xref: /freebsd/sys/kern/kern_fork.c (revision 193d9e768ba63fcfb187cfd17f461f7d41345048)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_ktrace.h"
41 #include "opt_kstack_pages.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysproto.h>
46 #include <sys/eventhandler.h>
47 #include <sys/fcntl.h>
48 #include <sys/filedesc.h>
49 #include <sys/jail.h>
50 #include <sys/kernel.h>
51 #include <sys/kthread.h>
52 #include <sys/sysctl.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mutex.h>
56 #include <sys/priv.h>
57 #include <sys/proc.h>
58 #include <sys/procdesc.h>
59 #include <sys/pioctl.h>
60 #include <sys/ptrace.h>
61 #include <sys/racct.h>
62 #include <sys/resourcevar.h>
63 #include <sys/sched.h>
64 #include <sys/syscall.h>
65 #include <sys/vmmeter.h>
66 #include <sys/vnode.h>
67 #include <sys/acct.h>
68 #include <sys/ktr.h>
69 #include <sys/ktrace.h>
70 #include <sys/unistd.h>
71 #include <sys/sdt.h>
72 #include <sys/sx.h>
73 #include <sys/sysent.h>
74 #include <sys/signalvar.h>
75 
76 #include <security/audit/audit.h>
77 #include <security/mac/mac_framework.h>
78 
79 #include <vm/vm.h>
80 #include <vm/pmap.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_extern.h>
83 #include <vm/uma.h>
84 #include <vm/vm_domain.h>
85 
86 #ifdef KDTRACE_HOOKS
87 #include <sys/dtrace_bsd.h>
88 dtrace_fork_func_t	dtrace_fasttrap_fork;
89 #endif
90 
91 SDT_PROVIDER_DECLARE(proc);
92 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
93 
94 #ifndef _SYS_SYSPROTO_H_
95 struct fork_args {
96 	int     dummy;
97 };
98 #endif
99 
100 /* ARGSUSED */
101 int
102 sys_fork(struct thread *td, struct fork_args *uap)
103 {
104 	struct fork_req fr;
105 	int error, pid;
106 
107 	bzero(&fr, sizeof(fr));
108 	fr.fr_flags = RFFDG | RFPROC;
109 	fr.fr_pidp = &pid;
110 	error = fork1(td, &fr);
111 	if (error == 0) {
112 		td->td_retval[0] = pid;
113 		td->td_retval[1] = 0;
114 	}
115 	return (error);
116 }
117 
118 /* ARGUSED */
119 int
120 sys_pdfork(struct thread *td, struct pdfork_args *uap)
121 {
122 	struct fork_req fr;
123 	int error, fd, pid;
124 
125 	bzero(&fr, sizeof(fr));
126 	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
127 	fr.fr_pidp = &pid;
128 	fr.fr_pd_fd = &fd;
129 	fr.fr_pd_flags = uap->flags;
130 	/*
131 	 * It is necessary to return fd by reference because 0 is a valid file
132 	 * descriptor number, and the child needs to be able to distinguish
133 	 * itself from the parent using the return value.
134 	 */
135 	error = fork1(td, &fr);
136 	if (error == 0) {
137 		td->td_retval[0] = pid;
138 		td->td_retval[1] = 0;
139 		error = copyout(&fd, uap->fdp, sizeof(fd));
140 	}
141 	return (error);
142 }
143 
144 /* ARGSUSED */
145 int
146 sys_vfork(struct thread *td, struct vfork_args *uap)
147 {
148 	struct fork_req fr;
149 	int error, pid;
150 
151 	bzero(&fr, sizeof(fr));
152 	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
153 	fr.fr_pidp = &pid;
154 	error = fork1(td, &fr);
155 	if (error == 0) {
156 		td->td_retval[0] = pid;
157 		td->td_retval[1] = 0;
158 	}
159 	return (error);
160 }
161 
162 int
163 sys_rfork(struct thread *td, struct rfork_args *uap)
164 {
165 	struct fork_req fr;
166 	int error, pid;
167 
168 	/* Don't allow kernel-only flags. */
169 	if ((uap->flags & RFKERNELONLY) != 0)
170 		return (EINVAL);
171 
172 	AUDIT_ARG_FFLAGS(uap->flags);
173 	bzero(&fr, sizeof(fr));
174 	fr.fr_flags = uap->flags;
175 	fr.fr_pidp = &pid;
176 	error = fork1(td, &fr);
177 	if (error == 0) {
178 		td->td_retval[0] = pid;
179 		td->td_retval[1] = 0;
180 	}
181 	return (error);
182 }
183 
184 int	nprocs = 1;		/* process 0 */
185 int	lastpid = 0;
186 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
187     "Last used PID");
188 
189 /*
190  * Random component to lastpid generation.  We mix in a random factor to make
191  * it a little harder to predict.  We sanity check the modulus value to avoid
192  * doing it in critical paths.  Don't let it be too small or we pointlessly
193  * waste randomness entropy, and don't let it be impossibly large.  Using a
194  * modulus that is too big causes a LOT more process table scans and slows
195  * down fork processing as the pidchecked caching is defeated.
