xref: /freebsd/sys/kern/kern_fork.c (revision 3ff01b231dfa83d518854c63e7c9cd1debd1139e)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 #include "opt_kstack_pages.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/bitstring.h>
48 #include <sys/sysproto.h>
49 #include <sys/eventhandler.h>
50 #include <sys/fcntl.h>
51 #include <sys/filedesc.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/sysctl.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/mutex.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/procdesc.h>
62 #include <sys/ptrace.h>
63 #include <sys/racct.h>
64 #include <sys/resourcevar.h>
65 #include <sys/sched.h>
66 #include <sys/syscall.h>
67 #include <sys/vmmeter.h>
68 #include <sys/vnode.h>
69 #include <sys/acct.h>
70 #include <sys/ktr.h>
71 #include <sys/ktrace.h>
72 #include <sys/unistd.h>
73 #include <sys/sdt.h>
74 #include <sys/sx.h>
75 #include <sys/sysent.h>
76 #include <sys/signalvar.h>
77 
78 #include <security/audit/audit.h>
79 #include <security/mac/mac_framework.h>
80 
81 #include <vm/vm.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_extern.h>
85 #include <vm/uma.h>
86 
87 #ifdef KDTRACE_HOOKS
88 #include <sys/dtrace_bsd.h>
89 dtrace_fork_func_t	dtrace_fasttrap_fork;
90 #endif
91 
92 SDT_PROVIDER_DECLARE(proc);
93 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
94 
95 #ifndef _SYS_SYSPROTO_H_
96 struct fork_args {
97 	int     dummy;
98 };
99 #endif
100 
101 /* ARGSUSED */
102 int
103 sys_fork(struct thread *td, struct fork_args *uap)
104 {
105 	struct fork_req fr;
106 	int error, pid;
107 
108 	bzero(&fr, sizeof(fr));
109 	fr.fr_flags = RFFDG | RFPROC;
110 	fr.fr_pidp = &pid;
111 	error = fork1(td, &fr);
112 	if (error == 0) {
113 		td->td_retval[0] = pid;
114 		td->td_retval[1] = 0;
115 	}
116 	return (error);
117 }
118 
119 /* ARGUSED */
120 int
121 sys_pdfork(struct thread *td, struct pdfork_args *uap)
122 {
123 	struct fork_req fr;
124 	int error, fd, pid;
125 
126 	bzero(&fr, sizeof(fr));
127 	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
128 	fr.fr_pidp = &pid;
129 	fr.fr_pd_fd = &fd;
130 	fr.fr_pd_flags = uap->flags;
131 	AUDIT_ARG_FFLAGS(uap->flags);
132 	/*
133 	 * It is necessary to return fd by reference because 0 is a valid file
134 	 * descriptor number, and the child needs to be able to distinguish
135 	 * itself from the parent using the return value.
136 	 */
137 	error = fork1(td, &fr);
138 	if (error == 0) {
139 		td->td_retval[0] = pid;
140 		td->td_retval[1] = 0;
141 		error = copyout(&fd, uap->fdp, sizeof(fd));
142 	}
143 	return (error);
144 }
145 
146 /* ARGSUSED */
147 int
148 sys_vfork(struct thread *td, struct vfork_args *uap)
149 {
150 	struct fork_req fr;
151 	int error, pid;
152 
153 	bzero(&fr, sizeof(fr));
154 	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
155 	fr.fr_pidp = &pid;
156 	error = fork1(td, &fr);
157 	if (error == 0) {
158 		td->td_retval[0] = pid;
159 		td->td_retval[1] = 0;
160 	}
161 	return (error);
162 }
163 
164 int
165 sys_rfork(struct thread *td, struct rfork_args *uap)
166 {
167 	struct fork_req fr;
168 	int error, pid;
169 
170 	/* Don't allow kernel-only flags. */
171 	if ((uap->flags & RFKERNELONLY) != 0)
172 		return (EINVAL);
173 	/* RFSPAWN must not appear with others */
174 	if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN)
175 		return (EINVAL);
176 
177 	AUDIT_ARG_FFLAGS(uap->flags);
178 	bzero(&fr, sizeof(fr));
179 	if ((uap->flags & RFSPAWN) != 0) {
180 		fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
181 		fr.fr_flags2 = FR2_DROPSIG_CAUGHT;
182 	} else {
183 		fr.fr_flags = uap->flags;
184 	}
185 	fr.fr_pidp = &pid;
186 	error = fork1(td, &fr);
187 	if (error == 0) {
188 		td->td_retval[0] = pid;
189 		td->td_retval[1] = 0;
190 	}
191 	return (error);
192 }
193 
194 int __exclusive_cache_line	nprocs = 1;		/* process 0 */
195 int	lastpid = 0;
196 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
197     "Last used PID");
198 
199 /*
200  * Random component to lastpid generation.  We mix in a random factor to make
201  * it a little harder to predict.  We sanity check the modulus value to avoid
202  * doing it in critical paths.  Don't let it be too small or we pointlessly
203  * waste randomness entropy, and don't let it be impossibly large.  Using a
204  * modulus that is too big causes a LOT more process table scans and slows
205  * down fork processing as the pidchecked caching is defeated.
