1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_ktrace.h" 41 #include "opt_mac.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/sysproto.h> 46 #include <sys/eventhandler.h> 47 #include <sys/filedesc.h> 48 #include <sys/kernel.h> 49 #include <sys/kthread.h> 50 #include <sys/sysctl.h> 51 #include <sys/lock.h> 52 #include <sys/malloc.h> 53 #include <sys/mutex.h> 54 #include <sys/proc.h> 55 #include <sys/pioctl.h> 56 #include <sys/resourcevar.h> 57 #include <sys/sched.h> 58 #include <sys/syscall.h> 59 #include <sys/vmmeter.h> 60 #include <sys/vnode.h> 61 #include <sys/acct.h> 62 #include <sys/mac.h> 63 #include <sys/ktr.h> 64 #include <sys/ktrace.h> 65 #include <sys/unistd.h> 66 #include <sys/sx.h> 67 #include <sys/signalvar.h> 68 69 #include <vm/vm.h> 70 #include <vm/pmap.h> 71 #include <vm/vm_map.h> 72 #include <vm/vm_extern.h> 73 #include <vm/uma.h> 74 75 76 #ifndef _SYS_SYSPROTO_H_ 77 struct fork_args { 78 int dummy; 79 }; 80 #endif 81 82 static int forksleep; /* Place for fork1() to sleep on. */ 83 84 /* 85 * MPSAFE 86 */ 87 /* ARGSUSED */ 88 int 89 fork(td, uap) 90 struct thread *td; 91 struct fork_args *uap; 92 { 93 int error; 94 struct proc *p2; 95 96 error = fork1(td, RFFDG | RFPROC, 0, &p2); 97 if (error == 0) { 98 td->td_retval[0] = p2->p_pid; 99 td->td_retval[1] = 0; 100 } 101 return (error); 102 } 103 104 /* 105 * MPSAFE 106 */ 107 /* ARGSUSED */ 108 int 109 vfork(td, uap) 110 struct thread *td; 111 struct vfork_args *uap; 112 { 113 int error; 114 struct proc *p2; 115 116 error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, 0, &p2); 117 if (error == 0) { 118 td->td_retval[0] = p2->p_pid; 119 td->td_retval[1] = 0; 120 } 121 return (error); 122 } 123 124 /* 125 * MPSAFE 126 */ 127 int 128 rfork(td, uap) 129 struct thread *td; 130 struct rfork_args *uap; 131 { 132 struct proc *p2; 133 int error; 134 135 /* Don't allow kernel-only flags. */ 136 if ((uap->flags & RFKERNELONLY) != 0) 137 return (EINVAL); 138 139 error = fork1(td, uap->flags, 0, &p2); 140 if (error == 0) { 141 td->td_retval[0] = p2 ? p2->p_pid : 0; 142 td->td_retval[1] = 0; 143 } 144 return (error); 145 } 146 147 int nprocs = 1; /* process 0 */ 148 int lastpid = 0; 149 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 150 "Last used PID"); 151 152 /* 153 * Random component to lastpid generation. We mix in a random factor to make 154 * it a little harder to predict. We sanity check the modulus value to avoid 155 * doing it in critical paths. Don't let it be too small or we pointlessly 156 * waste randomness entropy, and don't let it be impossibly large. Using a 157 * modulus that is too big causes a LOT more process table scans and slows 158 * down fork processing as the pidchecked caching is defeated. 159 */ 160 static int randompid = 0; 161 162 static int 163 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 164 { 165 int error, pid; 166 167 error = sysctl_wire_old_buffer(req, sizeof(int)); 168 if (error != 0) 169 return(error); 170 sx_xlock(&allproc_lock); 171 pid = randompid; 172 error = sysctl_handle_int(oidp, &pid, 0, req); 173 if (error == 0 && req->newptr != NULL) { 174 if (pid < 0 || pid > PID_MAX - 100) /* out of range */ 175 pid = PID_MAX - 100; 176 else if (pid < 2) /* NOP */ 177 pid = 0; 178 else if (pid < 100) /* Make it reasonable */ 179 pid = 100; 180 randompid = pid; 181 } 182 sx_xunlock(&allproc_lock); 183 return (error); 184 } 185 186 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 187 0, 0, sysctl_kern_randompid, "I", "Random