xref: /freebsd/sys/kern/kern_fork.c (revision 3745c395ecae17ef47be82433463d561629220b0)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_mac.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysproto.h>
46 #include <sys/eventhandler.h>
47 #include <sys/filedesc.h>
48 #include <sys/kernel.h>
49 #include <sys/kthread.h>
50 #include <sys/sysctl.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/priv.h>
55 #include <sys/proc.h>
56 #include <sys/pioctl.h>
57 #include <sys/resourcevar.h>
58 #include <sys/sched.h>
59 #include <sys/syscall.h>
60 #include <sys/vmmeter.h>
61 #include <sys/vnode.h>
62 #include <sys/acct.h>
63 #include <sys/ktr.h>
64 #include <sys/ktrace.h>
65 #include <sys/unistd.h>
66 #include <sys/sx.h>
67 #include <sys/signalvar.h>
68 
69 #include <security/audit/audit.h>
70 #include <security/mac/mac_framework.h>
71 
72 #include <vm/vm.h>
73 #include <vm/pmap.h>
74 #include <vm/vm_map.h>
75 #include <vm/vm_extern.h>
76 #include <vm/uma.h>
77 
78 
79 #ifndef _SYS_SYSPROTO_H_
80 struct fork_args {
81 	int     dummy;
82 };
83 #endif
84 
85 /* ARGSUSED */
86 int
87 fork(td, uap)
88 	struct thread *td;
89 	struct fork_args *uap;
90 {
91 	int error;
92 	struct proc *p2;
93 
94 	error = fork1(td, RFFDG | RFPROC, 0, &p2);
95 	if (error == 0) {
96 		td->td_retval[0] = p2->p_pid;
97 		td->td_retval[1] = 0;
98 	}
99 	return (error);
100 }
101 
102 /* ARGSUSED */
103 int
104 vfork(td, uap)
105 	struct thread *td;
106 	struct vfork_args *uap;
107 {
108 	int error;
109 	struct proc *p2;
110 
111 	error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, 0, &p2);
112 	if (error == 0) {
113 		td->td_retval[0] = p2->p_pid;
114 		td->td_retval[1] = 0;
115 	}
116 	return (error);
117 }
118 
119 int
120 rfork(td, uap)
121 	struct thread *td;
122 	struct rfork_args *uap;
123 {
124 	struct proc *p2;
125 	int error;
126 
127 	/* Don't allow kernel-only flags. */
128 	if ((uap->flags & RFKERNELONLY) != 0)
129 		return (EINVAL);
130 
131 	AUDIT_ARG(fflags, uap->flags);
132 	error = fork1(td, uap->flags, 0, &p2);
133 	if (error == 0) {
134 		td->td_retval[0] = p2 ? p2->p_pid : 0;
135 		td->td_retval[1] = 0;
136 	}
137 	return (error);
138 }
139 
140 int	nprocs = 1;		/* process 0 */
141 int	lastpid = 0;
142 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
143     "Last used PID");
144 
145 /*
146  * Random component to lastpid generation.  We mix in a random factor to make
147  * it a little harder to predict.  We sanity check the modulus value to avoid
148  * doing it in critical paths.  Don't let it be too small or we pointlessly
149  * waste randomness entropy, and don't let it be impossibly large.  Using a
150  * modulus that is too big causes a LOT more process table scans and slows
151  * down fork processing as the pidchecked caching is defeated.