196  */
197 static int randompid = 0;
198 
199 static int
200 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
201 {
202 	int error, pid;
203 
204 	error = sysctl_wire_old_buffer(req, sizeof(int));
205 	if (error != 0)
206 		return(error);
207 	sx_xlock(&allproc_lock);
208 	pid = randompid;
209 	error = sysctl_handle_int(oidp, &pid, 0, req);
210 	if (error == 0 && req->newptr != NULL) {
211 		if (pid < 0 || pid > pid_max - 100)	/* out of range */
212 			pid = pid_max - 100;
213 		else if (pid < 2)			/* NOP */
214 			pid = 0;
215 		else if (pid < 100)			/* Make it reasonable */
216 			pid = 100;
217 		randompid = pid;
218 	}
219 	sx_xunlock(&allproc_lock);
220 	return (error);
221 }
222 
223 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
224     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
225 
226 static int
227 fork_findpid(int flags)
228 {
229 	struct proc *p;
230 	int trypid;
231 	static int pidchecked = 0;
232 
233 	/*
234 	 * Requires allproc_lock in order to iterate over the list
235 	 * of processes, and proctree_lock to access p_pgrp.
236 	 */
237 	sx_assert(&allproc_lock, SX_LOCKED);
238 	sx_assert(&proctree_lock, SX_LOCKED);
239 
240 	/*
241 	 * Find an unused process ID.  We remember a range of unused IDs
242 	 * ready to use (from lastpid+1 through pidchecked-1).
243 	 *
244 	 * If RFHIGHPID is set (used during system boot), do not allocate
245 	 * low-numbered pids.
246 	 */
247 	trypid = lastpid + 1;
248 	if (flags & RFHIGHPID) {
249 		if (trypid < 10)
250 			trypid = 10;
251 	} else {
252 		if (randompid)
253 			trypid += arc4random() % randompid;
254 	}
255 retry:
256 	/*
257 	 * If the process ID prototype has wrapped around,
258 	 * restart somewhat above 0, as the low-numbered procs
259 	 * tend to include daemons that don't exit.
260 	 */
261 	if (trypid >= pid_max) {
262 		trypid = trypid % pid_max;
263 		if (trypid < 100)
264 			trypid += 100;
265 		pidchecked = 0;
266 	}
267 	if (trypid >= pidchecked) {
268 		int doingzomb = 0;
269 
270 		pidchecked = PID_MAX;
271 		/*
272 		 * Scan the active and zombie procs to check whether this pid
273 		 * is in use.  Remember the lowest pid that's greater
274 		 * than trypid, so we can avoid checking for a while.
275 		 *
276 		 * Avoid reuse of the process group id, session id or
277 		 * the reaper subtree id.  Note that for process group
278 		 * and sessions, the amount of reserved pids is
279 		 * limited by process limit.  For the subtree ids, the
280 		 * id is kept reserved only while there is a
281 		 * non-reaped process in the subtree, so amount of
282 		 * reserved pids is limited by process limit times
283 		 * two.
284 		 */
285 		p = LIST_FIRST(&allproc);
286 again:
287 		for (; p != NULL; p = LIST_NEXT(p, p_list)) {
288 			while (p->p_pid == trypid ||
289 			    p->p_reapsubtree == trypid ||
290 			    (p->p_pgrp != NULL &&
291 			    (p->p_pgrp->pg_id == trypid ||
292 			    (p->p_session != NULL &&
293 			    p->p_session->s_sid == trypid)))) {
294 				trypid++;
295 				if (trypid >= pidchecked)
296 					goto retry;
297 			}
298 			if (p->p_pid > trypid && pidchecked > p->p_pid)
299 				pidchecked = p->p_pid;
300 			if (p->p_pgrp != NULL) {
301 				if (p->p_pgrp->pg_id > trypid &&
302 				    pidchecked > p->p_pgrp->pg_id)
303 					pidchecked = p->p_pgrp->pg_id;
304 				if (p->p_session != NULL &&
305 				    p->p_session->s_sid > trypid &&
306 				    pidchecked > p->p_session->s_sid)
307 					pidchecked = p->p_session->s_sid;
308 			}
309 		}
310 		if (!doingzomb) {
311 			doingzomb = 1;
312 			p = LIST_FIRST(&zombproc);
313 			goto again;
314 		}
315 	}
316 
317 	/*
318 	 * RFHIGHPID does not mess with the lastpid counter during boot.