PID modulus"); 188 189 int 190 fork1(td, flags, pages, procp) 191 struct thread *td; 192 int flags; 193 int pages; 194 struct proc **procp; 195 { 196 struct proc *p1, *p2, *pptr; 197 uid_t uid; 198 struct proc *newproc; 199 int ok, trypid; 200 static int curfail, pidchecked = 0; 201 static struct timeval lastfail; 202 struct filedesc *fd; 203 struct filedesc_to_leader *fdtol; 204 struct thread *td2; 205 struct ksegrp *kg2; 206 struct sigacts *newsigacts; 207 int error; 208 209 /* Can't copy and clear. */ 210 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) 211 return (EINVAL); 212 213 p1 = td->td_proc; 214 215 /* 216 * Here we don't create a new process, but we divorce 217 * certain parts of a process from itself. 218 */ 219 if ((flags & RFPROC) == 0) { 220 vm_forkproc(td, NULL, NULL, flags); 221 222 /* 223 * Close all file descriptors. 224 */ 225 if (flags & RFCFDG) { 226 struct filedesc *fdtmp; 227 fdtmp = fdinit(td->td_proc->p_fd); 228 fdfree(td); 229 p1->p_fd = fdtmp; 230 } 231 232 /* 233 * Unshare file descriptors (from parent). 234 */ 235 if (flags & RFFDG) 236 fdunshare(p1, td); 237 *procp = NULL; 238 return (0); 239 } 240 241 /* 242 * Note 1:1 allows for forking with one thread coming out on the 243 * other side with the expectation that the process is about to 244 * exec. 245 */ 246 if (p1->p_flag & P_HADTHREADS) { 247 /* 248 * Idle the other threads for a second. 249 * Since the user space is copied, it must remain stable. 250 * In addition, all threads (from the user perspective) 251 * need to either be suspended or in the kernel, 252 * where they will try restart in the parent and will 253 * be aborted in the child. 254 */ 255 PROC_LOCK(p1); 256 if (thread_single(SINGLE_NO_EXIT)) { 257 /* Abort. Someone else is single threading before us. */ 258 PROC_UNLOCK(p1); 259 return (ERESTART); 260 } 261 PROC_UNLOCK(p1); 262 /* 263 * All other activity in this process 264 * is now suspended at the user boundary, 265 * (or other safe places if we think of any). 266 */ 267 } 268 269 /* Allocate new proc. */ 270 newproc = uma_zalloc(proc_zone, M_WAITOK); 271 #ifdef MAC 272 mac_init_proc(newproc); 273 #endif 274 knlist_init(&newproc->p_klist, &newproc->p_mtx, NULL, NULL, NULL); 275 STAILQ_INIT(&newproc->p_ktr); 276 277 /* We have to lock the process tree while we look for a pid. */ 278 sx_slock(&proctree_lock); 279 280 /* 281 * Although process entries are dynamically created, we still keep 282 * a global limit on the maximum number we will create. Don't allow 283 * a nonprivileged user to use the last ten processes; don't let root 284 * exceed the limit. The variable nprocs is the current number of 285 * processes, maxproc is the limit. 286 */ 287 sx_xlock(&allproc_lock); 288 uid = td->td_ucred->cr_ruid; 289 if ((nprocs >= maxproc - 10 && 290 suser_cred(td->td_ucred, SUSER_RUID) != 0) || 291 nprocs >= maxproc) { 292 error = EAGAIN; 293 goto fail; 294 } 295 296 /* 297 * Increment the count of procs running with this uid. Don't allow 298 * a nonprivileged user to exceed their current limit. 299 */ 300 PROC_LOCK(p1); 301 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 302 (uid != 0) ? lim_cur(p1, RLIMIT_NPROC) : 0); 303 PROC_UNLOCK(p1); 304 if (!ok) { 305 error = EAGAIN; 306 goto fail; 307 } 308 309 /* 310 * Increment the nprocs resource before blocking can occur. There 311 * are hard-limits as to the number of processes that can run. 312 */ 313 nprocs++; 314 315 /* 316 * Find an unused process ID. We remember a range of unused IDs 317 * ready to use (from lastpid+1 through pidchecked-1). 