152  */
153 static int randompid = 0;
154 
155 static int
156 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
157 {
158 	int error, pid;
159 
160 	error = sysctl_wire_old_buffer(req, sizeof(int));
161 	if (error != 0)
162 		return(error);
163 	sx_xlock(&allproc_lock);
164 	pid = randompid;
165 	error = sysctl_handle_int(oidp, &pid, 0, req);
166 	if (error == 0 && req->newptr != NULL) {
167 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
168 			pid = PID_MAX - 100;
169 		else if (pid < 2)			/* NOP */
170 			pid = 0;
171 		else if (pid < 100)			/* Make it reasonable */
172 			pid = 100;
173 		randompid = pid;
174 	}
175 	sx_xunlock(&allproc_lock);
176 	return (error);
177 }
178 
179 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
180     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
181 
182 int
183 fork1(td, flags, pages, procp)
184 	struct thread *td;
185 	int flags;
186 	int pages;
187 	struct proc **procp;
188 {
189 	struct proc *p1, *p2, *pptr;
190 	struct proc *newproc;
191 	int ok, trypid;
192 	static int curfail, pidchecked = 0;
193 	static struct timeval lastfail;
194 	struct filedesc *fd;
195 	struct filedesc_to_leader *fdtol;
196 	struct thread *td2;
197 	struct sigacts *newsigacts;
198 	int error;
199 
200 	/* Can't copy and clear. */
201 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
202 		return (EINVAL);
203 
204 	p1 = td->td_proc;
205 
206 	/*
207 	 * Here we don't create a new process, but we divorce
208 	 * certain parts of a process from itself.
209 	 */
210 	if ((flags & RFPROC) == 0) {
211 		if ((p1->p_flag & P_HADTHREADS) &&
212 		    (flags & (RFCFDG | RFFDG))) {
213 			PROC_LOCK(p1);
214 			if (thread_single(SINGLE_BOUNDARY)) {
215 				PROC_UNLOCK(p1);
216 				return (ERESTART);
217 			}
218 			PROC_UNLOCK(p1);
219 		}
220 
221 		vm_forkproc(td, NULL, NULL, flags);
222 
223 		/*
224 		 * Close all file descriptors.
225 		 */
226 		if (flags & RFCFDG) {
227 			struct filedesc *fdtmp;
228 			fdtmp = fdinit(td->td_proc->p_fd);
229 			fdfree(td);
230 			p1->p_fd = fdtmp;
231 		}
232 
233 		/*
234 		 * Unshare file descriptors (from parent).
235 		 */
236 		if (flags & RFFDG)
237 			fdunshare(p1, td);
238 
239 		if ((p1->p_flag & P_HADTHREADS) &&
240 		    (flags & (RFCFDG | RFFDG))) {
241 			PROC_LOCK(p1);
242 			thread_single_end();
243 			PROC_UNLOCK(p1);
244 		}
245 		*procp = NULL;
246 		return (0);
247 	}
248 
249 	/*
250 	 * Note 1:1 allows for forking with one thread coming out on the
251 	 * other side with the expectation that the process is about to
252 	 * exec.
253 	 */
254 	if (p1->p_flag & P_HADTHREADS) {
255 		/*
256 		 * Idle the other threads for a second.
257 		 * Since the user space is copied, it must remain stable.
258 		 * In addition, all threads (from the user perspective)
259 		 * need to either be suspended or in the kernel,
260 		 * where they will try restart in the parent and will
261 		 * be aborted in the child.
262 		 */
263 		PROC_LOCK(p1);
264 		if (thread_single(SINGLE_NO_EXIT)) {
265 			/* Abort. Someone else is single threading before us. */
266 			PROC_UNLOCK(p1);
267 			return (ERESTART);
268 		}
269 		PROC_UNLOCK(p1);
270 		/*
271 		 * All other activity in this process
272 		 * is now suspended at the user boundary,
273 		 * (or other safe places if we think of any).
274 		 */
275 	}
276 
277 	/* Allocate new proc. */
278 	newproc = uma_zalloc(proc_zone, M_WAITOK);
279 #ifdef MAC
280 	mac_init_proc(newproc);
281 #endif
282 	knlist_init(&newproc->p_klist, &newproc->p_mtx, NULL, NULL, NULL);
283 	STAILQ_INIT(&newproc->p_ktr);
284 
285 	/* We have to lock the process tree while we look for a pid. */
286 	sx_slock(&proctree_lock);
287 
288 	/*
289 	 * Although process entries are dynamically created, we still keep
290 	 * a global limit on the maximum number we will create.  Don't allow
291 	 * a nonprivileged user to use the last ten processes; don't let root
292 	 * exceed the limit. The variable nprocs is the current number of
293 	 * processes, maxproc is the limit.