319 	 */
320 	if (flags & RFHIGHPID)
321 		pidchecked = 0;
322 	else
323 		lastpid = trypid;
324 
325 	return (trypid);
326 }
327 
328 static int
329 fork_norfproc(struct thread *td, int flags)
330 {
331 	int error;
332 	struct proc *p1;
333 
334 	KASSERT((flags & RFPROC) == 0,
335 	    ("fork_norfproc called with RFPROC set"));
336 	p1 = td->td_proc;
337 
338 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
339 	    (flags & (RFCFDG | RFFDG))) {
340 		PROC_LOCK(p1);
341 		if (thread_single(p1, SINGLE_BOUNDARY)) {
342 			PROC_UNLOCK(p1);
343 			return (ERESTART);
344 		}
345 		PROC_UNLOCK(p1);
346 	}
347 
348 	error = vm_forkproc(td, NULL, NULL, NULL, flags);
349 	if (error)
350 		goto fail;
351 
352 	/*
353 	 * Close all file descriptors.
354 	 */
355 	if (flags & RFCFDG) {
356 		struct filedesc *fdtmp;
357 		fdtmp = fdinit(td->td_proc->p_fd, false);
358 		fdescfree(td);
359 		p1->p_fd = fdtmp;
360 	}
361 
362 	/*
363 	 * Unshare file descriptors (from parent).
364 	 */
365 	if (flags & RFFDG)
366 		fdunshare(td);
367 
368 fail:
369 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
370 	    (flags & (RFCFDG | RFFDG))) {
371 		PROC_LOCK(p1);
372 		thread_single_end(p1, SINGLE_BOUNDARY);
373 		PROC_UNLOCK(p1);
374 	}
375 	return (error);
376 }
377 
378 static void
379 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
380     struct vmspace *vm2, struct file *fp_procdesc)
381 {
382 	struct proc *p1, *pptr;
383 	int trypid;
384 	struct filedesc *fd;
385 	struct filedesc_to_leader *fdtol;
386 	struct sigacts *newsigacts;
387 
388 	sx_assert(&proctree_lock, SX_SLOCKED);
389 	sx_assert(&allproc_lock, SX_XLOCKED);
390 
391 	p1 = td->td_proc;
392 
393 	trypid = fork_findpid(fr->fr_flags);
394 
395 	sx_sunlock(&proctree_lock);
396 
397 	p2->p_state = PRS_NEW;		/* protect against others */
398 	p2->p_pid = trypid;
399 	AUDIT_ARG_PID(p2->p_pid);
400 	LIST_INSERT_HEAD(&allproc, p2, p_list);
401 	allproc_gen++;
402 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
403 	tidhash_add(td2);
404 	PROC_LOCK(p2);
405 	PROC_LOCK(p1);
406 
407 	sx_xunlock(&allproc_lock);
408 
409 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
410 	    __rangeof(struct proc, p_startcopy, p_endcopy));
411 	pargs_hold(p2->p_args);
412 
413 	PROC_UNLOCK(p1);
414 
415 	bzero(&p2->p_startzero,
416 	    __rangeof(struct proc, p_startzero, p_endzero));
417 
418 	/* Tell the prison that we exist. */
419 	prison_proc_hold(p2->p_ucred->cr_prison);
420 
421 	PROC_UNLOCK(p2);
422 
423 	/*
424 	 * Malloc things while we don't hold any locks.
425 	 */
426 	if (fr->fr_flags & RFSIGSHARE)
427 		newsigacts = NULL;
428 	else
429 		newsigacts = sigacts_alloc();
430 
431 	/*
432 	 * Copy filedesc.
433 	 */
434 	if (fr->fr_flags & RFCFDG) {
435 		fd = fdinit(p1->p_fd, false);
436 		fdtol = NULL;
437 	} else if (fr->fr_flags & RFFDG) {
438 		fd = fdcopy(p1->p_fd);
439 		fdtol = NULL;
440 	} else {
441 		fd = fdshare(p1->p_fd);
442 		if (p1->p_fdtol == NULL)
443 			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
444 			    p1->p_leader);
445 		if ((fr->fr_flags & RFTHREAD) != 0) {
446 			/*
447 			 * Shared file descriptor table, and shared
448 			 * process leaders.