318 * 319 * If RFHIGHPID is set (used during system boot), do not allocate 320 * low-numbered pids. 321 */ 322 trypid = lastpid + 1; 323 if (flags & RFHIGHPID) { 324 if (trypid < 10) 325 trypid = 10; 326 } else { 327 if (randompid) 328 trypid += arc4random() % randompid; 329 } 330 retry: 331 /* 332 * If the process ID prototype has wrapped around, 333 * restart somewhat above 0, as the low-numbered procs 334 * tend to include daemons that don't exit. 335 */ 336 if (trypid >= PID_MAX) { 337 trypid = trypid % PID_MAX; 338 if (trypid < 100) 339 trypid += 100; 340 pidchecked = 0; 341 } 342 if (trypid >= pidchecked) { 343 int doingzomb = 0; 344 345 pidchecked = PID_MAX; 346 /* 347 * Scan the active and zombie procs to check whether this pid 348 * is in use. Remember the lowest pid that's greater 349 * than trypid, so we can avoid checking for a while. 350 */ 351 p2 = LIST_FIRST(&allproc); 352 again: 353 for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) { 354 PROC_LOCK(p2); 355 while (p2->p_pid == trypid || 356 (p2->p_pgrp != NULL && 357 (p2->p_pgrp->pg_id == trypid || 358 (p2->p_session != NULL && 359 p2->p_session->s_sid == trypid)))) { 360 trypid++; 361 if (trypid >= pidchecked) { 362 PROC_UNLOCK(p2); 363 goto retry; 364 } 365 } 366 if (p2->p_pid > trypid && pidchecked > p2->p_pid) 367 pidchecked = p2->p_pid; 368 if (p2->p_pgrp != NULL) { 369 if (p2->p_pgrp->pg_id > trypid && 370 pidchecked > p2->p_pgrp->pg_id) 371 pidchecked = p2->p_pgrp->pg_id; 372 if (p2->p_session != NULL && 373 p2->p_session->s_sid > trypid && 374 pidchecked > p2->p_session->s_sid) 375 pidchecked = p2->p_session->s_sid; 376 } 377 PROC_UNLOCK(p2); 378 } 379 if (!doingzomb) { 380 doingzomb = 1; 381 p2 = LIST_FIRST(&zombproc); 382 goto again; 383 } 384 } 385 sx_sunlock(&proctree_lock); 386 387 /* 388 * RFHIGHPID does not mess with the lastpid counter during boot. 389 */ 390 if (flags & RFHIGHPID) 391 pidchecked = 0; 392 else 393 lastpid = trypid; 394 395 p2 = newproc; 396 p2->p_state = PRS_NEW; /* protect against others */ 397 p2->p_pid = trypid; 398 LIST_INSERT_HEAD(&allproc, p2, p_list); 399 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); 400 sx_xunlock(&allproc_lock); 401 402 /* 403 * Malloc things while we don't hold any locks. 404 */ 405 if (flags & RFSIGSHARE) 406 newsigacts = NULL; 407 else 408 newsigacts = sigacts_alloc(); 409 410 /* 411 * Copy filedesc. 412 */ 413 if (flags & RFCFDG) { 414 fd = fdinit(p1->p_fd); 415 fdtol = NULL; 416 } else if (flags & RFFDG) { 417 fd = fdcopy(p1->p_fd); 418 fdtol = NULL; 419 } else { 420 fd = fdshare(p1->p_fd); 421 if (p1->p_fdtol == NULL) 422 p1->p_fdtol = 423 filedesc_to_leader_alloc(NULL, 424 NULL, 425 p1->p_leader); 426 if ((flags & RFTHREAD) != 0) { 427 /* 428 * Shared file descriptor table and 429 * shared process leaders. 430 */ 431 fdtol = p1->p_fdtol; 432 FILEDESC_LOCK_FAST(p1->p_fd); 433 fdtol->fdl_refcount++; 434 FILEDESC_UNLOCK_FAST(p1->p_fd); 435 } else { 436 /* 437 * Shared file descriptor table, and 438 * different process leaders 439 */ 440 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, 441 p1->p_fd, 442 p2); 443 } 444 } 445 /* 446 * Make a proc table entry for the new process. 447 * Start by zeroing the section of proc that is zero-initialized, 448 * then copy the section that is copied directly from the parent. 