294 	 */
295 	sx_xlock(&allproc_lock);
296 	if ((nprocs >= maxproc - 10 && priv_check_cred(td->td_ucred,
297 	    PRIV_MAXPROC, 0) != 0) || nprocs >= maxproc) {
298 		error = EAGAIN;
299 		goto fail;
300 	}
301 
302 	/*
303 	 * Increment the count of procs running with this uid. Don't allow
304 	 * a nonprivileged user to exceed their current limit.
305 	 *
306 	 * XXXRW: Can we avoid privilege here if it's not needed?
307 	 */
308 	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
309 	if (error == 0)
310 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
311 	else {
312 		PROC_LOCK(p1);
313 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
314 		    lim_cur(p1, RLIMIT_NPROC));
315 		PROC_UNLOCK(p1);
316 	}
317 	if (!ok) {
318 		error = EAGAIN;
319 		goto fail;
320 	}
321 
322 	/*
323 	 * Increment the nprocs resource before blocking can occur.  There
324 	 * are hard-limits as to the number of processes that can run.
325 	 */
326 	nprocs++;
327 
328 	/*
329 	 * Find an unused process ID.  We remember a range of unused IDs
330 	 * ready to use (from lastpid+1 through pidchecked-1).
331 	 *
332 	 * If RFHIGHPID is set (used during system boot), do not allocate
333 	 * low-numbered pids.
334 	 */
335 	trypid = lastpid + 1;
336 	if (flags & RFHIGHPID) {
337 		if (trypid < 10)
338 			trypid = 10;
339 	} else {
340 		if (randompid)
341 			trypid += arc4random() % randompid;
342 	}
343 retry:
344 	/*
345 	 * If the process ID prototype has wrapped around,
346 	 * restart somewhat above 0, as the low-numbered procs
347 	 * tend to include daemons that don't exit.
348 	 */
349 	if (trypid >= PID_MAX) {
350 		trypid = trypid % PID_MAX;
351 		if (trypid < 100)
352 			trypid += 100;
353 		pidchecked = 0;
354 	}
355 	if (trypid >= pidchecked) {
356 		int doingzomb = 0;
357 
358 		pidchecked = PID_MAX;
359 		/*
360 		 * Scan the active and zombie procs to check whether this pid
361 		 * is in use.  Remember the lowest pid that's greater
362 		 * than trypid, so we can avoid checking for a while.
363 		 */
364 		p2 = LIST_FIRST(&allproc);
365 again:
366 		for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
367 			while (p2->p_pid == trypid ||
368 			    (p2->p_pgrp != NULL &&
369 			    (p2->p_pgrp->pg_id == trypid ||
370 			    (p2->p_session != NULL &&
371 			    p2->p_session->s_sid == trypid)))) {
372 				trypid++;
373 				if (trypid >= pidchecked)
374 					goto retry;
375 			}
376 			if (p2->p_pid > trypid && pidchecked > p2->p_pid)
377 				pidchecked = p2->p_pid;
378 			if (p2->p_pgrp != NULL) {
379 				if (p2->p_pgrp->pg_id > trypid &&
380 				    pidchecked > p2->p_pgrp->pg_id)
381 					pidchecked = p2->p_pgrp->pg_id;
382 				if (p2->p_session != NULL &&
383 				    p2->p_session->s_sid > trypid &&
384 				    pidchecked > p2->p_session->s_sid)
385 					pidchecked = p2->p_session->s_sid;
386 			}
387 		}
388 		if (!doingzomb) {
389 			doingzomb = 1;
390 			p2 = LIST_FIRST(&zombproc);
391 			goto again;
392 		}
393 	}
394 	sx_sunlock(&proctree_lock);
395 
396 	/*
397 	 * RFHIGHPID does not mess with the lastpid counter during boot.
