1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_ktrace.h" 41 #include "opt_kstack_pages.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/sysproto.h> 46 #include <sys/eventhandler.h> 47 #include <sys/fcntl.h> 48 #include <sys/filedesc.h> 49 #include <sys/jail.h> 50 #include <sys/kernel.h> 51 #include <sys/kthread.h> 52 #include <sys/sysctl.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mutex.h> 56 #include <sys/priv.h> 57 #include <sys/proc.h> 58 #include <sys/procdesc.h> 59 #include <sys/pioctl.h> 60 #include <sys/ptrace.h> 61 #include <sys/racct.h> 62 #include <sys/resourcevar.h> 63 #include <sys/sched.h> 64 #include <sys/syscall.h> 65 #include <sys/vmmeter.h> 66 #include <sys/vnode.h> 67 #include <sys/acct.h> 68 #include <sys/ktr.h> 69 #include <sys/ktrace.h> 70 #include <sys/unistd.h> 71 #include <sys/sdt.h> 72 #include <sys/sx.h> 73 #include <sys/sysent.h> 74 #include <sys/signalvar.h> 75 76 #include <security/audit/audit.h> 77 #include <security/mac/mac_framework.h> 78 79 #include <vm/vm.h> 80 #include <vm/pmap.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_extern.h> 83 #include <vm/uma.h> 84 #include <vm/vm_domain.h> 85 86 #ifdef KDTRACE_HOOKS 87 #include <sys/dtrace_bsd.h> 88 dtrace_fork_func_t dtrace_fasttrap_fork; 89 #endif 90 91 SDT_PROVIDER_DECLARE(proc); 92 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int"); 93 94 #ifndef _SYS_SYSPROTO_H_ 95 struct fork_args { 96 int dummy; 97 }; 98 #endif 99 100 /* ARGSUSED */ 101 int 102 sys_fork(struct thread *td, struct fork_args *uap) 103 { 104 struct fork_req fr; 105 int error, pid; 106 107 bzero(&fr, sizeof(fr)); 108 fr.fr_flags = RFFDG | RFPROC; 109 fr.fr_pidp = &pid; 110 error = fork1(td, &fr); 111 if (error == 0) { 112 td->td_retval[0] = pid; 113 td->td_retval[1] = 0; 114 } 115 return (error); 116 } 117 118 /* ARGUSED */ 119 int 120 sys_pdfork(struct thread *td, struct pdfork_args *uap) 121 { 122 struct fork_req fr; 123 int error, fd, pid; 124 125 bzero(&fr, sizeof(fr)); 126 fr.fr_flags = RFFDG | RFPROC | RFPROCDESC; 127 fr.fr_pidp = &pid; 128 fr.fr_pd_fd = &fd; 129 fr.fr_pd_flags = uap->flags; 130 /* 131 * It is necessary to return fd by reference because 0 is a valid file 132 * descriptor number, and the child needs to be able to distinguish 133 * itself from the parent using the return value. 134 */ 135 error = fork1(td, &fr); 136 if (error == 0) { 137 td->td_retval[0] = pid; 138 td->td_retval[1] = 0; 139 error = copyout(&fd, uap->fdp, sizeof(fd)); 140 } 141 return (error); 142 } 143 144 /* ARGSUSED */ 145 int 146 sys_vfork(struct thread *td, struct vfork_args *uap) 147 { 148 struct fork_req fr; 149 int error, pid; 150 151 bzero(&fr, sizeof(fr)); 152 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; 153 fr.fr_pidp = &pid; 154 error = fork1(td, &fr); 155 if (error == 0) { 156 td->td_retval[0] = pid; 157 td->td_retval[1] = 0; 158 } 159 return (error); 160 } 161 162 int 163 sys_rfork(struct thread *td, struct rfork_args *uap) 164 { 165 struct fork_req fr; 166 int error, pid; 167 168 /* Don't allow kernel-only flags. */ 169 if ((uap->flags & RFKERNELONLY) != 0) 170 return (EINVAL); 171 172 AUDIT_ARG_FFLAGS(uap->flags); 173 bzero(&fr, sizeof(fr)); 174 fr.fr_flags = uap->flags; 175 fr.fr_pidp = &pid; 176 error = fork1(td, &fr); 177 if (error == 0) { 178 td->td_retval[0] = pid; 179 td->td_retval[1] = 0; 180 } 181 return (error); 182 } 183 184 int nprocs = 1; /* process 0 */ 185 int lastpid = 0; 186 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 187 "Last used PID"); 188 189 /* 190 * Random component to lastpid generation. We mix in a random factor to make 191 * it a little harder to predict. We sanity check the modulus value to avoid 192 * doing it in critical paths. Don't let it be too small or we pointlessly 193 * waste randomness entropy, and don't let it be impossibly large. Using a 194 * modulus that is too big causes a LOT more process table scans and slows 195 * down fork processing as the pidchecked caching is defeated. 