206  */
207 static int randompid = 0;
208 
209 static int
210 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
211 {
212 	int error, pid;
213 
214 	error = sysctl_wire_old_buffer(req, sizeof(int));
215 	if (error != 0)
216 		return(error);
217 	sx_xlock(&allproc_lock);
218 	pid = randompid;
219 	error = sysctl_handle_int(oidp, &pid, 0, req);
220 	if (error == 0 && req->newptr != NULL) {
221 		if (pid == 0)
222 			randompid = 0;
223 		else if (pid == 1)
224 			/* generate a random PID modulus between 100 and 1123 */
225 			randompid = 100 + arc4random() % 1024;
226 		else if (pid < 0 || pid > pid_max - 100)
227 			/* out of range */
228 			randompid = pid_max - 100;
229 		else if (pid < 100)
230 			/* Make it reasonable */
231 			randompid = 100;
232 		else
233 			randompid = pid;
234 	}
235 	sx_xunlock(&allproc_lock);
236 	return (error);
237 }
238 
239 SYSCTL_PROC(_kern, OID_AUTO, randompid,
240     CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
241     sysctl_kern_randompid, "I",
242     "Random PID modulus. Special values: 0: disable, 1: choose random value");
243 
244 extern bitstr_t proc_id_pidmap;
245 extern bitstr_t proc_id_grpidmap;
246 extern bitstr_t proc_id_sessidmap;
247 extern bitstr_t proc_id_reapmap;
248 
249 /*
250  * Find an unused process ID
251  *
252  * If RFHIGHPID is set (used during system boot), do not allocate
253  * low-numbered pids.
254  */
255 static int
256 fork_findpid(int flags)
257 {
258 	pid_t result;
259 	int trypid, random;
260 
261 	/*
262 	 * Avoid calling arc4random with procid_lock held.
263 	 */
264 	random = 0;
265 	if (__predict_false(randompid))
266 		random = arc4random() % randompid;
267 
268 	mtx_lock(&procid_lock);
269 
270 	trypid = lastpid + 1;
271 	if (flags & RFHIGHPID) {
272 		if (trypid < 10)
273 			trypid = 10;
274 	} else {
275 		trypid += random;
276 	}
277 retry:
278 	if (trypid >= pid_max)
279 		trypid = 2;
280 
281 	bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result);
282 	if (result == -1) {
283 		KASSERT(trypid != 2, ("unexpectedly ran out of IDs"));
284 		trypid = 2;
285 		goto retry;
286 	}
287 	if (bit_test(&proc_id_grpidmap, result) ||
288 	    bit_test(&proc_id_sessidmap, result) ||
289 	    bit_test(&proc_id_reapmap, result)) {
290 		trypid = result + 1;
291 		goto retry;
292 	}
293 
294 	/*
295 	 * RFHIGHPID does not mess with the lastpid counter during boot.
296 	 */
297 	if ((flags & RFHIGHPID) == 0)
298 		lastpid = result;
299 
300 	bit_set(&proc_id_pidmap, result);
301 	mtx_unlock(&procid_lock);
302 
303 	return (result);
304 }
305 
306 static int
307 fork_norfproc(struct thread *td, int flags)
308 {
309 	int error;
310 	struct proc *p1;
311 
312 	KASSERT((flags & RFPROC) == 0,
313 	    ("fork_norfproc called with RFPROC set"));
314 	p1 = td->td_proc;
315 
316 	/*
317 	 * Quiesce other threads if necessary.  If RFMEM is not specified we
318 	 * must ensure that other threads do not concurrently create a second
319 	 * process sharing the vmspace, see vmspace_unshare().
320 	 */
321 	if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
322 	    ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
323 		PROC_LOCK(p1);
324 		if (thread_single(p1, SINGLE_BOUNDARY)) {
325 			PROC_UNLOCK(p1);
326 			return (ERESTART);
327 		}
328 		PROC_UNLOCK(p1);
329 	}
330 
331 	error = vm_forkproc(td, NULL, NULL, NULL, flags);
332 	if (error)
333 		goto fail;
334 
335 	/*
336 	 * Close all file descriptors.
337 	 */
338 	if (flags & RFCFDG) {
339 		struct filedesc *fdtmp;
340 		struct pwddesc *pdtmp;
341 		pdtmp = pdinit(td->td_proc->p_pd, false);
342 		fdtmp = fdinit(td->td_proc->p_fd, false, NULL);
343 		pdescfree(td);
344 		fdescfree(td);
345 		p1->p_fd = fdtmp;
346 		p1->p_pd = pdtmp;
347 	}
348 
349 	/*
350 	 * Unshare file descriptors (from parent).