398 	 */
399 	if (flags & RFHIGHPID)
400 		pidchecked = 0;
401 	else
402 		lastpid = trypid;
403 
404 	p2 = newproc;
405 	td2 = FIRST_THREAD_IN_PROC(newproc);
406 	p2->p_state = PRS_NEW;		/* protect against others */
407 	p2->p_pid = trypid;
408 	/*
409 	 * Allow the scheduler to initialize the child.
410 	 */
411 	thread_lock(td);
412 	sched_fork(td, td2);
413 	thread_unlock(td);
414 	AUDIT_ARG(pid, p2->p_pid);
415 	LIST_INSERT_HEAD(&allproc, p2, p_list);
416 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
417 
418 	PROC_LOCK(p2);
419 	PROC_LOCK(p1);
420 
421 	sx_xunlock(&allproc_lock);
422 
423 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
424 	    __rangeof(struct proc, p_startcopy, p_endcopy));
425 	PROC_UNLOCK(p1);
426 
427 	bzero(&p2->p_startzero,
428 	    __rangeof(struct proc, p_startzero, p_endzero));
429 
430 	p2->p_ucred = crhold(td->td_ucred);
431 	PROC_UNLOCK(p2);
432 
433 	/*
434 	 * Malloc things while we don't hold any locks.
435 	 */
436 	if (flags & RFSIGSHARE)
437 		newsigacts = NULL;
438 	else
439 		newsigacts = sigacts_alloc();
440 
441 	/*
442 	 * Copy filedesc.
443 	 */
444 	if (flags & RFCFDG) {
445 		fd = fdinit(p1->p_fd);
446 		fdtol = NULL;
447 	} else if (flags & RFFDG) {
448 		fd = fdcopy(p1->p_fd);
449 		fdtol = NULL;
450 	} else {
451 		fd = fdshare(p1->p_fd);
452 		if (p1->p_fdtol == NULL)
453 			p1->p_fdtol =
454 				filedesc_to_leader_alloc(NULL,
455 							 NULL,
456 							 p1->p_leader);
457 		if ((flags & RFTHREAD) != 0) {
458 			/*
459 			 * Shared file descriptor table and
460 			 * shared process leaders.
461 			 */
462 			fdtol = p1->p_fdtol;
463 			FILEDESC_XLOCK(p1->p_fd);
464 			fdtol->fdl_refcount++;
465 			FILEDESC_XUNLOCK(p1->p_fd);
466 		} else {
467 			/*
468 			 * Shared file descriptor table, and
469 			 * different process leaders
470 			 */
471 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
472 							 p1->p_fd,
473 							 p2);
474 		}
475 	}
476 	/*
477 	 * Make a proc table entry for the new process.
478 	 * Start by zeroing the section of proc that is zero-initialized,
479 	 * then copy the section that is copied directly from the parent.
480 	 */
481 	/* Allocate and switch to an alternate kstack if specified. */
482 	if (pages != 0)
483 		vm_thread_new_altkstack(td2, pages);
484 
485 	PROC_LOCK(p2);
486 	PROC_LOCK(p1);
487 
488 	bzero(&td2->td_startzero,
489 	    __rangeof(struct thread, td_startzero, td_endzero));
490 
491 	bcopy(&td->td_startcopy, &td2->td_startcopy,
492 	    __rangeof(struct thread, td_startcopy, td_endcopy));
493 
494 	td2->td_sigstk = td->td_sigstk;
495 	td2->td_sigmask = td->td_sigmask;
496 	td2->td_flags = TDF_INMEM;
497 
498 	/*
499 	 * Duplicate sub-structures as needed.