449 			 */
450 			fdtol = p1->p_fdtol;
451 			FILEDESC_XLOCK(p1->p_fd);
452 			fdtol->fdl_refcount++;
453 			FILEDESC_XUNLOCK(p1->p_fd);
454 		} else {
455 			/*
456 			 * Shared file descriptor table, and different
457 			 * process leaders.
458 			 */
459 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
460 			    p1->p_fd, p2);
461 		}
462 	}
463 	/*
464 	 * Make a proc table entry for the new process.
465 	 * Start by zeroing the section of proc that is zero-initialized,
466 	 * then copy the section that is copied directly from the parent.
467 	 */
468 
469 	PROC_LOCK(p2);
470 	PROC_LOCK(p1);
471 
472 	bzero(&td2->td_startzero,
473 	    __rangeof(struct thread, td_startzero, td_endzero));
474 
475 	bcopy(&td->td_startcopy, &td2->td_startcopy,
476 	    __rangeof(struct thread, td_startcopy, td_endcopy));
477 
478 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
479 	td2->td_sigstk = td->td_sigstk;
480 	td2->td_flags = TDF_INMEM;
481 	td2->td_lend_user_pri = PRI_MAX;
482 
483 #ifdef VIMAGE
484 	td2->td_vnet = NULL;
485 	td2->td_vnet_lpush = NULL;
486 #endif
487 
488 	/*
489 	 * Allow the scheduler to initialize the child.
490 	 */
491 	thread_lock(td);
492 	sched_fork(td, td2);
493 	thread_unlock(td);
494 
495 	/*
496 	 * Duplicate sub-structures as needed.
497 	 * Increase reference counts on shared objects.
498 	 */
499 	p2->p_flag = P_INMEM;
500 	p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP);
501 	p2->p_swtick = ticks;
502 	if (p1->p_flag & P_PROFIL)
503 		startprofclock(p2);
504 
505 	/*
506 	 * Whilst the proc lock is held, copy the VM domain data out
507 	 * using the VM domain method.
508 	 */
509 	vm_domain_policy_init(&p2->p_vm_dom_policy);
510 	vm_domain_policy_localcopy(&p2->p_vm_dom_policy,
511 	    &p1->p_vm_dom_policy);
512 
513 	if (fr->fr_flags & RFSIGSHARE) {
514 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
515 	} else {
516 		sigacts_copy(newsigacts, p1->p_sigacts);
517 		p2->p_sigacts = newsigacts;
518 	}
519 
520 	if (fr->fr_flags & RFTSIGZMB)
521 	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
522 	else if (fr->fr_flags & RFLINUXTHPN)
523 	        p2->p_sigparent = SIGUSR1;
524 	else
525 	        p2->p_sigparent = SIGCHLD;
526 
527 	p2->p_textvp = p1->p_textvp;
528 	p2->p_fd = fd;
529 	p2->p_fdtol = fdtol;
530 
531 	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
532 		p2->p_flag |= P_PROTECTED;
533 		p2->p_flag2 |= P2_INHERIT_PROTECTED;
534 	}
535 
536 	/*
537 	 * p_limit is copy-on-write.  Bump its refcount.
538 	 */
539 	lim_fork(p1, p2);
540 
541 	thread_cow_get_proc(td2, p2);
542 
543 	pstats_fork(p1->p_stats, p2->p_stats);
544 
545 	PROC_UNLOCK(p1);
546 	PROC_UNLOCK(p2);
547 
548 	/* Bump references to the text vnode (for procfs). */
549 	if (p2->p_textvp)
550 		vrefact(p2->p_textvp);
551 
552 	/*
553 	 * Set up linkage for kernel based threading.
554 	 */
555 	if ((fr->fr_flags & RFTHREAD) != 0) {
556 		mtx_lock(&ppeers_lock);
557 		p2->p_peers = p1->p_peers;
558 		p1->p_peers = p2;
559 		p2->p_leader = p1->p_leader;
560 		mtx_unlock(&ppeers_lock);
561 		PROC_LOCK(p1->p_leader);
562 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
563 			PROC_UNLOCK(p1->p_leader);
564 			/*
565 			 * The task leader is exiting, so process p1 is
566 			 * going to be killed shortly.  Since p1 obviously
567 			 * isn't dead yet, we know that the leader is either
568 			 * sending SIGKILL's to all the processes in this
569 			 * task or is sleeping waiting for all the peers to
570 			 * exit.  We let p1 complete the fork, but we need
571 			 * to go ahead and kill the new process p2 since
572 			 * the task leader may not get a chance to send
573 			 * SIGKILL to it.  We leave it on the list so that
574 			 * the task leader will wait for this new process
575 			 * to commit suicide.