351 	 */
352 	if (flags & RFFDG) {
353 		fdunshare(td);
354 		pdunshare(td);
355 	}
356 
357 fail:
358 	if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
359 	    ((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
360 		PROC_LOCK(p1);
361 		thread_single_end(p1, SINGLE_BOUNDARY);
362 		PROC_UNLOCK(p1);
363 	}
364 	return (error);
365 }
366 
367 static void
368 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
369     struct vmspace *vm2, struct file *fp_procdesc)
370 {
371 	struct proc *p1, *pptr;
372 	struct filedesc *fd;
373 	struct filedesc_to_leader *fdtol;
374 	struct pwddesc *pd;
375 	struct sigacts *newsigacts;
376 
377 	p1 = td->td_proc;
378 
379 	PROC_LOCK(p1);
380 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
381 	    __rangeof(struct proc, p_startcopy, p_endcopy));
382 	pargs_hold(p2->p_args);
383 	PROC_UNLOCK(p1);
384 
385 	bzero(&p2->p_startzero,
386 	    __rangeof(struct proc, p_startzero, p_endzero));
387 
388 	/* Tell the prison that we exist. */
389 	prison_proc_hold(p2->p_ucred->cr_prison);
390 
391 	p2->p_state = PRS_NEW;		/* protect against others */
392 	p2->p_pid = fork_findpid(fr->fr_flags);
393 	AUDIT_ARG_PID(p2->p_pid);
394 
395 	sx_xlock(&allproc_lock);
396 	LIST_INSERT_HEAD(&allproc, p2, p_list);
397 	allproc_gen++;
398 	sx_xunlock(&allproc_lock);
399 
400 	sx_xlock(PIDHASHLOCK(p2->p_pid));
401 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
402 	sx_xunlock(PIDHASHLOCK(p2->p_pid));
403 
404 	tidhash_add(td2);
405 
406 	/*
407 	 * Malloc things while we don't hold any locks.
408 	 */
409 	if (fr->fr_flags & RFSIGSHARE)
410 		newsigacts = NULL;
411 	else
412 		newsigacts = sigacts_alloc();
413 
414 	/*
415 	 * Copy filedesc.
416 	 */
417 	if (fr->fr_flags & RFCFDG) {
418 		pd = pdinit(p1->p_pd, false);
419 		fd = fdinit(p1->p_fd, false, NULL);
420 		fdtol = NULL;
421 	} else if (fr->fr_flags & RFFDG) {
422 		if (fr->fr_flags2 & FR2_SHARE_PATHS)
423 			pd = pdshare(p1->p_pd);
424 		else
425 			pd = pdcopy(p1->p_pd);
426 		fd = fdcopy(p1->p_fd);
427 		fdtol = NULL;
428 	} else {
429 		if (fr->fr_flags2 & FR2_SHARE_PATHS)
430 			pd = pdcopy(p1->p_pd);
431 		else
432 			pd = pdshare(p1->p_pd);
433 		fd = fdshare(p1->p_fd);
434 		if (p1->p_fdtol == NULL)
435 			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
436 			    p1->p_leader);
437 		if ((fr->fr_flags & RFTHREAD) != 0) {
438 			/*
439 			 * Shared file descriptor table, and shared
440 			 * process leaders.
441 			 */
442 			fdtol = p1->p_fdtol;
443 			FILEDESC_XLOCK(p1->p_fd);
444 			fdtol->fdl_refcount++;
445 			FILEDESC_XUNLOCK(p1->p_fd);
446 		} else {
447 			/*
448 			 * Shared file descriptor table, and different
449 			 * process leaders.
450 			 */
451 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
452 			    p1->p_fd, p2);
453 		}
454 	}
455 	/*
456 	 * Make a proc table entry for the new process.
457 	 * Start by zeroing the section of proc that is zero-initialized,
458 	 * then copy the section that is copied directly from the parent.
459 	 */
460 
461 	PROC_LOCK(p2);
462 	PROC_LOCK(p1);
463 
464 	bzero(&td2->td_startzero,
465 	    __rangeof(struct thread, td_startzero, td_endzero));
466 
467 	bcopy(&td->td_startcopy, &td2->td_startcopy,
468 	    __rangeof(struct thread, td_startcopy, td_endcopy));
469 
470 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
471 	td2->td_sigstk = td->td_sigstk;
472 	td2->td_flags = TDF_INMEM;
473 	td2->td_lend_user_pri = PRI_MAX;
474 
475 #ifdef VIMAGE
476 	td2->td_vnet = NULL;
477 	td2->td_vnet_lpush = NULL;
478 #endif
479 
480 	/*
481 	 * Allow the scheduler to initialize the child.
