xref: /freebsd/sys/kern/kern_fork.c (revision 2357939bc239bd5334a169b62313806178dd8f30)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_mac.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysproto.h>
46 #include <sys/eventhandler.h>
47 #include <sys/filedesc.h>
48 #include <sys/kernel.h>
49 #include <sys/kthread.h>
50 #include <sys/sysctl.h>
51 #include <sys/lock.h>
52 #include <sys/malloc.h>
53 #include <sys/mutex.h>
54 #include <sys/proc.h>
55 #include <sys/pioctl.h>
56 #include <sys/resourcevar.h>
57 #include <sys/sched.h>
58 #include <sys/syscall.h>
59 #include <sys/vmmeter.h>
60 #include <sys/vnode.h>
61 #include <sys/acct.h>
62 #include <sys/mac.h>
63 #include <sys/ktr.h>
64 #include <sys/ktrace.h>
65 #include <sys/unistd.h>
66 #include <sys/sx.h>
67 
68 #include <vm/vm.h>
69 #include <vm/pmap.h>
70 #include <vm/vm_map.h>
71 #include <vm/vm_extern.h>
72 #include <vm/uma.h>
73 
74 #include <sys/user.h>
75 #include <machine/critical.h>
76 
77 #ifndef _SYS_SYSPROTO_H_
78 struct fork_args {
79 	int     dummy;
80 };
81 #endif
82 
83 static int forksleep; /* Place for fork1() to sleep on. */
84 
85 /*
86  * MPSAFE
87  */
88 /* ARGSUSED */
89 int
90 fork(td, uap)
91 	struct thread *td;
92 	struct fork_args *uap;
93 {
94 	int error;
95 	struct proc *p2;
96 
97 	error = fork1(td, RFFDG | RFPROC, 0, &p2);
98 	if (error == 0) {
99 		td->td_retval[0] = p2->p_pid;
100 		td->td_retval[1] = 0;
101 	}
102 	return (error);
103 }
104 
105 /*
106  * MPSAFE
107  */
108 /* ARGSUSED */
109 int
110 vfork(td, uap)
111 	struct thread *td;
112 	struct vfork_args *uap;
113 {
114 	int error;
115 	struct proc *p2;
116 
117 	error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, 0, &p2);
118 	if (error == 0) {
119 		td->td_retval[0] = p2->p_pid;
120 		td->td_retval[1] = 0;
121 	}
122 	return (error);
123 }
124 
125 /*
126  * MPSAFE
127  */
128 int
129 rfork(td, uap)
130 	struct thread *td;
131 	struct rfork_args *uap;
132 {
133 	struct proc *p2;
134 	int error;
135 
136 	/* Don't allow kernel-only flags. */
137 	if ((uap->flags & RFKERNELONLY) != 0)
138 		return (EINVAL);
139 
140 	error = fork1(td, uap->flags, 0, &p2);
141 	if (error == 0) {
142 		td->td_retval[0] = p2 ? p2->p_pid : 0;
143 		td->td_retval[1] = 0;
144 	}
145 	return (error);
146 }
147 
148 int	nprocs = 1;		/* process 0 */
149 int	lastpid = 0;
150 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
151     "Last used PID");
152 
153 /*
154  * Random component to lastpid generation.  We mix in a random factor to make
155  * it a little harder to predict.  We sanity check the modulus value to avoid
156  * doing it in critical paths.  Don't let it be too small or we pointlessly
157  * waste randomness entropy, and don't let it be impossibly large.  Using a
158  * modulus that is too big causes a LOT more process table scans and slows
159  * down fork processing as the pidchecked caching is defeated.
