xref: /freebsd/sys/kern/kern_fork.c (revision 1c05a6ea6b849ff95e539c31adea887c644a6a01)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_kstack_pages.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysproto.h>
46 #include <sys/eventhandler.h>
47 #include <sys/fcntl.h>
48 #include <sys/filedesc.h>
49 #include <sys/jail.h>
50 #include <sys/kernel.h>
51 #include <sys/kthread.h>
52 #include <sys/sysctl.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mutex.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/procdesc.h>
59 #include <sys/pioctl.h>
60 #include <sys/ptrace.h>
61 #include <sys/racct.h>
62 #include <sys/resourcevar.h>
63 #include <sys/sched.h>
64 #include <sys/syscall.h>
65 #include <sys/vmmeter.h>
66 #include <sys/vnode.h>
67 #include <sys/acct.h>
68 #include <sys/ktr.h>
69 #include <sys/ktrace.h>
70 #include <sys/unistd.h>
71 #include <sys/sdt.h>
72 #include <sys/sx.h>
73 #include <sys/sysent.h>
74 #include <sys/signalvar.h>
75 
76 #include <security/audit/audit.h>
77 #include <security/mac/mac_framework.h>
78 
79 #include <vm/vm.h>
80 #include <vm/pmap.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_extern.h>
83 #include <vm/uma.h>
84 #include <vm/vm_domain.h>
85 
86 #ifdef KDTRACE_HOOKS
87 #include <sys/dtrace_bsd.h>
88 dtrace_fork_func_t	dtrace_fasttrap_fork;
89 #endif
90 
91 SDT_PROVIDER_DECLARE(proc);
92 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
93 
94 #ifndef _SYS_SYSPROTO_H_
95 struct fork_args {
96 	int     dummy;
97 };
98 #endif
99 
100 /* ARGSUSED */
101 int
102 sys_fork(struct thread *td, struct fork_args *uap)
103 {
104 	struct fork_req fr;
105 	int error, pid;
106 
107 	bzero(&fr, sizeof(fr));
108 	fr.fr_flags = RFFDG | RFPROC;
109 	fr.fr_pidp = &pid;
110 	error = fork1(td, &fr);
111 	if (error == 0) {
112 		td->td_retval[0] = pid;
113 		td->td_retval[1] = 0;
114 	}
115 	return (error);
116 }
117 
118 /* ARGUSED */
119 int
120 sys_pdfork(struct thread *td, struct pdfork_args *uap)
121 {
122 	struct fork_req fr;
123 	int error, fd, pid;
124 
125 	bzero(&fr, sizeof(fr));
126 	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
127 	fr.fr_pidp = &pid;
128 	fr.fr_pd_fd = &fd;
129 	fr.fr_pd_flags = uap->flags;
130 	/*
131 	 * It is necessary to return fd by reference because 0 is a valid file
132 	 * descriptor number, and the child needs to be able to distinguish
133 	 * itself from the parent using the return value.
134 	 */
135 	error = fork1(td, &fr);
136 	if (error == 0) {
137 		td->td_retval[0] = pid;
138 		td->td_retval[1] = 0;
139 		error = copyout(&fd, uap->fdp, sizeof(fd));
140 	}
141 	return (error);
142 }
143 
144 /* ARGSUSED */
145 int
146 sys_vfork(struct thread *td, struct vfork_args *uap)
147 {
148 	struct fork_req fr;
149 	int error, pid;
150 
151 	bzero(&fr, sizeof(fr));
152 	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
153 	fr.fr_pidp = &pid;
154 	error = fork1(td, &fr);
155 	if (error == 0) {
156 		td->td_retval[0] = pid;
157 		td->td_retval[1] = 0;
158 	}
159 	return (error);
160 }
161 
162 int
163 sys_rfork(struct thread *td, struct rfork_args *uap)
164 {
165 	struct fork_req fr;
166 	int error, pid;
167 
168 	/* Don't allow kernel-only flags. */
169 	if ((uap->flags & RFKERNELONLY) != 0)
170 		return (EINVAL);
171 
172 	AUDIT_ARG_FFLAGS(uap->flags);
173 	bzero(&fr, sizeof(fr));
174 	fr.fr_flags = uap->flags;
175 	fr.fr_pidp = &pid;
176 	error = fork1(td, &fr);
177 	if (error == 0) {
178 		td->td_retval[0] = pid;
179 		td->td_retval[1] = 0;
180 	}
181 	return (error);
182 }
183 
184 int	nprocs = 1;		/* process 0 */
185 int	lastpid = 0;
186 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
187     "Last used PID");
188 
189 /*
190  * Random component to lastpid generation.  We mix in a random factor to make
191  * it a little harder to predict.  We sanity check the modulus value to avoid
192  * doing it in critical paths.  Don't let it be too small or we pointlessly
193  * waste randomness entropy, and don't let it be impossibly large.  Using a
194  * modulus that is too big causes a LOT more process table scans and slows
195  * down fork processing as the pidchecked caching is defeated.
