061 		td->td_dbgflags |= TDB_SCX;
1062 		_STOPEVENT(p, S_SCX, td->td_sa.code);
1063 		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1064 		    (td->td_dbgflags & TDB_BORN) != 0)
1065 			ptracestop(td, SIGTRAP, NULL);
1066 		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1067 		PROC_UNLOCK(p);
1068 	}
1069 
1070 	userret(td, frame);
1071 
1072 #ifdef KTRACE
1073 	if (KTRPOINT(td, KTR_SYSRET))
1074 		ktrsysret(SYS_fork, 0, 0);
1075 #endif
1076 }
1077