576 			 */
577 			PROC_LOCK(p2);
578 			kern_psignal(p2, SIGKILL);
579 			PROC_UNLOCK(p2);
580 		} else
581 			PROC_UNLOCK(p1->p_leader);
582 	} else {
583 		p2->p_peers = NULL;
584 		p2->p_leader = p2;
585 	}
586 
587 	sx_xlock(&proctree_lock);
588 	PGRP_LOCK(p1->p_pgrp);
589 	PROC_LOCK(p2);
590 	PROC_LOCK(p1);
591 
592 	/*
593 	 * Preserve some more flags in subprocess.  P_PROFIL has already
594 	 * been preserved.
595 	 */
596 	p2->p_flag |= p1->p_flag & P_SUGID;
597 	td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING;
598 	SESS_LOCK(p1->p_session);
599 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
600 		p2->p_flag |= P_CONTROLT;
601 	SESS_UNLOCK(p1->p_session);
602 	if (fr->fr_flags & RFPPWAIT)
603 		p2->p_flag |= P_PPWAIT;
604 
605 	p2->p_pgrp = p1->p_pgrp;
606 	LIST_INSERT_AFTER(p1, p2, p_pglist);
607 	PGRP_UNLOCK(p1->p_pgrp);
608 	LIST_INIT(&p2->p_children);
609 	LIST_INIT(&p2->p_orphans);
610 
611 	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
612 
613 	/*
614 	 * If PF_FORK is set, the child process inherits the
615 	 * procfs ioctl flags from its parent.
616 	 */
617 	if (p1->p_pfsflags & PF_FORK) {
618 		p2->p_stops = p1->p_stops;
619 		p2->p_pfsflags = p1->p_pfsflags;
620 	}
621 
622 	/*
623 	 * This begins the section where we must prevent the parent
624 	 * from being swapped.
625 	 */
626 	_PHOLD(p1);
627 	PROC_UNLOCK(p1);
628 
629 	/*
630 	 * Attach the new process to its parent.
631 	 *
632 	 * If RFNOWAIT is set, the newly created process becomes a child
633 	 * of init.  This effectively disassociates the child from the
634 	 * parent.
635 	 */
636 	if ((fr->fr_flags & RFNOWAIT) != 0) {
637 		pptr = p1->p_reaper;
638 		p2->p_reaper = pptr;
639 	} else {
640 		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
641 		    p1 : p1->p_reaper;
642 		pptr = p1;
643 	}
644 	p2->p_pptr = pptr;
645 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
646 	LIST_INIT(&p2->p_reaplist);
647 	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
648 	if (p2->p_reaper == p1)
649 		p2->p_reapsubtree = p2->p_pid;
650 	sx_xunlock(&proctree_lock);
651 
652 	/* Inform accounting that we have forked. */
653 	p2->p_acflag = AFORK;
654 	PROC_UNLOCK(p2);
655 
656 #ifdef KTRACE
657 	ktrprocfork(p1, p2);
658 #endif
659 
660 	/*
661 	 * Finish creating the child process.  It will return via a different
662 	 * execution path later.  (ie: directly into user mode)
663 	 */
664 	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
665 
666 	if (fr->fr_flags == (RFFDG | RFPROC)) {
667 		PCPU_INC(cnt.v_forks);
668 		PCPU_ADD(cnt.v_forkpages, p2->p_vmspace->vm_dsize +
669 		    p2->p_vmspace->vm_ssize);
670 	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
671 		PCPU_INC(cnt.v_vforks);
672 		PCPU_ADD(cnt.v_vforkpages, p2->p_vmspace->vm_dsize +
673 		    p2->p_vmspace->vm_ssize);
674 	} else if (p1 == &proc0) {
675 		PCPU_INC(cnt.v_kthreads);
676 		PCPU_ADD(cnt.v_kthreadpages, p2->p_vmspace->vm_dsize +
677 		    p2->p_vmspace->vm_ssize);
678 	} else {
679 		PCPU_INC(cnt.v_rforks);
680 		PCPU_ADD(cnt.v_rforkpages, p2->p_vmspace->vm_dsize +
681 		    p2->p_vmspace->vm_ssize);
682 	}
683 
684 	/*
685 	 * Associate the process descriptor with the process before anything
686 	 * can happen that might cause that process to need the descriptor.