196  */
197 static int randompid = 0;
198 
199 static int
200 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
201 {
202 	int error, pid;
203 
204 	error = sysctl_wire_old_buffer(req, sizeof(int));
205 	if (error != 0)
206 		return(error);
207 	sx_xlock(&allproc_lock);
208 	pid = randompid;
209 	error = sysctl_handle_int(oidp, &pid, 0, req);
210 	if (error == 0 && req->newptr != NULL) {
211 		if (pid == 0)
212 			randompid = 0;
213 		else if (pid == 1)
214 			/* generate a random PID modulus between 100 and 1123 */
215 			randompid = 100 + arc4random() % 1024;
216 		else if (pid < 0 || pid > pid_max - 100)
217 			/* out of range */
218 			randompid = pid_max - 100;
219 		else if (pid < 100)
220 			/* Make it reasonable */
221 			randompid = 100;
222 		else
223 			randompid = pid;
224 	}
225 	sx_xunlock(&allproc_lock);
226 	return (error);
227 }
228 
229 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
230     0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value");
231 
232 static int
233 fork_findpid(int flags)
234 {
235 	struct proc *p;
236 	int trypid;
237 	static int pidchecked = 0;
238 
239 	/*
240 	 * Requires allproc_lock in order to iterate over the list
241 	 * of processes, and proctree_lock to access p_pgrp.
242 	 */
243 	sx_assert(&allproc_lock, SX_LOCKED);
244 	sx_assert(&proctree_lock, SX_LOCKED);
245 
246 	/*
247 	 * Find an unused process ID.  We remember a range of unused IDs
248 	 * ready to use (from lastpid+1 through pidchecked-1).
249 	 *
250 	 * If RFHIGHPID is set (used during system boot), do not allocate
251 	 * low-numbered pids.
252 	 */
253 	trypid = lastpid + 1;
254 	if (flags & RFHIGHPID) {
255 		if (trypid < 10)
256 			trypid = 10;
257 	} else {
258 		if (randompid)
259 			trypid += arc4random() % randompid;
260 	}
261 retry:
262 	/*
263 	 * If the process ID prototype has wrapped around,
264 	 * restart somewhat above 0, as the low-numbered procs
265 	 * tend to include daemons that don't exit.
266 	 */
267 	if (trypid >= pid_max) {
268 		trypid = trypid % pid_max;
269 		if (trypid < 100)
270 			trypid += 100;
271 		pidchecked = 0;
272 	}
273 	if (trypid >= pidchecked) {
274 		int doingzomb = 0;
275 
276 		pidchecked = PID_MAX;
277 		/*
278 		 * Scan the active and zombie procs to check whether this pid
279 		 * is in use.  Remember the lowest pid that's greater
280 		 * than trypid, so we can avoid checking for a while.
281 		 *
282 		 * Avoid reuse of the process group id, session id or
283 		 * the reaper subtree id.  Note that for process group
284 		 * and sessions, the amount of reserved pids is
285 		 * limited by process limit.  For the subtree ids, the
286 		 * id is kept reserved only while there is a
287 		 * non-reaped process in the subtree, so amount of
288 		 * reserved pids is limited by process limit times
289 		 * two.
290 		 */
291 		p = LIST_FIRST(&allproc);
292 again:
293 		for (; p != NULL; p = LIST_NEXT(p, p_list)) {
294 			while (p->p_pid == trypid ||
295 			    p->p_reapsubtree == trypid ||
296 			    (p->p_pgrp != NULL &&
297 			    (p->p_pgrp->pg_id == trypid ||
298 			    (p->p_session != NULL &&
299 			    p->p_session->s_sid == trypid)))) {
300 				trypid++;
301 				if (trypid >= pidchecked)
302 					goto retry;
303 			}
304 			if (p->p_pid > trypid && pidchecked > p->p_pid)
305 				pidchecked = p->p_pid;
306 			if (p->p_pgrp != NULL) {
307 				if (p->p_pgrp->pg_id > trypid &&
308 				    pidchecked > p->p_pgrp->pg_id)
309 					pidchecked = p->p_pgrp->pg_id;
310 				if (p->p_session != NULL &&
311 				    p->p_session->s_sid > trypid &&
312 				    pidchecked > p->p_session->s_sid)
313 					pidchecked = p->p_session->s_sid;
314 			}
315 		}
316 		if (!doingzomb) {
317 			doingzomb = 1;
318 			p = LIST_FIRST(&zombproc);
319 			goto again;
320 		}
321 	}
322 
323 	/*
324 	 * RFHIGHPID does not mess with the lastpid counter during boot.