160  */
161 static int randompid = 0;
162 
163 static int
164 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
165 {
166 	int error, pid;
167 
168 	error = sysctl_wire_old_buffer(req, sizeof(int));
169 	if (error != 0)
170 		return(error);
171 	sx_xlock(&allproc_lock);
172 	pid = randompid;
173 	error = sysctl_handle_int(oidp, &pid, 0, req);
174 	if (error == 0 && req->newptr != NULL) {
175 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
176 			pid = PID_MAX - 100;
177 		else if (pid < 2)			/* NOP */
178 			pid = 0;
179 		else if (pid < 100)			/* Make it reasonable */
180 			pid = 100;
181 		randompid = pid;
182 	}
183 	sx_xunlock(&allproc_lock);
184 	return (error);
185 }
186 
187 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
188     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
189 
190 int
191 fork1(td, flags, pages, procp)
192 	struct thread *td;
193 	int flags;
194 	int pages;
195 	struct proc **procp;
196 {
197 	struct proc *p1, *p2, *pptr;
198 	uid_t uid;
199 	struct proc *newproc;
200 	int ok, trypid;
201 	static int curfail, pidchecked = 0;
202 	static struct timeval lastfail;
203 	struct filedesc *fd;
204 	struct filedesc_to_leader *fdtol;
205 	struct thread *td2;
206 	struct kse *ke2;
207 	struct ksegrp *kg2;
208 	struct sigacts *newsigacts;
209 	int error;
210 
211 	/* Can't copy and clear. */
212 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
213 		return (EINVAL);
214 
215 	p1 = td->td_proc;
216 
217 	/*
218 	 * Here we don't create a new process, but we divorce
219 	 * certain parts of a process from itself.
220 	 */
221 	if ((flags & RFPROC) == 0) {
222 		mtx_lock(&Giant);
223 		vm_forkproc(td, NULL, NULL, flags);
224 		mtx_unlock(&Giant);
225 
226 		/*
227 		 * Close all file descriptors.
228 		 */
229 		if (flags & RFCFDG) {
230 			struct filedesc *fdtmp;
231 			FILEDESC_LOCK(td->td_proc->p_fd);
232 			fdtmp = fdinit(td->td_proc->p_fd);
233 			FILEDESC_UNLOCK(td->td_proc->p_fd);
234 			fdfree(td);
235 			p1->p_fd = fdtmp;
236 		}
237 
238 		/*
239 		 * Unshare file descriptors (from parent).
240 		 */
241 		if (flags & RFFDG) {
242 			FILEDESC_LOCK(p1->p_fd);
243 			if (p1->p_fd->fd_refcnt > 1) {
244 				struct filedesc *newfd;
245 
246 				newfd = fdcopy(td->td_proc->p_fd);
247 				FILEDESC_UNLOCK(p1->p_fd);
248 				fdfree(td);
249 				p1->p_fd = newfd;
250 			} else
251 				FILEDESC_UNLOCK(p1->p_fd);
252 		}
253 		*procp = NULL;
254 		return (0);
255 	}
256 
257 	/*
258 	 * Note 1:1 allows for forking with one thread coming out on the
259 	 * other side with the expectation that the process is about to
260 	 * exec.
261 	 */
262 	if (p1->p_flag & P_SA) {
263 		/*
264 		 * Idle the other threads for a second.
265 		 * Since the user space is copied, it must remain stable.
266 		 * In addition, all threads (from the user perspective)
267 		 * need to either be suspended or in the kernel,
268 		 * where they will try restart in the parent and will
269 		 * be aborted in the child.
270 		 */
271 		PROC_LOCK(p1);
272 		if (thread_single(SINGLE_NO_EXIT)) {
273 			/* Abort. Someone else is single threading before us. */
274 			PROC_UNLOCK(p1);
275 			return (ERESTART);
276 		}
277 		PROC_UNLOCK(p1);
278 		/*
279 		 * All other activity in this process
280 		 * is now suspended at the user boundary,
281 		 * (or other safe places if we think of any).
282 		 */
283 	}
284 
285 	/* Allocate new proc. */
286 	newproc = uma_zalloc(proc_zone, M_WAITOK);
287 #ifdef MAC
288 	mac_init_proc(newproc);
289 #endif
290 
291 	/* We have to lock the process tree while we look for a pid. */
292 	sx_slock(&proctree_lock);
293 
294 	/*
295 	 * Although process entries are dynamically created, we still keep
296 	 * a global limit on the maximum number we will create.  Don't allow
297 	 * a nonprivileged user to use the last ten processes; don't let root
298 	 * exceed the limit. The variable nprocs is the current number of
299 	 * processes, maxproc is the limit.