449 */ 450 td2 = FIRST_THREAD_IN_PROC(p2); 451 kg2 = FIRST_KSEGRP_IN_PROC(p2); 452 453 /* Allocate and switch to an alternate kstack if specified. */ 454 if (pages != 0) 455 vm_thread_new_altkstack(td2, pages); 456 457 PROC_LOCK(p2); 458 PROC_LOCK(p1); 459 460 bzero(&p2->p_startzero, 461 __rangeof(struct proc, p_startzero, p_endzero)); 462 bzero(&td2->td_startzero, 463 __rangeof(struct thread, td_startzero, td_endzero)); 464 bzero(&kg2->kg_startzero, 465 __rangeof(struct ksegrp, kg_startzero, kg_endzero)); 466 467 bcopy(&p1->p_startcopy, &p2->p_startcopy, 468 __rangeof(struct proc, p_startcopy, p_endcopy)); 469 bcopy(&td->td_startcopy, &td2->td_startcopy, 470 __rangeof(struct thread, td_startcopy, td_endcopy)); 471 bcopy(&td->td_ksegrp->kg_startcopy, &kg2->kg_startcopy, 472 __rangeof(struct ksegrp, kg_startcopy, kg_endcopy)); 473 474 td2->td_sigstk = td->td_sigstk; 475 td2->td_sigmask = td->td_sigmask; 476 477 /* 478 * Duplicate sub-structures as needed. 479 * Increase reference counts on shared objects. 480 */ 481 p2->p_flag = 0; 482 if (p1->p_flag & P_PROFIL) 483 startprofclock(p2); 484 mtx_lock_spin(&sched_lock); 485 p2->p_sflag = PS_INMEM; 486 /* 487 * Allow the scheduler to adjust the priority of the child and 488 * parent while we hold the sched_lock. 489 */ 490 sched_fork(td, td2); 491 492 mtx_unlock_spin(&sched_lock); 493 p2->p_ucred = crhold(td->td_ucred); 494 td2->td_ucred = crhold(p2->p_ucred); /* XXXKSE */ 495 496 pargs_hold(p2->p_args); 497 498 if (flags & RFSIGSHARE) { 499 p2->p_sigacts = sigacts_hold(p1->p_sigacts); 500 } else { 501 sigacts_copy(newsigacts, p1->p_sigacts); 502 p2->p_sigacts = newsigacts; 503 } 504 if (flags & RFLINUXTHPN) 505 p2->p_sigparent = SIGUSR1; 506 else 507 p2->p_sigparent = SIGCHLD; 508 509 p2->p_textvp = p1->p_textvp; 510 p2->p_fd = fd; 511 p2->p_fdtol = fdtol; 512 513 /* 514 * p_limit is copy-on-write. Bump its refcount. 515 */ 516 p2->p_limit = lim_hold(p1->p_limit); 517 518 pstats_fork(p1->p_stats, p2->p_stats); 519 520 PROC_UNLOCK(p1); 521 PROC_UNLOCK(p2); 522 523 /* Bump references to the text vnode (for procfs) */ 524 if (p2->p_textvp) 525 vref(p2->p_textvp); 526 527 /* 528 * Set up linkage for kernel based threading. 529 */ 530 if ((flags & RFTHREAD) != 0) { 531 mtx_lock(&ppeers_lock); 532 p2->p_peers = p1->p_peers; 533 p1->p_peers = p2; 534 p2->p_leader = p1->p_leader; 535 mtx_unlock(&ppeers_lock); 536 PROC_LOCK(p1->p_leader); 537 if ((p1->p_leader->p_flag & P_WEXIT) != 0) { 538 PROC_UNLOCK(p1->p_leader); 539 /* 540 * The task leader is exiting, so process p1 is 541 * going to be killed shortly. Since p1 obviously 542 * isn't dead yet, we know that the leader is either 543 * sending SIGKILL's to all the processes in this 544 * task or is sleeping waiting for all the peers to 545 * exit. We let p1 complete the fork, but we need 546 * to go ahead and kill the new process p2 since 547 * the task leader may not get a chance to send 548 * SIGKILL to it. We leave it on the list so that 549 * the task leader will wait for this new process 550 * to commit suicide. 551 */ 552 PROC_LOCK(p2); 553 psignal(p2, SIGKILL); 554 PROC_UNLOCK(p2); 555 } else 556 PROC_UNLOCK(p1->p_leader); 557 } else { 558 p2->p_peers = NULL; 559 p2->p_leader = p2; 560 } 561 562 sx_xlock(&proctree_lock); 563 PGRP_LOCK(p1->p_pgrp); 564 PROC_LOCK(p2); 565 PROC_LOCK(p1); 566 567 /* 568 * Preserve some more flags in subprocess. P_PROFIL has already 569 * been preserved. 