325 	 */
326 	if (flags & RFHIGHPID)
327 		pidchecked = 0;
328 	else
329 		lastpid = trypid;
330 
331 	return (trypid);
332 }
333 
334 static int
335 fork_norfproc(struct thread *td, int flags)
336 {
337 	int error;
338 	struct proc *p1;
339 
340 	KASSERT((flags & RFPROC) == 0,
341 	    ("fork_norfproc called with RFPROC set"));
342 	p1 = td->td_proc;
343 
344 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
345 	    (flags & (RFCFDG | RFFDG))) {
346 		PROC_LOCK(p1);
347 		if (thread_single(p1, SINGLE_BOUNDARY)) {
348 			PROC_UNLOCK(p1);
349 			return (ERESTART);
350 		}
351 		PROC_UNLOCK(p1);
352 	}
353 
354 	error = vm_forkproc(td, NULL, NULL, NULL, flags);
355 	if (error)
356 		goto fail;
357 
358 	/*
359 	 * Close all file descriptors.
360 	 */
361 	if (flags & RFCFDG) {
362 		struct filedesc *fdtmp;
363 		fdtmp = fdinit(td->td_proc->p_fd, false);
364 		fdescfree(td);
365 		p1->p_fd = fdtmp;
366 	}
367 
368 	/*
369 	 * Unshare file descriptors (from parent).
370 	 */
371 	if (flags & RFFDG)
372 		fdunshare(td);
373 
374 fail:
375 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
376 	    (flags & (RFCFDG | RFFDG))) {
377 		PROC_LOCK(p1);
378 		thread_single_end(p1, SINGLE_BOUNDARY);
379 		PROC_UNLOCK(p1);
380 	}
381 	return (error);
382 }
383 
384 static void
385 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
386     struct vmspace *vm2, struct file *fp_procdesc)
387 {
388 	struct proc *p1, *pptr;
389 	int trypid;
390 	struct filedesc *fd;
391 	struct filedesc_to_leader *fdtol;
392 	struct sigacts *newsigacts;
393 
394 	sx_assert(&proctree_lock, SX_SLOCKED);
395 	sx_assert(&allproc_lock, SX_XLOCKED);
396 
397 	p1 = td->td_proc;
398 
399 	trypid = fork_findpid(fr->fr_flags);
400 
401 	sx_sunlock(&proctree_lock);
402 
403 	p2->p_state = PRS_NEW;		/* protect against others */
404 	p2->p_pid = trypid;
405 	AUDIT_ARG_PID(p2->p_pid);
406 	LIST_INSERT_HEAD(&allproc, p2, p_list);
407 	allproc_gen++;
408 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
409 	tidhash_add(td2);
410 	PROC_LOCK(p2);
411 	PROC_LOCK(p1);
412 
413 	sx_xunlock(&allproc_lock);
414 
415 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
416 	    __rangeof(struct proc, p_startcopy, p_endcopy));
417 	pargs_hold(p2->p_args);
418 
419 	PROC_UNLOCK(p1);
420 
421 	bzero(&p2->p_startzero,
422 	    __rangeof(struct proc, p_startzero, p_endzero));
423 
424 	/* Tell the prison that we exist. */
425 	prison_proc_hold(p2->p_ucred->cr_prison);
426 
427 	PROC_UNLOCK(p2);
428 
429 	/*
430 	 * Malloc things while we don't hold any locks.
431 	 */
432 	if (fr->fr_flags & RFSIGSHARE)
433 		newsigacts = NULL;
434 	else
435 		newsigacts = sigacts_alloc();
436 
437 	/*
438 	 * Copy filedesc.
439 	 */
440 	if (fr->fr_flags & RFCFDG) {
441 		fd = fdinit(p1->p_fd, false);
442 		fdtol = NULL;
443 	} else if (fr->fr_flags & RFFDG) {
444 		fd = fdcopy(p1->p_fd);
445 		fdtol = NULL;
446 	} else {
447 		fd = fdshare(p1->p_fd);
448 		if (p1->p_fdtol == NULL)
449 			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
450 			    p1->p_leader);
451 		if ((fr->fr_flags & RFTHREAD) != 0) {
452 			/*
453 			 * Shared file descriptor table, and shared
454 			 * process leaders.
455 			 */
456 			fdtol = p1->p_fdtol;
457 			FILEDESC_XLOCK(p1->p_fd);
458 			fdtol->fdl_refcount++;
459 			FILEDESC_XUNLOCK(p1->p_fd);
460 		} else {
461 			/*
462 			 * Shared file descriptor table, and different
463 			 * process leaders.