196 */ 197 static int randompid = 0; 198 199 static int 200 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 201 { 202 int error, pid; 203 204 error = sysctl_wire_old_buffer(req, sizeof(int)); 205 if (error != 0) 206 return(error); 207 sx_xlock(&allproc_lock); 208 pid = randompid; 209 error = sysctl_handle_int(oidp, &pid, 0, req); 210 if (error == 0 && req->newptr != NULL) { 211 if (pid == 0) 212 randompid = 0; 213 else if (pid == 1) 214 /* generate a random PID modulus between 100 and 1123 */ 215 randompid = 100 + arc4random() % 1024; 216 else if (pid < 0 || pid > pid_max - 100) 217 /* out of range */ 218 randompid = pid_max - 100; 219 else if (pid < 100) 220 /* Make it reasonable */ 221 randompid = 100; 222 else 223 randompid = pid; 224 } 225 sx_xunlock(&allproc_lock); 226 return (error); 227 } 228 229 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 230 0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value"); 231 232 static int 233 fork_findpid(int flags) 234 { 235 struct proc *p; 236 int trypid; 237 static int pidchecked = 0; 238 239 /* 240 * Requires allproc_lock in order to iterate over the list 241 * of processes, and proctree_lock to access p_pgrp. 242 */ 243 sx_assert(&allproc_lock, SX_LOCKED); 244 sx_assert(&proctree_lock, SX_LOCKED); 245 246 /* 247 * Find an unused process ID. We remember a range of unused IDs 248 * ready to use (from lastpid+1 through pidchecked-1). 249 * 250 * If RFHIGHPID is set (used during system boot), do not allocate 251 * low-numbered pids. 252 */ 253 trypid = lastpid + 1; 254 if (flags & RFHIGHPID) { 255 if (trypid < 10) 256 trypid = 10; 257 } else { 258 if (randompid) 259 trypid += arc4random() % randompid; 260 } 261 retry: 262 /* 263 * If the process ID prototype has wrapped around, 264 * restart somewhat above 0, as the low-numbered procs 265 * tend to include daemons that don't exit. 266 */ 267 if (trypid >= pid_max) { 268 trypid = trypid % pid_max; 269 if (trypid < 100) 270 trypid += 100; 271 pidchecked = 0; 272 } 273 if (trypid >= pidchecked) { 274 int doingzomb = 0; 275 276 pidchecked = PID_MAX; 277 /* 278 * Scan the active and zombie procs to check whether this pid 279 * is in use. Remember the lowest pid that's greater 280 * than trypid, so we can avoid checking for a while. 281 * 282 * Avoid reuse of the process group id, session id or 283 * the reaper subtree id. Note that for process group 284 * and sessions, the amount of reserved pids is 285 * limited by process limit. For the subtree ids, the 286 * id is kept reserved only while there is a 287 * non-reaped process in the subtree, so amount of 288 * reserved pids is limited by process limit times 289 * two. 290 */ 291 p = LIST_FIRST(&allproc); 292 again: 293 for (; p != NULL; p = LIST_NEXT(p, p_list)) { 294 while (p->p_pid == trypid || 295 p->p_reapsubtree == trypid || 296 (p->p_pgrp != NULL && 297 (p->p_pgrp->pg_id == trypid || 298 (p->p_session != NULL && 299 p->p_session->s_sid == trypid)))) { 300 trypid++; 301 if (trypid >= pidchecked) 302 goto retry; 303 } 304 if (p->p_pid > trypid && pidchecked > p->p_pid) 305 pidchecked = p->p_pid; 306 if (p->p_pgrp != NULL) { 307 if (p->p_pgrp->pg_id > trypid && 308 pidchecked > p->p_pgrp->pg_id) 309 pidchecked = p->p_pgrp->pg_id; 310 if (p->p_session != NULL && 311 p->p_session->s_sid > trypid && 312 pidchecked > p->p_session->s_sid) 313 