687 	 * However, don't do this until after fork(2) can no longer fail.
688 	 */
689 	if (fr->fr_flags & RFPROCDESC)
690 		procdesc_new(p2, fr->fr_pd_flags);
691 
692 	/*
693 	 * Both processes are set up, now check if any loadable modules want
694 	 * to adjust anything.
695 	 */
696 	EVENTHANDLER_INVOKE(process_fork, p1, p2, fr->fr_flags);
697 
698 	/*
699 	 * Set the child start time and mark the process as being complete.
700 	 */
701 	PROC_LOCK(p2);
702 	PROC_LOCK(p1);
703 	microuptime(&p2->p_stats->p_start);
704 	PROC_SLOCK(p2);
705 	p2->p_state = PRS_NORMAL;
706 	PROC_SUNLOCK(p2);
707 
708 #ifdef KDTRACE_HOOKS
709 	/*
710 	 * Tell the DTrace fasttrap provider about the new process so that any
711 	 * tracepoints inherited from the parent can be removed. We have to do
712 	 * this only after p_state is PRS_NORMAL since the fasttrap module will
713 	 * use pfind() later on.
714 	 */
715 	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
716 		dtrace_fasttrap_fork(p1, p2);
717 #endif
718 	/*
719 	 * Hold the process so that it cannot exit after we make it runnable,
720 	 * but before we wait for the debugger.
721 	 */
722 	_PHOLD(p2);
723 	if (p1->p_ptevents & PTRACE_FORK) {
724 		/*
725 		 * Arrange for debugger to receive the fork event.
726 		 *
727 		 * We can report PL_FLAG_FORKED regardless of
728 		 * P_FOLLOWFORK settings, but it does not make a sense
729 		 * for runaway child.
730 		 */
731 		td->td_dbgflags |= TDB_FORK;
732 		td->td_dbg_forked = p2->p_pid;
733 		td2->td_dbgflags |= TDB_STOPATFORK;
734 	}
735 	if (fr->fr_flags & RFPPWAIT) {
736 		td->td_pflags |= TDP_RFPPWAIT;
737 		td->td_rfppwait_p = p2;
738 		td->td_dbgflags |= TDB_VFORK;
739 	}
740 	PROC_UNLOCK(p2);
741 
742 	/*
743 	 * Now can be swapped.
744 	 */
745 	_PRELE(p1);
746 	PROC_UNLOCK(p1);
747 
748 	/*
749 	 * Tell any interested parties about the new process.
750 	 */
751 	knote_fork(p1->p_klist, p2->p_pid);
752 	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
753 
754 	if (fr->fr_flags & RFPROCDESC) {
755 		procdesc_finit(p2->p_procdesc, fp_procdesc);
756 		fdrop(fp_procdesc, td);
757 	}
758 
759 	if ((fr->fr_flags & RFSTOPPED) == 0) {
760 		/*
761 		 * If RFSTOPPED not requested, make child runnable and
762 		 * add to run queue.
763 		 */
764 		thread_lock(td2);
765 		TD_SET_CAN_RUN(td2);
766 		sched_add(td2, SRQ_BORING);
767 		thread_unlock(td2);
768 		if (fr->fr_pidp != NULL)
769 			*fr->fr_pidp = p2->p_pid;
770 	} else {
771 		*fr->fr_procp = p2;
772 	}
773 
774 	PROC_LOCK(p2);
775 	/*
776 	 * Wait until debugger is attached to child.