464 			 */
465 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
466 			    p1->p_fd, p2);
467 		}
468 	}
469 	/*
470 	 * Make a proc table entry for the new process.
471 	 * Start by zeroing the section of proc that is zero-initialized,
472 	 * then copy the section that is copied directly from the parent.
473 	 */
474 
475 	PROC_LOCK(p2);
476 	PROC_LOCK(p1);
477 
478 	bzero(&td2->td_startzero,
479 	    __rangeof(struct thread, td_startzero, td_endzero));
480 
481 	bcopy(&td->td_startcopy, &td2->td_startcopy,
482 	    __rangeof(struct thread, td_startcopy, td_endcopy));
483 
484 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
485 	td2->td_sigstk = td->td_sigstk;
486 	td2->td_flags = TDF_INMEM;
487 	td2->td_lend_user_pri = PRI_MAX;
488 
489 #ifdef VIMAGE
490 	td2->td_vnet = NULL;
491 	td2->td_vnet_lpush = NULL;
492 #endif
493 
494 	/*
495 	 * Allow the scheduler to initialize the child.
496 	 */
497 	thread_lock(td);
498 	sched_fork(td, td2);
499 	thread_unlock(td);
500 
501 	/*
502 	 * Duplicate sub-structures as needed.
503 	 * Increase reference counts on shared objects.
504 	 */
505 	p2->p_flag = P_INMEM;
506 	p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP);
507 	p2->p_swtick = ticks;
508 	if (p1->p_flag & P_PROFIL)
509 		startprofclock(p2);
510 
511 	/*
512 	 * Whilst the proc lock is held, copy the VM domain data out
513 	 * using the VM domain method.
514 	 */
515 	vm_domain_policy_init(&p2->p_vm_dom_policy);
516 	vm_domain_policy_localcopy(&p2->p_vm_dom_policy,
517 	    &p1->p_vm_dom_policy);
518 
519 	if (fr->fr_flags & RFSIGSHARE) {
520 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
521 	} else {
522 		sigacts_copy(newsigacts, p1->p_sigacts);
523 		p2->p_sigacts = newsigacts;
524 	}
525 
526 	if (fr->fr_flags & RFTSIGZMB)
527 	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
528 	else if (fr->fr_flags & RFLINUXTHPN)
529 	        p2->p_sigparent = SIGUSR1;
530 	else
531 	        p2->p_sigparent = SIGCHLD;
532 
533 	p2->p_textvp = p1->p_textvp;
534 	p2->p_fd = fd;
535 	p2->p_fdtol = fdtol;
536 
537 	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
538 		p2->p_flag |= P_PROTECTED;
539 		p2->p_flag2 |= P2_INHERIT_PROTECTED;
540 	}
541 
542 	/*
543 	 * p_limit is copy-on-write.  Bump its refcount.
544 	 */
545 	lim_fork(p1, p2);
546 
547 	thread_cow_get_proc(td2, p2);
548 
549 	pstats_fork(p1->p_stats, p2->p_stats);
550 
551 	PROC_UNLOCK(p1);
552 	PROC_UNLOCK(p2);
553 
554 	/* Bump references to the text vnode (for procfs). */
555 	if (p2->p_textvp)
556 		vrefact(p2->p_textvp);
557 
558 	/*
559 	 * Set up linkage for kernel based threading.
560 	 */
561 	if ((fr->fr_flags & RFTHREAD) != 0) {
562 		mtx_lock(&ppeers_lock);
563 		p2->p_peers = p1->p_peers;
564 		p1->p_peers = p2;
565 		p2->p_leader = p1->p_leader;
566 		mtx_unlock(&ppeers_lock);
567 		PROC_LOCK(p1->p_leader);
568 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
569 			PROC_UNLOCK(p1->p_leader);
570 			/*
571 			 * The task leader is exiting, so process p1 is
572 			 * going to be killed shortly.  Since p1 obviously
573 			 * isn't dead yet, we know that the leader is either
574 			 * sending SIGKILL's to all the processes in this
575 			 * task or is sleeping waiting for all the peers to
576 			 * exit.  We let p1 complete the fork, but we need
577 			 * to go ahead and kill the new process p2 since
578 			 * the task leader may not get a chance to send
579 			 * SIGKILL to it.  We leave it on the list so that
580 			 * the task leader will wait for this new process
581 			 * to commit suicide.