pidchecked = p->p_session->s_sid; 314 } 315 } 316 if (!doingzomb) { 317 doingzomb = 1; 318 p = LIST_FIRST(&zombproc); 319 goto again; 320 } 321 } 322 323 /* 324 * RFHIGHPID does not mess with the lastpid counter during boot. 325 */ 326 if (flags & RFHIGHPID) 327 pidchecked = 0; 328 else 329 lastpid = trypid; 330 331 return (trypid); 332 } 333 334 static int 335 fork_norfproc(struct thread *td, int flags) 336 { 337 int error; 338 struct proc *p1; 339 340 KASSERT((flags & RFPROC) == 0, 341 ("fork_norfproc called with RFPROC set")); 342 p1 = td->td_proc; 343 344 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 345 (flags & (RFCFDG | RFFDG))) { 346 PROC_LOCK(p1); 347 if (thread_single(p1, SINGLE_BOUNDARY)) { 348 PROC_UNLOCK(p1); 349 return (ERESTART); 350 } 351 PROC_UNLOCK(p1); 352 } 353 354 error = vm_forkproc(td, NULL, NULL, NULL, flags); 355 if (error) 356 goto fail; 357 358 /* 359 * Close all file descriptors. 360 */ 361 if (flags & RFCFDG) { 362 struct filedesc *fdtmp; 363 fdtmp = fdinit(td->td_proc->p_fd, false); 364 fdescfree(td); 365 p1->p_fd = fdtmp; 366 } 367 368 /* 369 * Unshare file descriptors (from parent). 370 */ 371 if (flags & RFFDG) 372 fdunshare(td); 373 374 fail: 375 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 376 (flags & (RFCFDG | RFFDG))) { 377 PROC_LOCK(p1); 378 thread_single_end(p1, SINGLE_BOUNDARY); 379 PROC_UNLOCK(p1); 380 } 381 return (error); 382 } 383 384 static void 385 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2, 386 struct vmspace *vm2, struct file *fp_procdesc) 387 { 388 struct proc *p1, *pptr; 389 int trypid; 390 struct filedesc *fd; 391 struct filedesc_to_leader *fdtol; 392 struct sigacts *newsigacts; 393 394 sx_assert(&proctree_lock, SX_SLOCKED); 395 sx_assert(&allproc_lock, SX_XLOCKED); 396 397 p1 = td->td_proc; 398 399 trypid = fork_findpid(fr->fr_flags); 400 401 sx_sunlock(&proctree_lock); 402 403 p2->p_state = PRS_NEW; /* protect against others */ 404 p2->p_pid = trypid; 405 AUDIT_ARG_PID(p2->p_pid); 406 LIST_INSERT_HEAD(&allproc, p2, p_list); 407 allproc_gen++; 408 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); 409 tidhash_add(td2); 410 PROC_LOCK(p2); 411 PROC_LOCK(p1); 412 413 sx_xunlock(&allproc_lock); 414 415 bcopy(&p1->p_startcopy, &p2->p_startcopy, 416 __rangeof(struct proc, p_startcopy, p_endcopy)); 417 pargs_hold(p2->p_args); 418 419 PROC_UNLOCK(p1); 420 421 bzero(&p2->p_startzero, 422 __rangeof(struct proc, p_startzero, p_endzero)); 423 424 /* Tell the prison that we exist. */ 425 prison_proc_hold(p2->p_ucred->cr_prison); 426 427 PROC_UNLOCK(p2); 428 429 /* 430 * Malloc things while we don't hold any locks. 431 */ 432 if (fr->fr_flags & RFSIGSHARE) 433 newsigacts = NULL; 434 else 435 newsigacts = sigacts_alloc(); 436 437 /* 438 * Copy filedesc. 439 */ 440 if (fr->fr_flags & RFCFDG) { 441 fd = fdinit(p1->p_fd, false); 442 fdtol = NULL; 443 } else if (fr->fr_flags & RFFDG) { 444 fd = fdcopy(p1->p_fd); 445 fdtol = NULL; 446 } else { 447 fd = fdshare(p1->p_fd); 448 if (p1->p_fdtol == NULL) 449 p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL, 450 p1->p_leader); 451 if ((fr->fr_flags & RFTHREAD) != 0) { 452 /* 453 * Shared file descriptor table, and shared 454 * process leaders. 455 */ 456 fdtol = p1->p_fdtol; 457 FILEDESC_XLOCK(p1->p_fd); 458 fdtol->fdl_refcount++; 459 FILEDESC_XUNLOCK(p1->p_fd); 460 } else { 461 /* 462 * Shared file descriptor table, and different 463 * process leaders. 464 */ 465 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, 466 p1->p_fd, p2); 467 } 468 } 469 /* 470 * Make a proc table entry for the new process. 471 * Start by zeroing the section of proc that is zero-initialized, 472 * then copy the section that is copied directly from the parent. 