482 	 */
483 	thread_lock(td);
484 	sched_fork(td, td2);
485 	thread_unlock(td);
486 
487 	/*
488 	 * Duplicate sub-structures as needed.
489 	 * Increase reference counts on shared objects.
490 	 */
491 	p2->p_flag = P_INMEM;
492 	p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE |
493 	    P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC |
494 	    P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP |
495 	    P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC);
496 	p2->p_swtick = ticks;
497 	if (p1->p_flag & P_PROFIL)
498 		startprofclock(p2);
499 
500 	if (fr->fr_flags & RFSIGSHARE) {
501 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
502 	} else {
503 		sigacts_copy(newsigacts, p1->p_sigacts);
504 		p2->p_sigacts = newsigacts;
505 		if ((fr->fr_flags2 & (FR2_DROPSIG_CAUGHT | FR2_KPROC)) != 0) {
506 			mtx_lock(&p2->p_sigacts->ps_mtx);
507 			if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0)
508 				sig_drop_caught(p2);
509 			if ((fr->fr_flags2 & FR2_KPROC) != 0)
510 				p2->p_sigacts->ps_flag |= PS_NOCLDWAIT;
511 			mtx_unlock(&p2->p_sigacts->ps_mtx);
512 		}
513 	}
514 
515 	if (fr->fr_flags & RFTSIGZMB)
516 	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
517 	else if (fr->fr_flags & RFLINUXTHPN)
518 	        p2->p_sigparent = SIGUSR1;
519 	else
520 	        p2->p_sigparent = SIGCHLD;
521 
522 	if ((fr->fr_flags2 & FR2_KPROC) != 0) {
523 		p2->p_flag |= P_SYSTEM | P_KPROC;
524 		td2->td_pflags |= TDP_KTHREAD;
525 	}
526 
527 	p2->p_textvp = p1->p_textvp;
528 	p2->p_fd = fd;
529 	p2->p_fdtol = fdtol;
530 	p2->p_pd = pd;
531 
532 	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
533 		p2->p_flag |= P_PROTECTED;
534 		p2->p_flag2 |= P2_INHERIT_PROTECTED;
535 	}
536 
537 	/*
538 	 * p_limit is copy-on-write.  Bump its refcount.
539 	 */
540 	lim_fork(p1, p2);
541 
542 	thread_cow_get_proc(td2, p2);
543 
544 	pstats_fork(p1->p_stats, p2->p_stats);
545 
546 	PROC_UNLOCK(p1);
547 	PROC_UNLOCK(p2);
548 
549 	/* Bump references to the text vnode (for procfs). */
550 	if (p2->p_textvp)
551 		vrefact(p2->p_textvp);
552 
553 	/*
554 	 * Set up linkage for kernel based threading.
555 	 */
556 	if ((fr->fr_flags & RFTHREAD) != 0) {
557 		mtx_lock(&ppeers_lock);
558 		p2->p_peers = p1->p_peers;
559 		p1->p_peers = p2;
560 		p2->p_leader = p1->p_leader;
561 		mtx_unlock(&ppeers_lock);
562 		PROC_LOCK(p1->p_leader);
563 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
564 			PROC_UNLOCK(p1->p_leader);
565 			/*
566 			 * The task leader is exiting, so process p1 is
567 			 * going to be killed shortly.  Since p1 obviously
568 			 * isn't dead yet, we know that the leader is either
569 			 * sending SIGKILL's to all the processes in this
570 			 * task or is sleeping waiting for all the peers to
571 			 * exit.  We let p1 complete the fork, but we need
572 			 * to go ahead and kill the new process p2 since
573 			 * the task leader may not get a chance to send
574 			 * SIGKILL to it.  We leave it on the list so that
575 			 * the task leader will wait for this new process
576 			 * to commit suicide.
577 			 */
578 			PROC_LOCK(p2);
579 			kern_psignal(p2, SIGKILL);
580 			PROC_UNLOCK(p2);
581 		} else
582 			PROC_UNLOCK(p1->p_leader);
583 	} else {
584 		p2->p_peers = NULL;
585 		p2->p_leader = p2;
586 	}
587 
588 	sx_xlock(&proctree_lock);
589 	PGRP_LOCK(p1->p_pgrp);
590 	PROC_LOCK(p2);
591 	PROC_LOCK(p1);
592 
593 	/*
594 	 * Preserve some more flags in subprocess.  P_PROFIL has already
595 	 * been preserved.