582 			 */
583 			PROC_LOCK(p2);
584 			kern_psignal(p2, SIGKILL);
585 			PROC_UNLOCK(p2);
586 		} else
587 			PROC_UNLOCK(p1->p_leader);
588 	} else {
589 		p2->p_peers = NULL;
590 		p2->p_leader = p2;
591 	}
592 
593 	sx_xlock(&proctree_lock);
594 	PGRP_LOCK(p1->p_pgrp);
595 	PROC_LOCK(p2);
596 	PROC_LOCK(p1);
597 
598 	/*
599 	 * Preserve some more flags in subprocess.  P_PROFIL has already
600 	 * been preserved.
601 	 */
602 	p2->p_flag |= p1->p_flag & P_SUGID;
603 	td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING;
604 	SESS_LOCK(p1->p_session);
605 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
606 		p2->p_flag |= P_CONTROLT;
607 	SESS_UNLOCK(p1->p_session);
608 	if (fr->fr_flags & RFPPWAIT)
609 		p2->p_flag |= P_PPWAIT;
610 
611 	p2->p_pgrp = p1->p_pgrp;
612 	LIST_INSERT_AFTER(p1, p2, p_pglist);
613 	PGRP_UNLOCK(p1->p_pgrp);
614 	LIST_INIT(&p2->p_children);
615 	LIST_INIT(&p2->p_orphans);
616 
617 	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
618 
619 	/*
620 	 * If PF_FORK is set, the child process inherits the
621 	 * procfs ioctl flags from its parent.
622 	 */
623 	if (p1->p_pfsflags & PF_FORK) {
624 		p2->p_stops = p1->p_stops;
625 		p2->p_pfsflags = p1->p_pfsflags;
626 	}
627 
628 	/*
629 	 * This begins the section where we must prevent the parent
630 	 * from being swapped.
631 	 */
632 	_PHOLD(p1);
633 	PROC_UNLOCK(p1);
634 
635 	/*
636 	 * Attach the new process to its parent.
637 	 *
638 	 * If RFNOWAIT is set, the newly created process becomes a child
639 	 * of init.  This effectively disassociates the child from the
640 	 * parent.
641 	 */
642 	if ((fr->fr_flags & RFNOWAIT) != 0) {
643 		pptr = p1->p_reaper;
644 		p2->p_reaper = pptr;
645 	} else {
646 		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
647 		    p1 : p1->p_reaper;
648 		pptr = p1;
649 	}
650 	p2->p_pptr = pptr;
651 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
652 	LIST_INIT(&p2->p_reaplist);
653 	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
654 	if (p2->p_reaper == p1)
655 		p2->p_reapsubtree = p2->p_pid;
656 	sx_xunlock(&proctree_lock);
657 
658 	/* Inform accounting that we have forked. */
659 	p2->p_acflag = AFORK;
660 	PROC_UNLOCK(p2);
661 
662 #ifdef KTRACE
663 	ktrprocfork(p1, p2);
664 #endif
665 
666 	/*
667 	 * Finish creating the child process.  It will return via a different
668 	 * execution path later.  (ie: directly into user mode)
669 	 */
670 	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
671 
672 	if (fr->fr_flags == (RFFDG | RFPROC)) {
673 		VM_CNT_INC(v_forks);
674 		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
675 		    p2->p_vmspace->vm_ssize);
676 	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
677 		VM_CNT_INC(v_vforks);
678 		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
679 		    p2->p_vmspace->vm_ssize);
680 	} else if (p1 == &proc0) {
681 		VM_CNT_INC(v_kthreads);
682 		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
683 		    p2->p_vmspace->vm_ssize);
684 	} else {
685 		VM_CNT_INC(v_rforks);
686 		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
687 		    p2->p_vmspace->vm_ssize);
688 	}
689 
690 	/*
691 	 * Associate the process descriptor with the process before anything
692 	 * can happen that might cause that process to need the descriptor.
693 	 * However, don't do this until after fork(2) can no longer fail.
694 	 */
695 	if (fr->fr_flags & RFPROCDESC)
696 		procdesc_new(p2, fr->fr_pd_flags);
697 
698 	/*
699 	 * Both processes are set up, now check if any loadable modules want
700 	 * to adjust anything.
701 	 */
702 	EVENTHANDLER_INVOKE(process_fork, p1, p2, fr->fr_flags);
703 
704 	/*
705 	 * Set the child start time and mark the process as being complete.
706 	 */
707 	PROC_LOCK(p2);
708 	PROC_LOCK(p1);
709 	microuptime(&p2->p_stats->p_start);
710 	PROC_SLOCK(p2);
711 	p2->p_state = PRS_NORMAL;
712 	PROC_SUNLOCK(p2);
713 
714 #ifdef KDTRACE_HOOKS
715 	/*
716 	 * Tell the DTrace fasttrap provider about the new process so that any
717 	 * tracepoints inherited from the parent can be removed. We have to do
718 	 * this only after p_state is PRS_NORMAL since the fasttrap module will
719 	 * use pfind() later on.