473 */ 474 475 PROC_LOCK(p2); 476 PROC_LOCK(p1); 477 478 bzero(&td2->td_startzero, 479 __rangeof(struct thread, td_startzero, td_endzero)); 480 481 bcopy(&td->td_startcopy, &td2->td_startcopy, 482 __rangeof(struct thread, td_startcopy, td_endcopy)); 483 484 bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name)); 485 td2->td_sigstk = td->td_sigstk; 486 td2->td_flags = TDF_INMEM; 487 td2->td_lend_user_pri = PRI_MAX; 488 489 #ifdef VIMAGE 490 td2->td_vnet = NULL; 491 td2->td_vnet_lpush = NULL; 492 #endif 493 494 /* 495 * Allow the scheduler to initialize the child. 496 */ 497 thread_lock(td); 498 sched_fork(td, td2); 499 thread_unlock(td); 500 501 /* 502 * Duplicate sub-structures as needed. 503 * Increase reference counts on shared objects. 504 */ 505 p2->p_flag = P_INMEM; 506 p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP); 507 p2->p_swtick = ticks; 508 if (p1->p_flag & P_PROFIL) 509 startprofclock(p2); 510 511 /* 512 * Whilst the proc lock is held, copy the VM domain data out 513 * using the VM domain method. 514 */ 515 vm_domain_policy_init(&p2->p_vm_dom_policy); 516 vm_domain_policy_localcopy(&p2->p_vm_dom_policy, 517 &p1->p_vm_dom_policy); 518 519 if (fr->fr_flags & RFSIGSHARE) { 520 p2->p_sigacts = sigacts_hold(p1->p_sigacts); 521 } else { 522 sigacts_copy(newsigacts, p1->p_sigacts); 523 p2->p_sigacts = newsigacts; 524 } 525 526 if (fr->fr_flags & RFTSIGZMB) 527 p2->p_sigparent = RFTSIGNUM(fr->fr_flags); 528 else if (fr->fr_flags & RFLINUXTHPN) 529 p2->p_sigparent = SIGUSR1; 530 else 531 p2->p_sigparent = SIGCHLD; 532 533 p2->p_textvp = p1->p_textvp; 534 p2->p_fd = fd; 535 p2->p_fdtol = fdtol; 536 537 if (p1->p_flag2 & P2_INHERIT_PROTECTED) { 538 p2->p_flag |= P_PROTECTED; 539 p2->p_flag2 |= P2_INHERIT_PROTECTED; 540 } 541 542 /* 543 * p_limit is copy-on-write. Bump its refcount. 544 */ 545 lim_fork(p1, p2); 546 547 thread_cow_get_proc(td2, p2); 548 549 pstats_fork(p1->p_stats, p2->p_stats); 550 551 PROC_UNLOCK(p1); 552 PROC_UNLOCK(p2); 553 554 /* Bump references to the text vnode (for procfs). */ 555 if (p2->p_textvp) 556 vrefact(p2->p_textvp); 557 558 /* 559 * Set up linkage for kernel based threading. 560 */ 561 if ((fr->fr_flags & RFTHREAD) != 0) { 562 mtx_lock(&ppeers_lock); 563 p2->p_peers = p1->p_peers; 564 p1->p_peers = p2; 565 p2->p_leader = p1->p_leader; 566 mtx_unlock(&ppeers_lock); 567 PROC_LOCK(p1->p_leader); 568 if ((p1->p_leader->p_flag & P_WEXIT) != 0) { 569 PROC_UNLOCK(p1->p_leader); 570 /* 571 * The task leader is exiting, so process p1 is 572 * going to be killed shortly. Since p1 obviously 573 * isn't dead yet, we know that the leader is either 574 * sending SIGKILL's to all the processes in this 575 * task or is sleeping waiting for all the peers to 576 * exit. We let p1 complete the fork, but we need 577 * to go ahead and kill the new process p2 since 578 * the task leader may not get a chance to send 579 * SIGKILL to it. We leave it on the list so that 580 * the task leader will wait for this new process 581 * to commit suicide. 582 */ 583 PROC_LOCK(p2); 584 kern_psignal(p2, SIGKILL); 585 PROC_UNLOCK(p2); 586 } else 587 PROC_UNLOCK(p1->p_leader); 588 } else { 589 p2->p_peers = NULL; 590 p2->p_leader = p2; 591 } 592 593 sx_xlock(&proctree_lock); 594 PGRP_LOCK(p1->p_pgrp); 595 PROC_LOCK(p2); 596 PROC_LOCK(p1); 597 598 /* 599 * Preserve some more flags in subprocess. P_PROFIL has already 600 * been preserved. 