300 	 */
301 	sx_xlock(&allproc_lock);
302 	uid = td->td_ucred->cr_ruid;
303 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
304 		error = EAGAIN;
305 		goto fail;
306 	}
307 
308 	/*
309 	 * Increment the count of procs running with this uid. Don't allow
310 	 * a nonprivileged user to exceed their current limit.
311 	 */
312 	PROC_LOCK(p1);
313 	ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
314 		(uid != 0) ? lim_cur(p1, RLIMIT_NPROC) : 0);
315 	PROC_UNLOCK(p1);
316 	if (!ok) {
317 		error = EAGAIN;
318 		goto fail;
319 	}
320 
321 	/*
322 	 * Increment the nprocs resource before blocking can occur.  There
323 	 * are hard-limits as to the number of processes that can run.
324 	 */
325 	nprocs++;
326 
327 	/*
328 	 * Find an unused process ID.  We remember a range of unused IDs
329 	 * ready to use (from lastpid+1 through pidchecked-1).
330 	 *
331 	 * If RFHIGHPID is set (used during system boot), do not allocate
332 	 * low-numbered pids.
333 	 */
334 	trypid = lastpid + 1;
335 	if (flags & RFHIGHPID) {
336 		if (trypid < 10)
337 			trypid = 10;
338 	} else {
339 		if (randompid)
340 			trypid += arc4random() % randompid;
341 	}
342 retry:
343 	/*
344 	 * If the process ID prototype has wrapped around,
345 	 * restart somewhat above 0, as the low-numbered procs
346 	 * tend to include daemons that don't exit.
347 	 */
348 	if (trypid >= PID_MAX) {
349 		trypid = trypid % PID_MAX;
350 		if (trypid < 100)
351 			trypid += 100;
352 		pidchecked = 0;
353 	}
354 	if (trypid >= pidchecked) {
355 		int doingzomb = 0;
356 
357 		pidchecked = PID_MAX;
358 		/*
359 		 * Scan the active and zombie procs to check whether this pid
360 		 * is in use.  Remember the lowest pid that's greater
361 		 * than trypid, so we can avoid checking for a while.
362 		 */
363 		p2 = LIST_FIRST(&allproc);
364 again:
365 		for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
366 			PROC_LOCK(p2);
367 			while (p2->p_pid == trypid ||
368 			    (p2->p_pgrp != NULL &&
369 			    (p2->p_pgrp->pg_id == trypid ||
370 			    (p2->p_session != NULL &&
371 			    p2->p_session->s_sid == trypid)))) {
372 				trypid++;
373 				if (trypid >= pidchecked) {
374 					PROC_UNLOCK(p2);
375 					goto retry;
376 				}
377 			}
378 			if (p2->p_pid > trypid && pidchecked > p2->p_pid)
379 				pidchecked = p2->p_pid;
380 			if (p2->p_pgrp != NULL) {
381 				if (p2->p_pgrp->pg_id > trypid &&
382 				    pidchecked > p2->p_pgrp->pg_id)
383 					pidchecked = p2->p_pgrp->pg_id;
384 				if (p2->p_session != NULL &&
385 				    p2->p_session->s_sid > trypid &&
386 				    pidchecked > p2->p_session->s_sid)
387 					pidchecked = p2->p_session->s_sid;
388 			}
389 			PROC_UNLOCK(p2);
390 		}
391 		if (!doingzomb) {
392 			doingzomb = 1;
393 			p2 = LIST_FIRST(&zombproc);
394 			goto again;
395 		}
396 	}
397 	sx_sunlock(&proctree_lock);
398 
399 	/*
400 	 * RFHIGHPID does not mess with the lastpid counter during boot.
401 	 */
402 	if (flags & RFHIGHPID)
403 		pidchecked = 0;
404 	else
405 		lastpid = trypid;
406 
407 	p2 = newproc;
408 	p2->p_state = PRS_NEW;		/* protect against others */
409 	p2->p_pid = trypid;
410 	LIST_INSERT_HEAD(&allproc, p2, p_list);
411 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
412 	sx_xunlock(&allproc_lock);
413 
414 	/*
415 	 * Malloc things while we don't hold any locks.