777 	 */
778 	while (td2->td_proc == p2 && (td2->td_dbgflags & TDB_STOPATFORK) != 0)
779 		cv_wait(&p2->p_dbgwait, &p2->p_mtx);
780 	_PRELE(p2);
781 	racct_proc_fork_done(p2);
782 	PROC_UNLOCK(p2);
783 }
784 
785 int
786 fork1(struct thread *td, struct fork_req *fr)
787 {
788 	struct proc *p1, *newproc;
789 	struct thread *td2;
790 	struct vmspace *vm2;
791 	struct file *fp_procdesc;
792 	vm_ooffset_t mem_charged;
793 	int error, nprocs_new, ok;
794 	static int curfail;
795 	static struct timeval lastfail;
796 	int flags, pages;
797 
798 	flags = fr->fr_flags;
799 	pages = fr->fr_pages;
800 
801 	if ((flags & RFSTOPPED) != 0)
802 		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
803 	else
804 		MPASS(fr->fr_procp == NULL);
805 
806 	/* Check for the undefined or unimplemented flags. */
807 	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
808 		return (EINVAL);
809 
810 	/* Signal value requires RFTSIGZMB. */
811 	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
812 		return (EINVAL);
813 
814 	/* Can't copy and clear. */
815 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
816 		return (EINVAL);
817 
818 	/* Check the validity of the signal number. */
819 	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
820 		return (EINVAL);
821 
822 	if ((flags & RFPROCDESC) != 0) {
823 		/* Can't not create a process yet get a process descriptor. */
824 		if ((flags & RFPROC) == 0)
825 			return (EINVAL);
826 
827 		/* Must provide a place to put a procdesc if creating one. */
828 		if (fr->fr_pd_fd == NULL)
829 			return (EINVAL);
830 
831 		/* Check if we are using supported flags. */
832 		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
833 			return (EINVAL);
834 	}
835 
836 	p1 = td->td_proc;
837 
838 	/*
839 	 * Here we don't create a new process, but we divorce
840 	 * certain parts of a process from itself.
841 	 */
842 	if ((flags & RFPROC) == 0) {
843 		if (fr->fr_procp != NULL)
844 			*fr->fr_procp = NULL;
845 		else if (fr->fr_pidp != NULL)
846 			*fr->fr_pidp = 0;
847 		return (fork_norfproc(td, flags));
848 	}
849 
850 	fp_procdesc = NULL;
851 	newproc = NULL;
852 	vm2 = NULL;
853 
854 	/*
855 	 * Increment the nprocs resource before allocations occur.
856 	 * Although process entries are dynamically created, we still
857 	 * keep a global limit on the maximum number we will
858 	 * create. There are hard-limits as to the number of processes
859 	 * that can run, established by the KVA and memory usage for
860 	 * the process data.
861 	 *
862 	 * Don't allow a nonprivileged user to use the last ten
863 	 * processes; don't let root exceed the limit.
864 	 */
865 	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
866 	if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred,
867 	    PRIV_MAXPROC, 0) != 0) || nprocs_new >= maxproc) {
868 		error = EAGAIN;
869 		sx_xlock(&allproc_lock);
870 		if (ppsratecheck(&lastfail, &curfail, 1)) {
871 			printf("maxproc limit exceeded by uid %u (pid %d); "
872 			    "see tuning(7) and login.conf(5)\n",
873 			    td->td_ucred->cr_ruid, p1->p_pid);
874 		}
875 		sx_xunlock(&allproc_lock);
876 		goto fail2;
877 	}
878 
879 	/*
880 	 * If required, create a process descriptor in the parent first; we
881 	 * will abandon it if something goes wrong. We don't finit() until
882 	 * later.
883 	 */
884 	if (flags & RFPROCDESC) {
885 		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
886 		    fr->fr_pd_flags, fr->fr_pd_fcaps);
887 		if (error != 0)
888 			goto fail2;
889 	}
890 
891 	mem_charged = 0;
892 	if (pages == 0)
893 		pages = kstack_pages;
894 	/* Allocate new proc. */
895 	newproc = uma_zalloc(proc_zone, M_WAITOK);
896 	td2 = FIRST_THREAD_IN_PROC(newproc);
897 	if (td2 == NULL) {
898 		td2 = thread_alloc(pages);
899 		if (td2 == NULL) {
900 			error = ENOMEM;
901 			goto fail2;
902 		}
903 		proc_linkup(newproc, td2);
904 	} else {
905 		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
906 			if (td2->td_kstack != 0)
907 				vm_thread_dispose(td2);
908 			if (!thread_alloc_stack(td2, pages)) {
909 				error = ENOMEM;
910 				goto fail2;
911 			}
912 		}
913 	}
914 
915 	if ((flags & RFMEM) == 0) {
916 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
917 		if (vm2 == NULL) {
918 			error = ENOMEM;
919 			goto fail2;
920 		}
921 		if (!swap_reserve(mem_charged)) {
922 			/*
923 			 * The swap reservation failed. The accounting
924 			 * from the entries of the copied vm2 will be
925 			 * subtracted in vmspace_free(), so force the
926 			 * reservation there.