601 */ 602 p2->p_flag |= p1->p_flag & P_SUGID; 603 td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING; 604 SESS_LOCK(p1->p_session); 605 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) 606 p2->p_flag |= P_CONTROLT; 607 SESS_UNLOCK(p1->p_session); 608 if (fr->fr_flags & RFPPWAIT) 609 p2->p_flag |= P_PPWAIT; 610 611 p2->p_pgrp = p1->p_pgrp; 612 LIST_INSERT_AFTER(p1, p2, p_pglist); 613 PGRP_UNLOCK(p1->p_pgrp); 614 LIST_INIT(&p2->p_children); 615 LIST_INIT(&p2->p_orphans); 616 617 callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0); 618 619 /* 620 * If PF_FORK is set, the child process inherits the 621 * procfs ioctl flags from its parent. 622 */ 623 if (p1->p_pfsflags & PF_FORK) { 624 p2->p_stops = p1->p_stops; 625 p2->p_pfsflags = p1->p_pfsflags; 626 } 627 628 /* 629 * This begins the section where we must prevent the parent 630 * from being swapped. 631 */ 632 _PHOLD(p1); 633 PROC_UNLOCK(p1); 634 635 /* 636 * Attach the new process to its parent. 637 * 638 * If RFNOWAIT is set, the newly created process becomes a child 639 * of init. This effectively disassociates the child from the 640 * parent. 641 */ 642 if ((fr->fr_flags & RFNOWAIT) != 0) { 643 pptr = p1->p_reaper; 644 p2->p_reaper = pptr; 645 } else { 646 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ? 647 p1 : p1->p_reaper; 648 pptr = p1; 649 } 650 p2->p_pptr = pptr; 651 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); 652 LIST_INIT(&p2->p_reaplist); 653 LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling); 654 if (p2->p_reaper == p1) 655 p2->p_reapsubtree = p2->p_pid; 656 sx_xunlock(&proctree_lock); 657 658 /* Inform accounting that we have forked. */ 659 p2->p_acflag = AFORK; 660 PROC_UNLOCK(p2); 661 662 #ifdef KTRACE 663 ktrprocfork(p1, p2); 664 #endif 665 666 /* 667 * Finish creating the child process. It will return via a different 668 * execution path later. (ie: directly into user mode) 669 */ 670 vm_forkproc(td, p2, td2, vm2, fr->fr_flags); 671 672 if (fr->fr_flags == (RFFDG | RFPROC)) { 673 VM_CNT_INC(v_forks); 674 VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize + 675 p2->p_vmspace->vm_ssize); 676 } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { 677 VM_CNT_INC(v_vforks); 678 VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize + 679 p2->p_vmspace->vm_ssize); 680 } else if (p1 == &proc0) { 681 VM_CNT_INC(v_kthreads); 682 VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize + 683 p2->p_vmspace->vm_ssize); 684 } else { 685 VM_CNT_INC(v_rforks); 686 VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize + 687 p2->p_vmspace->vm_ssize); 688 } 689 690 /* 691 * Associate the process descriptor with the process before anything 692 * can happen that might cause that process to need the descriptor. 693 * However, don't do this until after fork(2) can no longer fail. 694 */ 695 if (fr->fr_flags & RFPROCDESC) 696 procdesc_new(p2, fr->fr_pd_flags); 697 698 /* 699 * Both processes are set up, now check if any loadable modules want 700 * to adjust anything. 701 */ 702 EVENTHANDLER_INVOKE(process_fork, p1, p2, fr->fr_flags); 703 704 /* 705 * Set the child start time and mark the process as being complete. 706 */ 707 PROC_LOCK(p2); 708 PROC_LOCK(p1); 709 microuptime(&p2->p_stats->p_start); 710 PROC_SLOCK(p2); 711 p2->p_state = PRS_NORMAL; 712 PROC_SUNLOCK(p2); 713 714 #ifdef KDTRACE_HOOKS 715 /* 716 * Tell the DTrace fasttrap provider about the new process so that any 717 * tracepoints inherited from the parent can be removed. We have to do 718 * this only after p_state is PRS_NORMAL since the fasttrap module will 719 * use pfind() later on. 720 */ 721 if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork) 722 dtrace_fasttrap_fork(p1, p2); 723 #endif 724 /* 725 * Hold the process so that it cannot exit after we make it runnable, 726 * but before we wait for the debugger. 