416 	 */
417 	if (flags & RFSIGSHARE)
418 		newsigacts = NULL;
419 	else
420 		newsigacts = sigacts_alloc();
421 
422 	/*
423 	 * Copy filedesc.
424 	 */
425 	if (flags & RFCFDG) {
426 		FILEDESC_LOCK(td->td_proc->p_fd);
427 		fd = fdinit(td->td_proc->p_fd);
428 		FILEDESC_UNLOCK(td->td_proc->p_fd);
429 		fdtol = NULL;
430 	} else if (flags & RFFDG) {
431 		FILEDESC_LOCK(p1->p_fd);
432 		fd = fdcopy(td->td_proc->p_fd);
433 		FILEDESC_UNLOCK(p1->p_fd);
434 		fdtol = NULL;
435 	} else {
436 		fd = fdshare(p1->p_fd);
437 		if (p1->p_fdtol == NULL)
438 			p1->p_fdtol =
439 				filedesc_to_leader_alloc(NULL,
440 							 NULL,
441 							 p1->p_leader);
442 		if ((flags & RFTHREAD) != 0) {
443 			/*
444 			 * Shared file descriptor table and
445 			 * shared process leaders.
446 			 */
447 			fdtol = p1->p_fdtol;
448 			FILEDESC_LOCK(p1->p_fd);
449 			fdtol->fdl_refcount++;
450 			FILEDESC_UNLOCK(p1->p_fd);
451 		} else {
452 			/*
453 			 * Shared file descriptor table, and
454 			 * different process leaders
455 			 */
456 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
457 							 p1->p_fd,
458 							 p2);
459 		}
460 	}
461 	/*
462 	 * Make a proc table entry for the new process.
463 	 * Start by zeroing the section of proc that is zero-initialized,
464 	 * then copy the section that is copied directly from the parent.
465 	 */
466 	td2 = FIRST_THREAD_IN_PROC(p2);
467 	kg2 = FIRST_KSEGRP_IN_PROC(p2);
468 	ke2 = FIRST_KSE_IN_KSEGRP(kg2);
469 
470 	/* Allocate and switch to an alternate kstack if specified. */
471 	if (pages != 0)
472 		vm_thread_new_altkstack(td2, pages);
473 
474 	PROC_LOCK(p2);
475 	PROC_LOCK(p1);
476 
477 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
478 
479 	bzero(&p2->p_startzero,
480 	    (unsigned) RANGEOF(struct proc, p_startzero, p_endzero));
481 	bzero(&ke2->ke_startzero,
482 	    (unsigned) RANGEOF(struct kse, ke_startzero, ke_endzero));
483 	bzero(&td2->td_startzero,
484 	    (unsigned) RANGEOF(struct thread, td_startzero, td_endzero));
485 	bzero(&kg2->kg_startzero,
486 	    (unsigned) RANGEOF(struct ksegrp, kg_startzero, kg_endzero));
487 
488 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
489 	    (unsigned) RANGEOF(struct proc, p_startcopy, p_endcopy));
490 	bcopy(&td->td_startcopy, &td2->td_startcopy,
491 	    (unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy));
492 	bcopy(&td->td_ksegrp->kg_startcopy, &kg2->kg_startcopy,
493 	    (unsigned) RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy));
494 #undef RANGEOF
495 
496 	td2->td_tid = p2->p_pid;
497 	td2->td_sigstk = td->td_sigstk;
498 
499 	/* Set up the thread as an active thread (as if runnable). */
500 	ke2->ke_state = KES_THREAD;
501 	ke2->ke_thread = td2;
502 	td2->td_kse = ke2;
503 
504 	/*
505 	 * Duplicate sub-structures as needed.
506 	 * Increase reference counts on shared objects.
507 	 * The p_stats substruct is set in vm_forkproc.
508 	 */
509 	p2->p_flag = 0;
510 	if (p1->p_flag & P_PROFIL)
511 		startprofclock(p2);
512 	mtx_lock_spin(&sched_lock);
513 	p2->p_sflag = PS_INMEM;
514 	/*
515 	 * Allow the scheduler to adjust the priority of the child and
516 	 * parent while we hold the sched_lock.