570 */ 571 p2->p_flag |= p1->p_flag & P_SUGID; 572 td2->td_pflags |= td->td_pflags & TDP_ALTSTACK; 573 SESS_LOCK(p1->p_session); 574 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) 575 p2->p_flag |= P_CONTROLT; 576 SESS_UNLOCK(p1->p_session); 577 if (flags & RFPPWAIT) 578 p2->p_flag |= P_PPWAIT; 579 580 p2->p_pgrp = p1->p_pgrp; 581 LIST_INSERT_AFTER(p1, p2, p_pglist); 582 PGRP_UNLOCK(p1->p_pgrp); 583 LIST_INIT(&p2->p_children); 584 585 callout_init(&p2->p_itcallout, CALLOUT_MPSAFE); 586 587 #ifdef KTRACE 588 /* 589 * Copy traceflag and tracefile if enabled. 590 */ 591 mtx_lock(&ktrace_mtx); 592 KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode")); 593 if (p1->p_traceflag & KTRFAC_INHERIT) { 594 p2->p_traceflag = p1->p_traceflag; 595 if ((p2->p_tracevp = p1->p_tracevp) != NULL) { 596 VREF(p2->p_tracevp); 597 KASSERT(p1->p_tracecred != NULL, 598 ("ktrace vnode with no cred")); 599 p2->p_tracecred = crhold(p1->p_tracecred); 600 } 601 } 602 mtx_unlock(&ktrace_mtx); 603 #endif 604 605 /* 606 * If PF_FORK is set, the child process inherits the 607 * procfs ioctl flags from its parent. 608 */ 609 if (p1->p_pfsflags & PF_FORK) { 610 p2->p_stops = p1->p_stops; 611 p2->p_pfsflags = p1->p_pfsflags; 612 } 613 614 /* 615 * This begins the section where we must prevent the parent 616 * from being swapped. 617 */ 618 _PHOLD(p1); 619 PROC_UNLOCK(p1); 620 621 /* 622 * Attach the new process to its parent. 623 * 624 * If RFNOWAIT is set, the newly created process becomes a child 625 * of init. This effectively disassociates the child from the 626 * parent. 627 */ 628 if (flags & RFNOWAIT) 629 pptr = initproc; 630 else 631 pptr = p1; 632 p2->p_pptr = pptr; 633 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); 634 sx_xunlock(&proctree_lock); 635 636 /* Inform accounting that we have forked. */ 637 p2->p_acflag = AFORK; 638 PROC_UNLOCK(p2); 639 640 /* 641 * Finish creating the child process. It will return via a different 642 * execution path later. (ie: directly into user mode) 643 */ 644 vm_forkproc(td, p2, td2, flags); 645 646 if (flags == (RFFDG | RFPROC)) { 647 atomic_add_int(&cnt.v_forks, 1); 648 atomic_add_int(&cnt.v_forkpages, p2->p_vmspace->vm_dsize + 649 p2->p_vmspace->vm_ssize); 650 } else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { 651 atomic_add_int(&cnt.v_vforks, 1); 652 atomic_add_int(&cnt.v_vforkpages, p2->p_vmspace->vm_dsize + 653 p2->p_vmspace->vm_ssize); 654 } else if (p1 == &proc0) { 655 atomic_add_int(&cnt.v_kthreads, 1); 656 atomic_add_int(&cnt.v_kthreadpages, p2->p_vmspace->vm_dsize + 657 p2->p_vmspace->vm_ssize); 658 } else { 659 atomic_add_int(&cnt.v_rforks, 1); 660 atomic_add_int(&cnt.v_rforkpages, p2->p_vmspace->vm_dsize + 661 p2->p_vmspace->vm_ssize); 662 } 663 664 /* 665 * Both processes are set up, now check if any loadable modules want 666 * to adjust anything. 667 * What if they have an error? XXX 668 */ 669 EVENTHANDLER_INVOKE(process_fork, p1, p2, flags); 670 671 /* 672 * Set the child start time and mark the process as being complete. 673 */ 674 microuptime(&p2->p_stats->p_start); 675 mtx_lock_spin(&sched_lock); 676 p2->p_state = PRS_NORMAL; 677 678 /* 679 * If RFSTOPPED not requested, make child runnable and add to 680 * run queue. 681 */ 682 if ((flags & RFSTOPPED) == 0) { 683 TD_SET_CAN_RUN(td2); 684 setrunqueue(td2, SRQ_BORING); 685 } 686 mtx_unlock_spin(&sched_lock); 687 688 /* 689 * Now can be swapped. 690 */ 691 PROC_LOCK(p1); 692 _PRELE(p1); 693 694 /* 695 * Tell any interested parties about the new process. 