727 */ 728 _PHOLD(p2); 729 if (p1->p_ptevents & PTRACE_FORK) { 730 /* 731 * Arrange for debugger to receive the fork event. 732 * 733 * We can report PL_FLAG_FORKED regardless of 734 * P_FOLLOWFORK settings, but it does not make a sense 735 * for runaway child. 736 */ 737 td->td_dbgflags |= TDB_FORK; 738 td->td_dbg_forked = p2->p_pid; 739 td2->td_dbgflags |= TDB_STOPATFORK; 740 } 741 if (fr->fr_flags & RFPPWAIT) { 742 td->td_pflags |= TDP_RFPPWAIT; 743 td->td_rfppwait_p = p2; 744 td->td_dbgflags |= TDB_VFORK; 745 } 746 PROC_UNLOCK(p2); 747 748 /* 749 * Now can be swapped. 750 */ 751 _PRELE(p1); 752 PROC_UNLOCK(p1); 753 754 /* 755 * Tell any interested parties about the new process. 756 */ 757 knote_fork(p1->p_klist, p2->p_pid); 758 SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags); 759 760 if (fr->fr_flags & RFPROCDESC) { 761 procdesc_finit(p2->p_procdesc, fp_procdesc); 762 fdrop(fp_procdesc, td); 763 } 764 765 if ((fr->fr_flags & RFSTOPPED) == 0) { 766 /* 767 * If RFSTOPPED not requested, make child runnable and 768 * add to run queue. 769 */ 770 thread_lock(td2); 771 TD_SET_CAN_RUN(td2); 772 sched_add(td2, SRQ_BORING); 773 thread_unlock(td2); 774 if (fr->fr_pidp != NULL) 775 *fr->fr_pidp = p2->p_pid; 776 } else { 777 *fr->fr_procp = p2; 778 } 779 780 PROC_LOCK(p2); 781 /* 782 * Wait until debugger is attached to child. 783 */ 784 while (td2->td_proc == p2 && (td2->td_dbgflags & TDB_STOPATFORK) != 0) 785 cv_wait(&p2->p_dbgwait, &p2->p_mtx); 786 _PRELE(p2); 787 racct_proc_fork_done(p2); 788 PROC_UNLOCK(p2); 789 } 790 791 int 792 fork1(struct thread *td, struct fork_req *fr) 793 { 794 struct proc *p1, *newproc; 795 struct thread *td2; 796 struct vmspace *vm2; 797 struct file *fp_procdesc; 798 vm_ooffset_t mem_charged; 799 int error, nprocs_new, ok; 800 static int curfail; 801 static struct timeval lastfail; 802 int flags, pages; 803 804 flags = fr->fr_flags; 805 pages = fr->fr_pages; 806 807 if ((flags & RFSTOPPED) != 0) 808 MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL); 809 else 810 MPASS(fr->fr_procp == NULL); 811 812 /* Check for the undefined or unimplemented flags. */ 813 if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0) 814 return (EINVAL); 815 816 /* Signal value requires RFTSIGZMB. */ 817 if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0) 818 return (EINVAL); 819 820 /* Can't copy and clear. */ 821 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) 822 return (EINVAL); 823 824 /* Check the validity of the signal number. */ 825 if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG) 826 return (EINVAL); 827 828 if ((flags & RFPROCDESC) != 0) { 829 /* Can't not create a process yet get a process descriptor. */ 830 if ((flags & RFPROC) == 0) 831 return (EINVAL); 832 833 /* Must provide a place to put a procdesc if creating one. */ 834 if (fr->fr_pd_fd == NULL) 835 return (EINVAL); 836 837 /* Check if we are using supported flags. */ 838 if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0) 839 return (EINVAL); 840 } 841 842 p1 = td->td_proc; 843 844 /* 845 * Here we don't create a new process, but we divorce 846 * certain parts of a process from itself. 847 */ 848 if ((flags & RFPROC) == 0) { 849 if (fr->fr_procp != NULL) 850 *fr->fr_procp = NULL; 851 else if (fr->fr_pidp != NULL) 852 *fr->fr_pidp = 0; 853 return (fork_norfproc(td, flags)); 854 } 855 856 fp_procdesc = NULL; 857 newproc = NULL; 858 vm2 = NULL; 859 860 /* 861 * Increment the nprocs resource before allocations occur. 862 * Although process entries are dynamically created, we still 863 * keep a global limit on the maximum number we will 864 * create. There are hard-limits as to the number of processes 865 * that can run, established by the KVA and memory usage for 866 * the process data. 867 * 868 * Don't allow a nonprivileged user to use the last ten 869 * processes; don't let root exceed the limit. 