517 	 */
518 	sched_fork(p1, p2);
519 
520 	mtx_unlock_spin(&sched_lock);
521 	p2->p_ucred = crhold(td->td_ucred);
522 	td2->td_ucred = crhold(p2->p_ucred);	/* XXXKSE */
523 
524 	pargs_hold(p2->p_args);
525 
526 	if (flags & RFSIGSHARE) {
527 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
528 	} else {
529 		sigacts_copy(newsigacts, p1->p_sigacts);
530 		p2->p_sigacts = newsigacts;
531 	}
532 	if (flags & RFLINUXTHPN)
533 	        p2->p_sigparent = SIGUSR1;
534 	else
535 	        p2->p_sigparent = SIGCHLD;
536 
537 	p2->p_textvp = p1->p_textvp;
538 	p2->p_fd = fd;
539 	p2->p_fdtol = fdtol;
540 
541 	/*
542 	 * p_limit is copy-on-write.  Bump its refcount.
543 	 */
544 	p2->p_limit = lim_hold(p1->p_limit);
545 	PROC_UNLOCK(p1);
546 	PROC_UNLOCK(p2);
547 
548 	/* Bump references to the text vnode (for procfs) */
549 	if (p2->p_textvp)
550 		vref(p2->p_textvp);
551 
552 	/*
553 	 * Set up linkage for kernel based threading.
554 	 */
555 	if ((flags & RFTHREAD) != 0) {
556 		mtx_lock(&ppeers_lock);
557 		p2->p_peers = p1->p_peers;
558 		p1->p_peers = p2;
559 		p2->p_leader = p1->p_leader;
560 		mtx_unlock(&ppeers_lock);
561 		PROC_LOCK(p1->p_leader);
562 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
563 			PROC_UNLOCK(p1->p_leader);
564 			/*
565 			 * The task leader is exiting, so process p1 is
566 			 * going to be killed shortly.  Since p1 obviously
567 			 * isn't dead yet, we know that the leader is either
568 			 * sending SIGKILL's to all the processes in this
569 			 * task or is sleeping waiting for all the peers to
570 			 * exit.  We let p1 complete the fork, but we need
571 			 * to go ahead and kill the new process p2 since
572 			 * the task leader may not get a chance to send
573 			 * SIGKILL to it.  We leave it on the list so that
574 			 * the task leader will wait for this new process
575 			 * to commit suicide.
576 			 */
577 			PROC_LOCK(p2);
578 			psignal(p2, SIGKILL);
579 			PROC_UNLOCK(p2);
580 		} else
581 			PROC_UNLOCK(p1->p_leader);
582 	} else {
583 		p2->p_peers = NULL;
584 		p2->p_leader = p2;
585 	}
586 
587 	sx_xlock(&proctree_lock);
588 	PGRP_LOCK(p1->p_pgrp);
589 	PROC_LOCK(p2);
590 	PROC_LOCK(p1);
591 
592 	/*
593 	 * Preserve some more flags in subprocess.  P_PROFIL has already
594 	 * been preserved.
595 	 */
596 	p2->p_flag |= p1->p_flag & P_SUGID;
597 	td2->td_pflags |= td->td_pflags & TDP_ALTSTACK;
598 	SESS_LOCK(p1->p_session);
599 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
600 		p2->p_flag |= P_CONTROLT;
601 	SESS_UNLOCK(p1->p_session);
602 	if (flags & RFPPWAIT)
603 		p2->p_flag |= P_PPWAIT;
604 
605 	p2->p_pgrp = p1->p_pgrp;
606 	LIST_INSERT_AFTER(p1, p2, p_pglist);
607 	PGRP_UNLOCK(p1->p_pgrp);
608 	LIST_INIT(&p2->p_children);
609 
610 	callout_init(&p2->p_itcallout, CALLOUT_MPSAFE);
611 
612 #ifdef KTRACE
613 	/*
614 	 * Copy traceflag and tracefile if enabled.