596 	 */
597 	p2->p_flag |= p1->p_flag & P_SUGID;
598 	td2->td_pflags |= (td->td_pflags & (TDP_ALTSTACK |
599 	    TDP_SIGFASTBLOCK)) | TDP_FORKING;
600 	SESS_LOCK(p1->p_session);
601 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
602 		p2->p_flag |= P_CONTROLT;
603 	SESS_UNLOCK(p1->p_session);
604 	if (fr->fr_flags & RFPPWAIT)
605 		p2->p_flag |= P_PPWAIT;
606 
607 	p2->p_pgrp = p1->p_pgrp;
608 	LIST_INSERT_AFTER(p1, p2, p_pglist);
609 	PGRP_UNLOCK(p1->p_pgrp);
610 	LIST_INIT(&p2->p_children);
611 	LIST_INIT(&p2->p_orphans);
612 
613 	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
614 	TAILQ_INIT(&p2->p_kqtim_stop);
615 
616 	/*
617 	 * This begins the section where we must prevent the parent
618 	 * from being swapped.
619 	 */
620 	_PHOLD(p1);
621 	PROC_UNLOCK(p1);
622 
623 	/*
624 	 * Attach the new process to its parent.
625 	 *
626 	 * If RFNOWAIT is set, the newly created process becomes a child
627 	 * of init.  This effectively disassociates the child from the
628 	 * parent.
629 	 */
630 	if ((fr->fr_flags & RFNOWAIT) != 0) {
631 		pptr = p1->p_reaper;
632 		p2->p_reaper = pptr;
633 	} else {
634 		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
635 		    p1 : p1->p_reaper;
636 		pptr = p1;
637 	}
638 	p2->p_pptr = pptr;
639 	p2->p_oppid = pptr->p_pid;
640 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
641 	LIST_INIT(&p2->p_reaplist);
642 	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
643 	if (p2->p_reaper == p1 && p1 != initproc) {
644 		p2->p_reapsubtree = p2->p_pid;
645 		proc_id_set_cond(PROC_ID_REAP, p2->p_pid);
646 	}
647 	sx_xunlock(&proctree_lock);
648 
649 	/* Inform accounting that we have forked. */
650 	p2->p_acflag = AFORK;
651 	PROC_UNLOCK(p2);
652 
653 #ifdef KTRACE
654 	ktrprocfork(p1, p2);
655 #endif
656 
657 	/*
658 	 * Finish creating the child process.  It will return via a different
659 	 * execution path later.  (ie: directly into user mode)
660 	 */
661 	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
662 
663 	if (fr->fr_flags == (RFFDG | RFPROC)) {
664 		VM_CNT_INC(v_forks);
665 		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
666 		    p2->p_vmspace->vm_ssize);
667 	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
668 		VM_CNT_INC(v_vforks);
669 		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
670 		    p2->p_vmspace->vm_ssize);
671 	} else if (p1 == &proc0) {
672 		VM_CNT_INC(v_kthreads);
673 		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
674 		    p2->p_vmspace->vm_ssize);
675 	} else {
676 		VM_CNT_INC(v_rforks);
677 		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
678 		    p2->p_vmspace->vm_ssize);
679 	}
680 
681 	/*
682 	 * Associate the process descriptor with the process before anything
683 	 * can happen that might cause that process to need the descriptor.
684 	 * However, don't do this until after fork(2) can no longer fail.
685 	 */
686 	if (fr->fr_flags & RFPROCDESC)
687 		procdesc_new(p2, fr->fr_pd_flags);
688 
689 	/*
690 	 * Both processes are set up, now check if any loadable modules want
691 	 * to adjust anything.
692 	 */
693 	EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
694 
695 	/*
696 	 * Set the child start time and mark the process as being complete.
697 	 */
698 	PROC_LOCK(p2);
699 	PROC_LOCK(p1);
700 	microuptime(&p2->p_stats->p_start);
701 	PROC_SLOCK(p2);
702 	p2->p_state = PRS_NORMAL;
703 	PROC_SUNLOCK(p2);
704 
705 #ifdef KDTRACE_HOOKS
706 	/*
707 	 * Tell the DTrace fasttrap provider about the new process so that any
708 	 * tracepoints inherited from the parent can be removed. We have to do
709 	 * this only after p_state is PRS_NORMAL since the fasttrap module will
710 	 * use pfind() later on.
711 	 */
712 	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
713 		dtrace_fasttrap_fork(p1, p2);
714 #endif
715 	if (fr->fr_flags & RFPPWAIT) {
716 		td->td_pflags |= TDP_RFPPWAIT;
717 		td->td_rfppwait_p = p2;
718 		td->td_dbgflags |= TDB_VFORK;
719 	}
720 	PROC_UNLOCK(p2);
721 
722 	/*
723 	 * Tell any interested parties about the new process.
724 	 */
725 	knote_fork(p1->p_klist, p2->p_pid);
726 
727 	/*
728 	 * Now can be swapped.