720 	 */
721 	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
722 		dtrace_fasttrap_fork(p1, p2);
723 #endif
724 	/*
725 	 * Hold the process so that it cannot exit after we make it runnable,
726 	 * but before we wait for the debugger.
727 	 */
728 	_PHOLD(p2);
729 	if (p1->p_ptevents & PTRACE_FORK) {
730 		/*
731 		 * Arrange for debugger to receive the fork event.
732 		 *
733 		 * We can report PL_FLAG_FORKED regardless of
734 		 * P_FOLLOWFORK settings, but it does not make a sense
735 		 * for runaway child.
736 		 */
737 		td->td_dbgflags |= TDB_FORK;
738 		td->td_dbg_forked = p2->p_pid;
739 		td2->td_dbgflags |= TDB_STOPATFORK;
740 	}
741 	if (fr->fr_flags & RFPPWAIT) {
742 		td->td_pflags |= TDP_RFPPWAIT;
743 		td->td_rfppwait_p = p2;
744 		td->td_dbgflags |= TDB_VFORK;
745 	}
746 	PROC_UNLOCK(p2);
747 
748 	/*
749 	 * Now can be swapped.
750 	 */
751 	_PRELE(p1);
752 	PROC_UNLOCK(p1);
753 
754 	/*
755 	 * Tell any interested parties about the new process.
756 	 */
757 	knote_fork(p1->p_klist, p2->p_pid);
758 	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
759 
760 	if (fr->fr_flags & RFPROCDESC) {
761 		procdesc_finit(p2->p_procdesc, fp_procdesc);
762 		fdrop(fp_procdesc, td);
763 	}
764 
765 	if ((fr->fr_flags & RFSTOPPED) == 0) {
766 		/*
767 		 * If RFSTOPPED not requested, make child runnable and
768 		 * add to run queue.
769 		 */
770 		thread_lock(td2);
771 		TD_SET_CAN_RUN(td2);
772 		sched_add(td2, SRQ_BORING);
773 		thread_unlock(td2);
774 		if (fr->fr_pidp != NULL)
775 			*fr->fr_pidp = p2->p_pid;
776 	} else {
777 		*fr->fr_procp = p2;
778 	}
779 
780 	PROC_LOCK(p2);
781 	/*
782 	 * Wait until debugger is attached to child.
783 	 */
784 	while (td2->td_proc == p2 && (td2->td_dbgflags & TDB_STOPATFORK) != 0)
785 		cv_wait(&p2->p_dbgwait, &p2->p_mtx);
786 	_PRELE(p2);
787 	racct_proc_fork_done(p2);
788 	PROC_UNLOCK(p2);
789 }
790 
791 int
792 fork1(struct thread *td, struct fork_req *fr)
793 {
794 	struct proc *p1, *newproc;
795 	struct thread *td2;
796 	struct vmspace *vm2;
797 	struct file *fp_procdesc;
798 	vm_ooffset_t mem_charged;
799 	int error, nprocs_new, ok;
800 	static int curfail;
801 	static struct timeval lastfail;
802 	int flags, pages;
803 
804 	flags = fr->fr_flags;
805 	pages = fr->fr_pages;
806 
807 	if ((flags & RFSTOPPED) != 0)
808 		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
809 	else
810 		MPASS(fr->fr_procp == NULL);
811 
812 	/* Check for the undefined or unimplemented flags. */
813 	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
814 		return (EINVAL);
815 
816 	/* Signal value requires RFTSIGZMB. */
817 	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
818 		return (EINVAL);
819 
820 	/* Can't copy and clear. */
821 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
822 		return (EINVAL);
823 
824 	/* Check the validity of the signal number. */
825 	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
826 		return (EINVAL);
827 
828 	if ((flags & RFPROCDESC) != 0) {
829 		/* Can't not create a process yet get a process descriptor. */
830 		if ((flags & RFPROC) == 0)
831 			return (EINVAL);
832 
833 		/* Must provide a place to put a procdesc if creating one. */
834 		if (fr->fr_pd_fd == NULL)
835 			return (EINVAL);
836 
837 		/* Check if we are using supported flags. */
838 		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
839 			return (EINVAL);
840 	}
841 
842 	p1 = td->td_proc;
843 
844 	/*
845 	 * Here we don't create a new process, but we divorce
846 	 * certain parts of a process from itself.