500 	 * Increase reference counts on shared objects.
501 	 */
502 	p2->p_flag = P_INMEM;
503 	p2->p_swtick = ticks;
504 	if (p1->p_flag & P_PROFIL)
505 		startprofclock(p2);
506 	td2->td_ucred = crhold(p2->p_ucred);
507 	pargs_hold(p2->p_args);
508 
509 	if (flags & RFSIGSHARE) {
510 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
511 	} else {
512 		sigacts_copy(newsigacts, p1->p_sigacts);
513 		p2->p_sigacts = newsigacts;
514 	}
515 	if (flags & RFLINUXTHPN)
516 	        p2->p_sigparent = SIGUSR1;
517 	else
518 	        p2->p_sigparent = SIGCHLD;
519 
520 	p2->p_textvp = p1->p_textvp;
521 	p2->p_fd = fd;
522 	p2->p_fdtol = fdtol;
523 
524 	/*
525 	 * p_limit is copy-on-write.  Bump its refcount.
526 	 */
527 	lim_fork(p1, p2);
528 
529 	pstats_fork(p1->p_stats, p2->p_stats);
530 
531 	PROC_UNLOCK(p1);
532 	PROC_UNLOCK(p2);
533 
534 	/* Bump references to the text vnode (for procfs) */
535 	if (p2->p_textvp)
536 		vref(p2->p_textvp);
537 
538 	/*
539 	 * Set up linkage for kernel based threading.
540 	 */
541 	if ((flags & RFTHREAD) != 0) {
542 		mtx_lock(&ppeers_lock);
543 		p2->p_peers = p1->p_peers;
544 		p1->p_peers = p2;
545 		p2->p_leader = p1->p_leader;
546 		mtx_unlock(&ppeers_lock);
547 		PROC_LOCK(p1->p_leader);
548 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
549 			PROC_UNLOCK(p1->p_leader);
550 			/*
551 			 * The task leader is exiting, so process p1 is
552 			 * going to be killed shortly.  Since p1 obviously
553 			 * isn't dead yet, we know that the leader is either
554 			 * sending SIGKILL's to all the processes in this
555 			 * task or is sleeping waiting for all the peers to
556 			 * exit.  We let p1 complete the fork, but we need
557 			 * to go ahead and kill the new process p2 since
558 			 * the task leader may not get a chance to send
559 			 * SIGKILL to it.  We leave it on the list so that
560 			 * the task leader will wait for this new process
561 			 * to commit suicide.
562 			 */
563 			PROC_LOCK(p2);
564 			psignal(p2, SIGKILL);
565 			PROC_UNLOCK(p2);
566 		} else
567 			PROC_UNLOCK(p1->p_leader);
568 	} else {
569 		p2->p_peers = NULL;
570 		p2->p_leader = p2;
571 	}
572 
573 	sx_xlock(&proctree_lock);
574 	PGRP_LOCK(p1->p_pgrp);
575 	PROC_LOCK(p2);
576 	PROC_LOCK(p1);
577 
578 	/*
579 	 * Preserve some more flags in subprocess.  P_PROFIL has already
580 	 * been preserved.
581 	 */
582 	p2->p_flag |= p1->p_flag & P_SUGID;
583 	td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
584 	SESS_LOCK(p1->p_session);
585 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
586 		p2->p_flag |= P_CONTROLT;
587 	SESS_UNLOCK(p1->p_session);
588 	if (flags & RFPPWAIT)
589 		p2->p_flag |= P_PPWAIT;
590 
591 	p2->p_pgrp = p1->p_pgrp;
592 	LIST_INSERT_AFTER(p1, p2, p_pglist);
593 	PGRP_UNLOCK(p1->p_pgrp);
594 	LIST_INIT(&p2->p_children);
595 
596 	callout_init(&p2->p_itcallout, CALLOUT_MPSAFE);
597 
598 #ifdef KTRACE
599 	/*
600 	 * Copy traceflag and tracefile if enabled.