870 */ 871 nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1; 872 if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred, 873 PRIV_MAXPROC, 0) != 0) || nprocs_new >= maxproc) { 874 error = EAGAIN; 875 sx_xlock(&allproc_lock); 876 if (ppsratecheck(&lastfail, &curfail, 1)) { 877 printf("maxproc limit exceeded by uid %u (pid %d); " 878 "see tuning(7) and login.conf(5)\n", 879 td->td_ucred->cr_ruid, p1->p_pid); 880 } 881 sx_xunlock(&allproc_lock); 882 goto fail2; 883 } 884 885 /* 886 * If required, create a process descriptor in the parent first; we 887 * will abandon it if something goes wrong. We don't finit() until 888 * later. 889 */ 890 if (flags & RFPROCDESC) { 891 error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd, 892 fr->fr_pd_flags, fr->fr_pd_fcaps); 893 if (error != 0) 894 goto fail2; 895 } 896 897 mem_charged = 0; 898 if (pages == 0) 899 pages = kstack_pages; 900 /* Allocate new proc. */ 901 newproc = uma_zalloc(proc_zone, M_WAITOK); 902 td2 = FIRST_THREAD_IN_PROC(newproc); 903 if (td2 == NULL) { 904 td2 = thread_alloc(pages); 905 if (td2 == NULL) { 906 error = ENOMEM; 907 goto fail2; 908 } 909 proc_linkup(newproc, td2); 910 } else { 911 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) { 912 if (td2->td_kstack != 0) 913 vm_thread_dispose(td2); 914 if (!thread_alloc_stack(td2, pages)) { 915 error = ENOMEM; 916 goto fail2; 917 } 918 } 919 } 920 921 if ((flags & RFMEM) == 0) { 922 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged); 923 if (vm2 == NULL) { 924 error = ENOMEM; 925 goto fail2; 926 } 927 if (!swap_reserve(mem_charged)) { 928 /* 929 * The swap reservation failed. The accounting 930 * from the entries of the copied vm2 will be 931 * subtracted in vmspace_free(), so force the 932 * reservation there. 933 */ 934 swap_reserve_force(mem_charged); 935 error = ENOMEM; 936 goto fail2; 937 } 938 } else 939 vm2 = NULL; 940 941 /* 942 * XXX: This is ugly; when we copy resource usage, we need to bump 943 * per-cred resource counters. 944 */ 945 proc_set_cred_init(newproc, crhold(td->td_ucred)); 946 947 /* 948 * Initialize resource accounting for the child process. 949 */ 950 error = racct_proc_fork(p1, newproc); 951 if (error != 0) { 952 error = EAGAIN; 953 goto fail1; 954 } 955 956 #ifdef MAC 957 mac_proc_init(newproc); 958 #endif 959 newproc->p_klist = knlist_alloc(&newproc->p_mtx); 960 STAILQ_INIT(&newproc->p_ktr); 961 962 /* We have to lock the process tree while we look for a pid. */ 963 sx_slock(&proctree_lock); 964 sx_xlock(&allproc_lock); 965 966 /* 967 * Increment the count of procs running with this uid. Don't allow 968 * a nonprivileged user to exceed their current limit. 969 * 970 * XXXRW: Can we avoid privilege here if it's not needed? 971 */ 972 error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0); 973 if (error == 0) 974 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0); 975 else { 976 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 977 lim_cur(td, RLIMIT_NPROC)); 978 } 979 if (ok) { 980 do_fork(td, fr, newproc, td2, vm2, fp_procdesc); 981 return (0); 982 } 983 984 error = EAGAIN; 985 sx_sunlock(&proctree_lock); 986 sx_xunlock(&allproc_lock); 987 #ifdef MAC 988 mac_proc_destroy(newproc); 989 #endif 990 racct_proc_exit(newproc); 991 fail1: 992 crfree(newproc->p_ucred); 993 newproc->p_ucred = NULL; 994 fail2: 995 if (vm2 != NULL) 996 vmspace_free(vm2); 997 uma_zfree(proc_zone, newproc); 998 if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) { 999 fdclose(td, fp_procdesc, *fr->fr_pd_fd); 1000 fdrop(fp_procdesc, td); 1001 } 1002 atomic_add_int(&nprocs, -1); 1003 pause("fork", hz / 2); 1004 return (error); 1005 } 1006 1007 /* 1008 * Handle the return of a child process from fork1(). This function 1009 * is called from the MD fork_trampoline() entry point. 