729 	 */
730 	_PRELE(p1);
731 	PROC_UNLOCK(p1);
732 	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
733 
734 	if (fr->fr_flags & RFPROCDESC) {
735 		procdesc_finit(p2->p_procdesc, fp_procdesc);
736 		fdrop(fp_procdesc, td);
737 	}
738 
739 	/*
740 	 * Speculative check for PTRACE_FORK. PTRACE_FORK is not
741 	 * synced with forks in progress so it is OK if we miss it
742 	 * if being set atm.
743 	 */
744 	if ((p1->p_ptevents & PTRACE_FORK) != 0) {
745 		sx_xlock(&proctree_lock);
746 		PROC_LOCK(p2);
747 
748 		/*
749 		 * p1->p_ptevents & p1->p_pptr are protected by both
750 		 * process and proctree locks for modifications,
751 		 * so owning proctree_lock allows the race-free read.
752 		 */
753 		if ((p1->p_ptevents & PTRACE_FORK) != 0) {
754 			/*
755 			 * Arrange for debugger to receive the fork event.
756 			 *
757 			 * We can report PL_FLAG_FORKED regardless of
758 			 * P_FOLLOWFORK settings, but it does not make a sense
759 			 * for runaway child.
760 			 */
761 			td->td_dbgflags |= TDB_FORK;
762 			td->td_dbg_forked = p2->p_pid;
763 			td2->td_dbgflags |= TDB_STOPATFORK;
764 			proc_set_traced(p2, true);
765 			CTR2(KTR_PTRACE,
766 			    "do_fork: attaching to new child pid %d: oppid %d",
767 			    p2->p_pid, p2->p_oppid);
768 			proc_reparent(p2, p1->p_pptr, false);
769 		}
770 		PROC_UNLOCK(p2);
771 		sx_xunlock(&proctree_lock);
772 	}
773 
774 	racct_proc_fork_done(p2);
775 
776 	if ((fr->fr_flags & RFSTOPPED) == 0) {
777 		if (fr->fr_pidp != NULL)
778 			*fr->fr_pidp = p2->p_pid;
779 		/*
780 		 * If RFSTOPPED not requested, make child runnable and
781 		 * add to run queue.
782 		 */
783 		thread_lock(td2);
784 		TD_SET_CAN_RUN(td2);
785 		sched_add(td2, SRQ_BORING);
786 	} else {
787 		*fr->fr_procp = p2;
788 	}
789 }
790 
791 void
792 fork_rfppwait(struct thread *td)
793 {
794 	struct proc *p, *p2;
795 
796 	MPASS(td->td_pflags & TDP_RFPPWAIT);
797 
798 	p = td->td_proc;
799 	/*
800 	 * Preserve synchronization semantics of vfork.  If
801 	 * waiting for child to exec or exit, fork set
802 	 * P_PPWAIT on child, and there we sleep on our proc
803 	 * (in case of exit).
804 	 *
805 	 * Do it after the ptracestop() above is finished, to
806 	 * not block our debugger until child execs or exits
807 	 * to finish vfork wait.
808 	 */
809 	td->td_pflags &= ~TDP_RFPPWAIT;
810 	p2 = td->td_rfppwait_p;
811 again:
812 	PROC_LOCK(p2);
813 	while (p2->p_flag & P_PPWAIT) {
814 		PROC_LOCK(p);
815 		if (thread_suspend_check_needed()) {
816 			PROC_UNLOCK(p2);
817 			thread_suspend_check(0);
818 			PROC_UNLOCK(p);
819 			goto again;
820 		} else {
821 			PROC_UNLOCK(p);
822 		}
823 		cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz);
824 	}
825 	PROC_UNLOCK(p2);
826 
827 	if (td->td_dbgflags & TDB_VFORK) {
828 		PROC_LOCK(p);
829 		if (p->p_ptevents & PTRACE_VFORK)
830 			ptracestop(td, SIGTRAP, NULL);
831 		td->td_dbgflags &= ~TDB_VFORK;
832 		PROC_UNLOCK(p);
833 	}
834 }
835 
836 int
837 fork1(struct thread *td, struct fork_req *fr)
838 {
839 	struct proc *p1, *newproc;
840 	struct thread *td2;
841 	struct vmspace *vm2;
842 	struct ucred *cred;
843 	struct file *fp_procdesc;
844 	vm_ooffset_t mem_charged;
845 	int error, nprocs_new;
846 	static int curfail;
847 	static struct timeval lastfail;
848 	int flags, pages;
849 
850 	flags = fr->fr_flags;
851 	pages = fr->fr_pages;
852 
853 	if ((flags & RFSTOPPED) != 0)
854 		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
855 	else
856 		MPASS(fr->fr_procp == NULL);
857 
858 	/* Check for the undefined or unimplemented flags. */
859 	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
860 		return (EINVAL);
861 
862 	/* Signal value requires RFTSIGZMB. */
863 	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
864 		return (EINVAL);
865 
866 	/* Can't copy and clear. */
867 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
868 		return (EINVAL);
869 
870 	/* Check the validity of the signal number. */
871 	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
872 		return (EINVAL);
873 
874 	if ((flags & RFPROCDESC) != 0) {
875 		/* Can't not create a process yet get a process descriptor. */
876 		if ((flags & RFPROC) == 0)
877 			return (EINVAL);
878 
879 		/* Must provide a place to put a procdesc if creating one. */
880 		if (fr->fr_pd_fd == NULL)
881 			return (EINVAL);
882 
883 		/* Check if we are using supported flags. */
884 		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
885 			return (EINVAL);
886 	}
887 
888 	p1 = td->td_proc;
889 
890 	/*
891 	 * Here we don't create a new process, but we divorce
892 	 * certain parts of a process from itself.