847 	 */
848 	if ((flags & RFPROC) == 0) {
849 		if (fr->fr_procp != NULL)
850 			*fr->fr_procp = NULL;
851 		else if (fr->fr_pidp != NULL)
852 			*fr->fr_pidp = 0;
853 		return (fork_norfproc(td, flags));
854 	}
855 
856 	fp_procdesc = NULL;
857 	newproc = NULL;
858 	vm2 = NULL;
859 
860 	/*
861 	 * Increment the nprocs resource before allocations occur.
862 	 * Although process entries are dynamically created, we still
863 	 * keep a global limit on the maximum number we will
864 	 * create. There are hard-limits as to the number of processes
865 	 * that can run, established by the KVA and memory usage for
866 	 * the process data.
867 	 *
868 	 * Don't allow a nonprivileged user to use the last ten
869 	 * processes; don't let root exceed the limit.
870 	 */
871 	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
872 	if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred,
873 	    PRIV_MAXPROC, 0) != 0) || nprocs_new >= maxproc) {
874 		error = EAGAIN;
875 		sx_xlock(&allproc_lock);
876 		if (ppsratecheck(&lastfail, &curfail, 1)) {
877 			printf("maxproc limit exceeded by uid %u (pid %d); "
878 			    "see tuning(7) and login.conf(5)\n",
879 			    td->td_ucred->cr_ruid, p1->p_pid);
880 		}
881 		sx_xunlock(&allproc_lock);
882 		goto fail2;
883 	}
884 
885 	/*
886 	 * If required, create a process descriptor in the parent first; we
887 	 * will abandon it if something goes wrong. We don't finit() until
888 	 * later.
889 	 */
890 	if (flags & RFPROCDESC) {
891 		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
892 		    fr->fr_pd_flags, fr->fr_pd_fcaps);
893 		if (error != 0)
894 			goto fail2;
895 	}
896 
897 	mem_charged = 0;
898 	if (pages == 0)
899 		pages = kstack_pages;
900 	/* Allocate new proc. */
901 	newproc = uma_zalloc(proc_zone, M_WAITOK);
902 	td2 = FIRST_THREAD_IN_PROC(newproc);
903 	if (td2 == NULL) {
904 		td2 = thread_alloc(pages);
905 		if (td2 == NULL) {
906 			error = ENOMEM;
907 			goto fail2;
908 		}
909 		proc_linkup(newproc, td2);
910 	} else {
911 		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
912 			if (td2->td_kstack != 0)
913 				vm_thread_dispose(td2);
914 			if (!thread_alloc_stack(td2, pages)) {
915 				error = ENOMEM;
916 				goto fail2;
917 			}
918 		}
919 	}
920 
921 	if ((flags & RFMEM) == 0) {
922 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
923 		if (vm2 == NULL) {
924 			error = ENOMEM;
925 			goto fail2;
926 		}
927 		if (!swap_reserve(mem_charged)) {
928 			/*
929 			 * The swap reservation failed. The accounting
930 			 * from the entries of the copied vm2 will be
931 			 * subtracted in vmspace_free(), so force the
932 			 * reservation there.
933 			 */
934 			swap_reserve_force(mem_charged);
935 			error = ENOMEM;
936 			goto fail2;
937 		}
938 	} else
939 		vm2 = NULL;
940 
941 	/*
942 	 * XXX: This is ugly; when we copy resource usage, we need to bump
943 	 *      per-cred resource counters.
944 	 */
945 	proc_set_cred_init(newproc, crhold(td->td_ucred));
946 
947 	/*
948 	 * Initialize resource accounting for the child process.
949 	 */
950 	error = racct_proc_fork(p1, newproc);
951 	if (error != 0) {
952 		error = EAGAIN;
953 		goto fail1;
954 	}
955 
956 #ifdef MAC
957 	mac_proc_init(newproc);
958 #endif
959 	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
960 	STAILQ_INIT(&newproc->p_ktr);
961 
962 	/* We have to lock the process tree while we look for a pid. */
963 	sx_slock(&proctree_lock);
964 	sx_xlock(&allproc_lock);
965 
966 	/*
967 	 * Increment the count of procs running with this uid. Don't allow
968 	 * a nonprivileged user to exceed their current limit.
969 	 *
970 	 * XXXRW: Can we avoid privilege here if it's not needed?
971 	 */
972 	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
973 	if (error == 0)
974 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
975 	else {
976 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
977 		    lim_cur(td, RLIMIT_NPROC));
978 	}
979 	if (ok) {
980 		do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
981 		return (0);
982 	}
983 
984 	error = EAGAIN;
985 	sx_sunlock(&proctree_lock);
986 	sx_xunlock(&allproc_lock);
987 #ifdef MAC
988 	mac_proc_destroy(newproc);
989 #endif
990 	racct_proc_exit(newproc);
991 fail1:
992 	crfree(newproc->p_ucred);
993 	newproc->p_ucred = NULL;
994 fail2:
995 	if (vm2 != NULL)
996 		vmspace_free(vm2);
997 	uma_zfree(proc_zone, newproc);
998 	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
999 		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1000 		fdrop(fp_procdesc, td);
1001 	}
1002 	atomic_add_int(&nprocs, -1);
1003 	pause("fork", hz / 2);
1004 	return (error);
1005 }
1006 
1007 /*
1008  * Handle the return of a child process from fork1().  This function
1009  * is called from the MD fork_trampoline() entry point.