1010 */ 1011 void 1012 fork_exit(void (*callout)(void *, struct trapframe *), void *arg, 1013 struct trapframe *frame) 1014 { 1015 struct proc *p; 1016 struct thread *td; 1017 struct thread *dtd; 1018 1019 td = curthread; 1020 p = td->td_proc; 1021 KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new")); 1022 1023 CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)", 1024 td, td_get_sched(td), p->p_pid, td->td_name); 1025 1026 sched_fork_exit(td); 1027 /* 1028 * Processes normally resume in mi_switch() after being 1029 * cpu_switch()'ed to, but when children start up they arrive here 1030 * instead, so we must do much the same things as mi_switch() would. 1031 */ 1032 if ((dtd = PCPU_GET(deadthread))) { 1033 PCPU_SET(deadthread, NULL); 1034 thread_stash(dtd); 1035 } 1036 thread_unlock(td); 1037 1038 /* 1039 * cpu_fork_kthread_handler intercepts this function call to 1040 * have this call a non-return function to stay in kernel mode. 1041 * initproc has its own fork handler, but it does return. 1042 */ 1043 KASSERT(callout != NULL, ("NULL callout in fork_exit")); 1044 callout(arg, frame); 1045 1046 /* 1047 * Check if a kernel thread misbehaved and returned from its main 1048 * function. 1049 */ 1050 if (p->p_flag & P_KPROC) { 1051 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n", 1052 td->td_name, p->p_pid); 1053 kthread_exit(); 1054 } 1055 mtx_assert(&Giant, MA_NOTOWNED); 1056 1057 if (p->p_sysent->sv_schedtail != NULL) 1058 (p->p_sysent->sv_schedtail)(td); 1059 td->td_pflags &= ~TDP_FORKING; 1060 } 1061 1062 /* 1063 * Simplified back end of syscall(), used when returning from fork() 1064 * directly into user mode. This function is passed in to fork_exit() 1065 * as the first parameter and is called when returning to a new 1066 * userland process. 1067 */ 1068 void 1069 fork_return(struct thread *td, struct trapframe *frame) 1070 { 1071 struct proc *p, *dbg; 1072 1073 p = td->td_proc; 1074 if (td->td_dbgflags & TDB_STOPATFORK) { 1075 sx_xlock(&proctree_lock); 1076 PROC_LOCK(p); 1077 if (p->p_pptr->p_ptevents & PTRACE_FORK) { 1078 /* 1079 * If debugger still wants auto-attach for the 1080 * parent's children, do it now. 1081 */ 1082 dbg = p->p_pptr->p_pptr; 1083 proc_set_traced(p, true); 1084 CTR2(KTR_PTRACE, 1085 "fork_return: attaching to new child pid %d: oppid %d", 1086 p->p_pid, p->p_oppid); 1087 proc_reparent(p, dbg); 1088 sx_xunlock(&proctree_lock); 1089 td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP; 1090 ptracestop(td, SIGSTOP, NULL); 1091 td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX); 1092 } else { 1093 /* 1094 * ... otherwise clear the request. 1095 */ 1096 sx_xunlock(&proctree_lock); 1097 td->td_dbgflags &= ~TDB_STOPATFORK; 1098 cv_broadcast(&p->p_dbgwait); 1099 } 1100 PROC_UNLOCK(p); 1101 } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) { 1102 /* 1103 * This is the start of a new thread in a traced 1104 * process. Report a system call exit event. 1105 */ 1106 PROC_LOCK(p); 1107 td->td_dbgflags |= TDB_SCX; 1108 _STOPEVENT(p, S_SCX, td->td_sa.code); 1109 if ((p->p_ptevents & PTRACE_SCX) != 0 || 1110 (td->td_dbgflags & TDB_BORN) != 0) 1111 ptracestop(td, SIGTRAP, NULL); 1112 td->td_dbgflags &= ~(TDB_SCX | TDB_BORN); 1113 PROC_UNLOCK(p); 1114 } 1115 1116 userret(td, frame); 1117 1118 #ifdef KTRACE 1119 if (KTRPOINT(td, KTR_SYSRET)) 1120 ktrsysret(SYS_fork, 0, 0); 1121 #endif 1122 } 1123