893 	 */
894 	if ((flags & RFPROC) == 0) {
895 		if (fr->fr_procp != NULL)
896 			*fr->fr_procp = NULL;
897 		else if (fr->fr_pidp != NULL)
898 			*fr->fr_pidp = 0;
899 		return (fork_norfproc(td, flags));
900 	}
901 
902 	fp_procdesc = NULL;
903 	newproc = NULL;
904 	vm2 = NULL;
905 
906 	/*
907 	 * Increment the nprocs resource before allocations occur.
908 	 * Although process entries are dynamically created, we still
909 	 * keep a global limit on the maximum number we will
910 	 * create. There are hard-limits as to the number of processes
911 	 * that can run, established by the KVA and memory usage for
912 	 * the process data.
913 	 *
914 	 * Don't allow a nonprivileged user to use the last ten
915 	 * processes; don't let root exceed the limit.
916 	 */
917 	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
918 	if (nprocs_new >= maxproc - 10) {
919 		if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 ||
920 		    nprocs_new >= maxproc) {
921 			error = EAGAIN;
922 			sx_xlock(&allproc_lock);
923 			if (ppsratecheck(&lastfail, &curfail, 1)) {
924 				printf("maxproc limit exceeded by uid %u "
925 				    "(pid %d); see tuning(7) and "
926 				    "login.conf(5)\n",
927 				    td->td_ucred->cr_ruid, p1->p_pid);
928 			}
929 			sx_xunlock(&allproc_lock);
930 			goto fail2;
931 		}
932 	}
933 
934 	/*
935 	 * If required, create a process descriptor in the parent first; we
936 	 * will abandon it if something goes wrong. We don't finit() until
937 	 * later.
938 	 */
939 	if (flags & RFPROCDESC) {
940 		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
941 		    fr->fr_pd_flags, fr->fr_pd_fcaps);
942 		if (error != 0)
943 			goto fail2;
944 		AUDIT_ARG_FD(*fr->fr_pd_fd);
945 	}
946 
947 	mem_charged = 0;
948 	if (pages == 0)
949 		pages = kstack_pages;
950 	/* Allocate new proc. */
951 	newproc = uma_zalloc(proc_zone, M_WAITOK);
952 	td2 = FIRST_THREAD_IN_PROC(newproc);
953 	if (td2 == NULL) {
954 		td2 = thread_alloc(pages);
955 		if (td2 == NULL) {
956 			error = ENOMEM;
957 			goto fail2;
958 		}
959 		proc_linkup(newproc, td2);
960 	} else {
961 		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
962 			if (td2->td_kstack != 0)
963 				vm_thread_dispose(td2);
964 			if (!thread_alloc_stack(td2, pages)) {
965 				error = ENOMEM;
966 				goto fail2;
967 			}
968 		}
969 	}
970 
971 	if ((flags & RFMEM) == 0) {
972 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
973 		if (vm2 == NULL) {
974 			error = ENOMEM;
975 			goto fail2;
976 		}
977 		if (!swap_reserve(mem_charged)) {
978 			/*
979 			 * The swap reservation failed. The accounting
980 			 * from the entries of the copied vm2 will be
981 			 * subtracted in vmspace_free(), so force the
982 			 * reservation there.
983 			 */
984 			swap_reserve_force(mem_charged);
985 			error = ENOMEM;
986 			goto fail2;
987 		}
988 	} else
989 		vm2 = NULL;
990 
991 	/*
992 	 * XXX: This is ugly; when we copy resource usage, we need to bump
993 	 *      per-cred resource counters.
994 	 */
995 	proc_set_cred_init(newproc, td->td_ucred);
996 
997 	/*
998 	 * Initialize resource accounting for the child process.
999 	 */
1000 	error = racct_proc_fork(p1, newproc);
1001 	if (error != 0) {
1002 		error = EAGAIN;
1003 		goto fail1;
1004 	}
1005 
1006 #ifdef MAC
1007 	mac_proc_init(newproc);
1008 #endif
1009 	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
1010 	STAILQ_INIT(&newproc->p_ktr);
1011 
1012 	/*
1013 	 * Increment the count of procs running with this uid. Don't allow
1014 	 * a nonprivileged user to exceed their current limit.