1010  */
1011 void
1012 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1013     struct trapframe *frame)
1014 {
1015 	struct proc *p;
1016 	struct thread *td;
1017 	struct thread *dtd;
1018 
1019 	td = curthread;
1020 	p = td->td_proc;
1021 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1022 
1023 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1024 	    td, td_get_sched(td), p->p_pid, td->td_name);
1025 
1026 	sched_fork_exit(td);
1027 	/*
1028 	* Processes normally resume in mi_switch() after being
1029 	* cpu_switch()'ed to, but when children start up they arrive here
1030 	* instead, so we must do much the same things as mi_switch() would.
1031 	*/
1032 	if ((dtd = PCPU_GET(deadthread))) {
1033 		PCPU_SET(deadthread, NULL);
1034 		thread_stash(dtd);
1035 	}
1036 	thread_unlock(td);
1037 
1038 	/*
1039 	 * cpu_fork_kthread_handler intercepts this function call to
1040 	 * have this call a non-return function to stay in kernel mode.
1041 	 * initproc has its own fork handler, but it does return.
1042 	 */
1043 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1044 	callout(arg, frame);
1045 
1046 	/*
1047 	 * Check if a kernel thread misbehaved and returned from its main
1048 	 * function.
1049 	 */
1050 	if (p->p_flag & P_KPROC) {
1051 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1052 		    td->td_name, p->p_pid);
1053 		kthread_exit();
1054 	}
1055 	mtx_assert(&Giant, MA_NOTOWNED);
1056 
1057 	if (p->p_sysent->sv_schedtail != NULL)
1058 		(p->p_sysent->sv_schedtail)(td);
1059 	td->td_pflags &= ~TDP_FORKING;
1060 }
1061 
1062 /*
1063  * Simplified back end of syscall(), used when returning from fork()
1064  * directly into user mode.  This function is passed in to fork_exit()
1065  * as the first parameter and is called when returning to a new
1066  * userland process.
1067  */
1068 void
1069 fork_return(struct thread *td, struct trapframe *frame)
1070 {
1071 	struct proc *p, *dbg;
1072 
1073 	p = td->td_proc;
1074 	if (td->td_dbgflags & TDB_STOPATFORK) {
1075 		sx_xlock(&proctree_lock);
1076 		PROC_LOCK(p);
1077 		if (p->p_pptr->p_ptevents & PTRACE_FORK) {
1078 			/*
1079 			 * If debugger still wants auto-attach for the
1080 			 * parent's children, do it now.
1081 			 */
1082 			dbg = p->p_pptr->p_pptr;
1083 			proc_set_traced(p, true);
1084 			CTR2(KTR_PTRACE,
1085 		    "fork_return: attaching to new child pid %d: oppid %d",
1086 			    p->p_pid, p->p_oppid);
1087 			proc_reparent(p, dbg);
1088 			sx_xunlock(&proctree_lock);
1089 			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1090 			ptracestop(td, SIGSTOP, NULL);
1091 			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1092 		} else {
1093 			/*
1094 			 * ... otherwise clear the request.
1095 			 */
1096 			sx_xunlock(&proctree_lock);
1097 			td->td_dbgflags &= ~TDB_STOPATFORK;
1098 			cv_broadcast(&p->p_dbgwait);
1099 		}
1100 		PROC_UNLOCK(p);
1101 	} else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
1102  		/*
1103 		 * This is the start of a new thread in a traced
1104 		 * process.  Report a system call exit event.
1105 		 */
1106 		PROC_LOCK(p);
1107 		td->td_dbgflags |= TDB_SCX;
1108 		_STOPEVENT(p, S_SCX, td->td_sa.code);
1109 		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1110 		    (td->td_dbgflags & TDB_BORN) != 0)
1111 			ptracestop(td, SIGTRAP, NULL);
1112 		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1113 		PROC_UNLOCK(p);
1114 	}
1115 
1116 	userret(td, frame);
1117 
1118 #ifdef KTRACE
1119 	if (KTRPOINT(td, KTR_SYSRET))
1120 		ktrsysret(SYS_fork, 0, 0);
1121 #endif
1122 }
1123