696 */ 697 KNOTE_LOCKED(&p1->p_klist, NOTE_FORK | p2->p_pid); 698 699 PROC_UNLOCK(p1); 700 701 /* 702 * Preserve synchronization semantics of vfork. If waiting for 703 * child to exec or exit, set P_PPWAIT on child, and sleep on our 704 * proc (in case of exit). 705 */ 706 PROC_LOCK(p2); 707 while (p2->p_flag & P_PPWAIT) 708 msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0); 709 PROC_UNLOCK(p2); 710 711 /* 712 * If other threads are waiting, let them continue now. 713 */ 714 if (p1->p_flag & P_HADTHREADS) { 715 PROC_LOCK(p1); 716 thread_single_end(); 717 PROC_UNLOCK(p1); 718 } 719 720 /* 721 * Return child proc pointer to parent. 722 */ 723 *procp = p2; 724 return (0); 725 fail: 726 sx_sunlock(&proctree_lock); 727 if (ppsratecheck(&lastfail, &curfail, 1)) 728 printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n", 729 uid); 730 sx_xunlock(&allproc_lock); 731 #ifdef MAC 732 mac_destroy_proc(newproc); 733 #endif 734 uma_zfree(proc_zone, newproc); 735 if (p1->p_flag & P_HADTHREADS) { 736 PROC_LOCK(p1); 737 thread_single_end(); 738 PROC_UNLOCK(p1); 739 } 740 tsleep(&forksleep, PUSER, "fork", hz / 2); 741 return (error); 742 } 743 744 /* 745 * Handle the return of a child process from fork1(). This function 746 * is called from the MD fork_trampoline() entry point. 747 */ 748 void 749 fork_exit(callout, arg, frame) 750 void (*callout)(void *, struct trapframe *); 751 void *arg; 752 struct trapframe *frame; 753 { 754 struct proc *p; 755 struct thread *td; 756 757 /* 758 * Finish setting up thread glue so that it begins execution in a 759 * non-nested critical section with sched_lock held but not recursed. 760 */ 761 td = curthread; 762 p = td->td_proc; 763 td->td_oncpu = PCPU_GET(cpuid); 764 KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new")); 765 766 sched_lock.mtx_lock = (uintptr_t)td; 767 mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED); 768 CTR4(KTR_PROC, "fork_exit: new thread %p (kse %p, pid %d, %s)", 769 td, td->td_sched, p->p_pid, p->p_comm); 770 771 /* 772 * Processes normally resume in mi_switch() after being 773 * cpu_switch()'ed to, but when children start up they arrive here 774 * instead, so we must do much the same things as mi_switch() would. 775 */ 776 777 if ((td = PCPU_GET(deadthread))) { 778 PCPU_SET(deadthread, NULL); 779 thread_stash(td); 780 } 781 td = curthread; 782 mtx_unlock_spin(&sched_lock); 783 784 /* 785 * cpu_set_fork_handler intercepts this function call to 786 * have this call a non-return function to stay in kernel mode. 787 * initproc has its own fork handler, but it does return. 788 */ 789 KASSERT(callout != NULL, ("NULL callout in fork_exit")); 790 callout(arg, frame); 791 792 /* 793 * Check if a kernel thread misbehaved and returned from its main 794 * function. 795 */ 796 PROC_LOCK(p); 797 if (p->p_flag & P_KTHREAD) { 798 PROC_UNLOCK(p); 799 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n", 800 p->p_comm, p->p_pid); 801 kthread_exit(0); 802 } 803 PROC_UNLOCK(p); 804 mtx_assert(&Giant, MA_NOTOWNED); 805 } 806 807 /* 808 * Simplified back end of syscall(), used when returning from fork() 809 * directly into user mode. Giant is not held on entry, and must not 810 * be held on return. This function is passed in to fork_exit() as the 811 * first parameter and is called when returning to a new userland process. 812 */ 813 void 814 fork_return(td, frame) 815 struct thread *td; 816 struct trapframe *frame; 817 { 818 819 userret(td, frame, 0); 820 #ifdef KTRACE 821 if (KTRPOINT(td, KTR_SYSRET)) 822 ktrsysret(SYS_fork, 0, 0); 823 #endif 824 mtx_assert(&Giant, MA_NOTOWNED); 825 } 826