1015 	 */
1016 	cred = td->td_ucred;
1017 	if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) {
1018 		if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0)
1019 			goto fail0;
1020 		chgproccnt(cred->cr_ruidinfo, 1, 0);
1021 	}
1022 
1023 	do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
1024 	return (0);
1025 fail0:
1026 	error = EAGAIN;
1027 #ifdef MAC
1028 	mac_proc_destroy(newproc);
1029 #endif
1030 	racct_proc_exit(newproc);
1031 fail1:
1032 	proc_unset_cred(newproc);
1033 fail2:
1034 	if (vm2 != NULL)
1035 		vmspace_free(vm2);
1036 	uma_zfree(proc_zone, newproc);
1037 	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
1038 		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1039 		fdrop(fp_procdesc, td);
1040 	}
1041 	atomic_add_int(&nprocs, -1);
1042 	pause("fork", hz / 2);
1043 	return (error);
1044 }
1045 
1046 /*
1047  * Handle the return of a child process from fork1().  This function
1048  * is called from the MD fork_trampoline() entry point.
1049  */
1050 void
1051 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1052     struct trapframe *frame)
1053 {
1054 	struct proc *p;
1055 	struct thread *td;
1056 	struct thread *dtd;
1057 
1058 	td = curthread;
1059 	p = td->td_proc;
1060 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1061 
1062 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1063 	    td, td_get_sched(td), p->p_pid, td->td_name);
1064 
1065 	sched_fork_exit(td);
1066 	/*
1067 	* Processes normally resume in mi_switch() after being
1068 	* cpu_switch()'ed to, but when children start up they arrive here
1069 	* instead, so we must do much the same things as mi_switch() would.
1070 	*/
1071 	if ((dtd = PCPU_GET(deadthread))) {
1072 		PCPU_SET(deadthread, NULL);
1073 		thread_stash(dtd);
1074 	}
1075 	thread_unlock(td);
1076 
1077 	/*
1078 	 * cpu_fork_kthread_handler intercepts this function call to
1079 	 * have this call a non-return function to stay in kernel mode.
1080 	 * initproc has its own fork handler, but it does return.
1081 	 */
1082 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1083 	callout(arg, frame);
1084 
1085 	/*
1086 	 * Check if a kernel thread misbehaved and returned from its main
1087 	 * function.
1088 	 */
1089 	if (p->p_flag & P_KPROC) {
1090 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1091 		    td->td_name, p->p_pid);
1092 		kthread_exit();
1093 	}
1094 	mtx_assert(&Giant, MA_NOTOWNED);
1095 
1096 	if (p->p_sysent->sv_schedtail != NULL)
1097 		(p->p_sysent->sv_schedtail)(td);
1098 	td->td_pflags &= ~TDP_FORKING;
1099 }
1100 
1101 /*
1102  * Simplified back end of syscall(), used when returning from fork()
1103  * directly into user mode.  This function is passed in to fork_exit()
1104  * as the first parameter and is called when returning to a new
1105  * userland process.
1106  */
1107 void
1108 fork_return(struct thread *td, struct trapframe *frame)
1109 {
1110 	struct proc *p;
1111 
1112 	p = td->td_proc;
1113 	if (td->td_dbgflags & TDB_STOPATFORK) {
1114 		PROC_LOCK(p);
1115 		if ((p->p_flag & P_TRACED) != 0) {
1116 			/*
1117 			 * Inform the debugger if one is still present.
1118 			 */
1119 			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1120 			ptracestop(td, SIGSTOP, NULL);
1121 			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1122 		} else {
1123 			/*
1124 			 * ... otherwise clear the request.
1125 			 */
1126 			td->td_dbgflags &= ~TDB_STOPATFORK;
1127 		}
1128 		PROC_UNLOCK(p);
1129 	} else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
1130  		/*
1131 		 * This is the start of a new thread in a traced
1132 		 * process.  Report a system call exit event.
1133 		 */
1134 		PROC_LOCK(p);
1135 		td->td_dbgflags |= TDB_SCX;
1136 		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1137 		    (td->td_dbgflags & TDB_BORN) != 0)
1138 			ptracestop(td, SIGTRAP, NULL);
1139 		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1140 		PROC_UNLOCK(p);
1141 	}
1142 
1143 	/*
1144 	 * If the prison was killed mid-fork, die along with it.
1145 	 */
1146 	if (!prison_isalive(td->td_ucred->cr_prison))
1147 		exit1(td, 0, SIGKILL);
1148 
1149 	userret(td, frame);
1150 
1151 #ifdef KTRACE
1152 	if (KTRPOINT(td, KTR_SYSRET))
1153 		ktrsysret(SYS_fork, 0, 0);
1154 #endif
1155 }
1156