601 	 */
602 	mtx_lock(&ktrace_mtx);
603 	KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
604 	if (p1->p_traceflag & KTRFAC_INHERIT) {
605 		p2->p_traceflag = p1->p_traceflag;
606 		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
607 			VREF(p2->p_tracevp);
608 			KASSERT(p1->p_tracecred != NULL,
609 			    ("ktrace vnode with no cred"));
610 			p2->p_tracecred = crhold(p1->p_tracecred);
611 		}
612 	}
613 	mtx_unlock(&ktrace_mtx);
614 #endif
615 
616 	/*
617 	 * If PF_FORK is set, the child process inherits the
618 	 * procfs ioctl flags from its parent.
619 	 */
620 	if (p1->p_pfsflags & PF_FORK) {
621 		p2->p_stops = p1->p_stops;
622 		p2->p_pfsflags = p1->p_pfsflags;
623 	}
624 
625 	/*
626 	 * This begins the section where we must prevent the parent
627 	 * from being swapped.
628 	 */
629 	_PHOLD(p1);
630 	PROC_UNLOCK(p1);
631 
632 	/*
633 	 * Attach the new process to its parent.
634 	 *
635 	 * If RFNOWAIT is set, the newly created process becomes a child
636 	 * of init.  This effectively disassociates the child from the
637 	 * parent.
638 	 */
639 	if (flags & RFNOWAIT)
640 		pptr = initproc;
641 	else
642 		pptr = p1;
643 	p2->p_pptr = pptr;
644 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
645 	sx_xunlock(&proctree_lock);
646 
647 	/* Inform accounting that we have forked. */
648 	p2->p_acflag = AFORK;
649 	PROC_UNLOCK(p2);
650 
651 	/*
652 	 * Finish creating the child process.  It will return via a different
653 	 * execution path later.  (ie: directly into user mode)
654 	 */
655 	vm_forkproc(td, p2, td2, flags);
656 
657 	if (flags == (RFFDG | RFPROC)) {
658 		PCPU_INC(cnt.v_forks);
659 		PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize +
660 		    p2->p_vmspace->vm_ssize);
661 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
662 		PCPU_INC(cnt.v_vforks);
663 		PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
664 		    p2->p_vmspace->vm_ssize);
665 	} else if (p1 == &proc0) {
666 		PCPU_INC(cnt.v_kthreads);
667 		PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
668 		    p2->p_vmspace->vm_ssize);
669 	} else {
670 		PCPU_INC(cnt.v_rforks);
671 		PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
672 		    p2->p_vmspace->vm_ssize);
673 	}
674 
675 	/*
676 	 * Both processes are set up, now check if any loadable modules want
677 	 * to adjust anything.
678 	 *   What if they have an error? XXX
679 	 */
680 	EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
681 
682 	/*
683 	 * Set the child start time and mark the process as being complete.
684 	 */
685 	microuptime(&p2->p_stats->p_start);
686 	PROC_SLOCK(p2);
687 	p2->p_state = PRS_NORMAL;
688 	PROC_SUNLOCK(p2);
689 
690 	/*
691 	 * If RFSTOPPED not requested, make child runnable and add to
692 	 * run queue.
693 	 */
694 	if ((flags & RFSTOPPED) == 0) {
695 		thread_lock(td2);
696 		TD_SET_CAN_RUN(td2);
697 		sched_add(td2, SRQ_BORING);
698 		thread_unlock(td2);
699 	}
700 
701 	/*
702 	 * Now can be swapped.
703 	 */
704 	PROC_LOCK(p1);
705 	_PRELE(p1);
706 
707 	/*
708 	 * Tell any interested parties about the new process.
709 	 */
710 	KNOTE_LOCKED(&p1->p_klist, NOTE_FORK | p2->p_pid);
711 
712 	PROC_UNLOCK(p1);
713 
714 	/*
715 	 * Preserve synchronization semantics of vfork.  If waiting for
716 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
717 	 * proc (in case of exit).