615 	 */
616 	mtx_lock(&ktrace_mtx);
617 	KASSERT(p2->p_tracevp == NULL, ("new process has a ktrace vnode"));
618 	if (p1->p_traceflag & KTRFAC_INHERIT) {
619 		p2->p_traceflag = p1->p_traceflag;
620 		if ((p2->p_tracevp = p1->p_tracevp) != NULL) {
621 			VREF(p2->p_tracevp);
622 			KASSERT(p1->p_tracecred != NULL,
623 			    ("ktrace vnode with no cred"));
624 			p2->p_tracecred = crhold(p1->p_tracecred);
625 		}
626 	}
627 	mtx_unlock(&ktrace_mtx);
628 #endif
629 
630 	/*
631 	 * If PF_FORK is set, the child process inherits the
632 	 * procfs ioctl flags from its parent.
633 	 */
634 	if (p1->p_pfsflags & PF_FORK) {
635 		p2->p_stops = p1->p_stops;
636 		p2->p_pfsflags = p1->p_pfsflags;
637 	}
638 
639 	/*
640 	 * This begins the section where we must prevent the parent
641 	 * from being swapped.
642 	 */
643 	_PHOLD(p1);
644 	PROC_UNLOCK(p1);
645 
646 	/*
647 	 * Attach the new process to its parent.
648 	 *
649 	 * If RFNOWAIT is set, the newly created process becomes a child
650 	 * of init.  This effectively disassociates the child from the
651 	 * parent.
652 	 */
653 	if (flags & RFNOWAIT)
654 		pptr = initproc;
655 	else
656 		pptr = p1;
657 	p2->p_pptr = pptr;
658 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
659 	sx_xunlock(&proctree_lock);
660 
661 	/* Inform accounting that we have forked. */
662 	p2->p_acflag = AFORK;
663 	PROC_UNLOCK(p2);
664 
665 	/*
666 	 * Finish creating the child process.  It will return via a different
667 	 * execution path later.  (ie: directly into user mode)
668 	 */
669 	mtx_lock(&Giant);
670 	vm_forkproc(td, p2, td2, flags);
671 
672 	if (flags == (RFFDG | RFPROC)) {
673 		cnt.v_forks++;
674 		cnt.v_forkpages += p2->p_vmspace->vm_dsize +
675 		    p2->p_vmspace->vm_ssize;
676 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
677 		cnt.v_vforks++;
678 		cnt.v_vforkpages += p2->p_vmspace->vm_dsize +
679 		    p2->p_vmspace->vm_ssize;
680 	} else if (p1 == &proc0) {
681 		cnt.v_kthreads++;
682 		cnt.v_kthreadpages += p2->p_vmspace->vm_dsize +
683 		    p2->p_vmspace->vm_ssize;
684 	} else {
685 		cnt.v_rforks++;
686 		cnt.v_rforkpages += p2->p_vmspace->vm_dsize +
687 		    p2->p_vmspace->vm_ssize;
688 	}
689 	mtx_unlock(&Giant);
690 
691 	/*
692 	 * Both processes are set up, now check if any loadable modules want
693 	 * to adjust anything.
694 	 *   What if they have an error? XXX
695 	 */
696 	EVENTHANDLER_INVOKE(process_fork, p1, p2, flags);
697 
698 	/*
699 	 * Set the child start time and mark the process as being complete.
700 	 */
701 	microuptime(&p2->p_stats->p_start);
702 	mtx_lock_spin(&sched_lock);
703 	p2->p_state = PRS_NORMAL;
704 
705 	/*
706 	 * If RFSTOPPED not requested, make child runnable and add to
707 	 * run queue.
708 	 */
709 	if ((flags & RFSTOPPED) == 0) {
710 		TD_SET_CAN_RUN(td2);
711 		setrunqueue(td2);
712 	}
713 	mtx_unlock_spin(&sched_lock);
714 
715 	/*
716 	 * Now can be swapped.
717 	 */
718 	PROC_LOCK(p1);
719 	_PRELE(p1);
720 
721 	/*
722 	 * Tell any interested parties about the new process.
723 	 */
724 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
725 
726 	PROC_UNLOCK(p1);
727 
728 	/*
729 	 * Preserve synchronization semantics of vfork.  If waiting for
730 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
731 	 * proc (in case of exit).