718 	 */
719 	PROC_LOCK(p2);
720 	while (p2->p_flag & P_PPWAIT)
721 		msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
722 	PROC_UNLOCK(p2);
723 
724 	/*
725 	 * If other threads are waiting, let them continue now.
726 	 */
727 	if (p1->p_flag & P_HADTHREADS) {
728 		PROC_LOCK(p1);
729 		thread_single_end();
730 		PROC_UNLOCK(p1);
731 	}
732 
733 	/*
734 	 * Return child proc pointer to parent.
735 	 */
736 	*procp = p2;
737 	return (0);
738 fail:
739 	sx_sunlock(&proctree_lock);
740 	if (ppsratecheck(&lastfail, &curfail, 1))
741 		printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n",
742 		    td->td_ucred->cr_ruid);
743 	sx_xunlock(&allproc_lock);
744 #ifdef MAC
745 	mac_destroy_proc(newproc);
746 #endif
747 	uma_zfree(proc_zone, newproc);
748 	if (p1->p_flag & P_HADTHREADS) {
749 		PROC_LOCK(p1);
750 		thread_single_end();
751 		PROC_UNLOCK(p1);
752 	}
753 	pause("fork", hz / 2);
754 	return (error);
755 }
756 
757 /*
758  * Handle the return of a child process from fork1().  This function
759  * is called from the MD fork_trampoline() entry point.
760  */
761 void
762 fork_exit(callout, arg, frame)
763 	void (*callout)(void *, struct trapframe *);
764 	void *arg;
765 	struct trapframe *frame;
766 {
767 	struct proc *p;
768 	struct thread *td;
769 	struct thread *dtd;
770 
771 	td = curthread;
772 	p = td->td_proc;
773 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
774 
775 	CTR4(KTR_PROC, "fork_exit: new thread %p (kse %p, pid %d, %s)",
776 		td, td->td_sched, p->p_pid, p->p_comm);
777 
778 	sched_fork_exit(td);
779 	/*
780 	* Processes normally resume in mi_switch() after being
781 	* cpu_switch()'ed to, but when children start up they arrive here
782 	* instead, so we must do much the same things as mi_switch() would.
783 	*/
784 	if ((dtd = PCPU_GET(deadthread))) {
785 		PCPU_SET(deadthread, NULL);
786 		thread_stash(dtd);
787 	}
788 	thread_unlock(td);
789 
790 	/*
791 	 * cpu_set_fork_handler intercepts this function call to
792 	 * have this call a non-return function to stay in kernel mode.
793 	 * initproc has its own fork handler, but it does return.
794 	 */
795 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
796 	callout(arg, frame);
797 
798 	/*
799 	 * Check if a kernel thread misbehaved and returned from its main
800 	 * function.
801 	 */
802 	if (p->p_flag & P_KTHREAD) {
803 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
804 		    p->p_comm, p->p_pid);
805 		kproc_exit(0);
806 	}
807 	mtx_assert(&Giant, MA_NOTOWNED);
808 
809 	EVENTHANDLER_INVOKE(schedtail, p);
810 }
811 
812 /*
813  * Simplified back end of syscall(), used when returning from fork()
814  * directly into user mode.  Giant is not held on entry, and must not
815  * be held on return.  This function is passed in to fork_exit() as the
816  * first parameter and is called when returning to a new userland process.
817  */
818 void
819 fork_return(td, frame)
820 	struct thread *td;
821 	struct trapframe *frame;
822 {
823 
824 	userret(td, frame);
825 #ifdef KTRACE
826 	if (KTRPOINT(td, KTR_SYSRET))
827 		ktrsysret(SYS_fork, 0, 0);
828 #endif
829 	mtx_assert(&Giant, MA_NOTOWNED);
830 }
831