732 	 */
733 	PROC_LOCK(p2);
734 	while (p2->p_flag & P_PPWAIT)
735 		msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
736 	PROC_UNLOCK(p2);
737 
738 	/*
739 	 * If other threads are waiting, let them continue now.
740 	 */
741 	if (p1->p_flag & P_SA) {
742 		PROC_LOCK(p1);
743 		thread_single_end();
744 		PROC_UNLOCK(p1);
745 	}
746 
747 	/*
748 	 * Return child proc pointer to parent.
749 	 */
750 	*procp = p2;
751 	return (0);
752 fail:
753 	sx_sunlock(&proctree_lock);
754 	if (ppsratecheck(&lastfail, &curfail, 1))
755 		printf("maxproc limit exceeded by uid %i, please see tuning(7) and login.conf(5).\n",
756 			uid);
757 	sx_xunlock(&allproc_lock);
758 #ifdef MAC
759 	mac_destroy_proc(newproc);
760 #endif
761 	uma_zfree(proc_zone, newproc);
762 	if (p1->p_flag & P_SA) {
763 		PROC_LOCK(p1);
764 		thread_single_end();
765 		PROC_UNLOCK(p1);
766 	}
767 	tsleep(&forksleep, PUSER, "fork", hz / 2);
768 	return (error);
769 }
770 
771 /*
772  * Handle the return of a child process from fork1().  This function
773  * is called from the MD fork_trampoline() entry point.
774  */
775 void
776 fork_exit(callout, arg, frame)
777 	void (*callout)(void *, struct trapframe *);
778 	void *arg;
779 	struct trapframe *frame;
780 {
781 	struct proc *p;
782 	struct thread *td;
783 
784 	/*
785 	 * Processes normally resume in mi_switch() after being
786 	 * cpu_switch()'ed to, but when children start up they arrive here
787 	 * instead, so we must do much the same things as mi_switch() would.
788 	 */
789 
790 	if ((td = PCPU_GET(deadthread))) {
791 		PCPU_SET(deadthread, NULL);
792 		thread_stash(td);
793 	}
794 	td = curthread;
795 	p = td->td_proc;
796 	td->td_oncpu = PCPU_GET(cpuid);
797 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
798 
799 	/*
800 	 * Finish setting up thread glue so that it begins execution in a
801 	 * non-nested critical section with sched_lock held but not recursed.
802 	 */
803 	sched_lock.mtx_lock = (uintptr_t)td;
804 	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
805 	cpu_critical_fork_exit();
806 	CTR3(KTR_PROC, "fork_exit: new thread %p (pid %d, %s)", td, p->p_pid,
807 	    p->p_comm);
808 	mtx_unlock_spin(&sched_lock);
809 
810 	/*
811 	 * cpu_set_fork_handler intercepts this function call to
812 	 * have this call a non-return function to stay in kernel mode.
813 	 * initproc has its own fork handler, but it does return.
814 	 */
815 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
816 	callout(arg, frame);
817 
818 	/*
819 	 * Check if a kernel thread misbehaved and returned from its main
820 	 * function.
821 	 */
822 	PROC_LOCK(p);
823 	if (p->p_flag & P_KTHREAD) {
824 		PROC_UNLOCK(p);
825 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
826 		    p->p_comm, p->p_pid);
827 		kthread_exit(0);
828 	}
829 	PROC_UNLOCK(p);
830 #ifdef DIAGNOSTIC
831 	cred_free_thread(td);
832 #endif
833 	mtx_assert(&Giant, MA_NOTOWNED);
834 }
835 
836 /*
837  * Simplified back end of syscall(), used when returning from fork()
838  * directly into user mode.  Giant is not held on entry, and must not
839  * be held on return.  This function is passed in to fork_exit() as the
840  * first parameter and is called when returning to a new userland process.
841  */
842 void
843 fork_return(td, frame)
844 	struct thread *td;
845 	struct trapframe *frame;
846 {
847 
848 	userret(td, frame, 0);
849 #ifdef KTRACE
850 	if (KTRPOINT(td, KTR_SYSRET))
851 		ktrsysret(SYS_fork, 0, 0);
852 #endif
853 	mtx_assert(&Giant, MA_NOTOWNED);
854 }
855