927 			 */
928 			swap_reserve_force(mem_charged);
929 			error = ENOMEM;
930 			goto fail2;
931 		}
932 	} else
933 		vm2 = NULL;
934 
935 	/*
936 	 * XXX: This is ugly; when we copy resource usage, we need to bump
937 	 *      per-cred resource counters.
938 	 */
939 	proc_set_cred_init(newproc, crhold(td->td_ucred));
940 
941 	/*
942 	 * Initialize resource accounting for the child process.
943 	 */
944 	error = racct_proc_fork(p1, newproc);
945 	if (error != 0) {
946 		error = EAGAIN;
947 		goto fail1;
948 	}
949 
950 #ifdef MAC
951 	mac_proc_init(newproc);
952 #endif
953 	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
954 	STAILQ_INIT(&newproc->p_ktr);
955 
956 	/* We have to lock the process tree while we look for a pid. */
957 	sx_slock(&proctree_lock);
958 	sx_xlock(&allproc_lock);
959 
960 	/*
961 	 * Increment the count of procs running with this uid. Don't allow
962 	 * a nonprivileged user to exceed their current limit.
963 	 *
964 	 * XXXRW: Can we avoid privilege here if it's not needed?
965 	 */
966 	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
967 	if (error == 0)
968 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
969 	else {
970 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
971 		    lim_cur(td, RLIMIT_NPROC));
972 	}
973 	if (ok) {
974 		do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
975 		return (0);
976 	}
977 
978 	error = EAGAIN;
979 	sx_sunlock(&proctree_lock);
980 	sx_xunlock(&allproc_lock);
981 #ifdef MAC
982 	mac_proc_destroy(newproc);
983 #endif
984 	racct_proc_exit(newproc);
985 fail1:
986 	crfree(newproc->p_ucred);
987 	newproc->p_ucred = NULL;
988 fail2:
989 	if (vm2 != NULL)
990 		vmspace_free(vm2);
991 	uma_zfree(proc_zone, newproc);
992 	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
993 		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
994 		fdrop(fp_procdesc, td);
995 	}
996 	atomic_add_int(&nprocs, -1);
997 	pause("fork", hz / 2);
998 	return (error);
999 }
1000 
1001 /*
1002  * Handle the return of a child process from fork1().  This function
1003  * is called from the MD fork_trampoline() entry point.
1004  */
1005 void
1006 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1007     struct trapframe *frame)
1008 {
1009 	struct proc *p;
1010 	struct thread *td;
1011 	struct thread *dtd;
1012 
1013 	td = curthread;
1014 	p = td->td_proc;
1015 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1016 
1017 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1018 	    td, td_get_sched(td), p->p_pid, td->td_name);
1019 
1020 	sched_fork_exit(td);
1021 	/*
1022 	* Processes normally resume in mi_switch() after being
1023 	* cpu_switch()'ed to, but when children start up they arrive here
1024 	* instead, so we must do much the same things as mi_switch() would.
1025 	*/
1026 	if ((dtd = PCPU_GET(deadthread))) {
1027 		PCPU_SET(deadthread, NULL);
1028 		thread_stash(dtd);
1029 	}
1030 	thread_unlock(td);
1031 
1032 	/*
1033 	 * cpu_fork_kthread_handler intercepts this function call to
1034 	 * have this call a non-return function to stay in kernel mode.
1035 	 * initproc has its own fork handler, but it does return.
1036 	 */
1037 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1038 	callout(arg, frame);
1039 
1040 	/*
1041 	 * Check if a kernel thread misbehaved and returned from its main
1042 	 * function.
1043 	 */
1044 	if (p->p_flag & P_KPROC) {
1045 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1046 		    td->td_name, p->p_pid);
1047 		kthread_exit();
1048 	}
1049 	mtx_assert(&Giant, MA_NOTOWNED);
1050 
1051 	if (p->p_sysent->sv_schedtail != NULL)
1052 		(p->p_sysent->sv_schedtail)(td);
1053 	td->td_pflags &= ~TDP_FORKING;
1054 }
1055 
1056 /*
1057  * Simplified back end of syscall(), used when returning from fork()
1058  * directly into user mode.  This function is passed in to fork_exit()
1059  * as the first parameter and is called when returning to a new
1060  * userland process.
1061  */
1062 void
1063 fork_return(struct thread *td, struct trapframe *frame)
1064 {
1065 	struct proc *p, *dbg;
1066 
1067 	p = td->td_proc;
1068 	if (td->td_dbgflags & TDB_STOPATFORK) {
1069 		sx_xlock(&proctree_lock);
1070 		PROC_LOCK(p);
1071 		if (p->p_pptr->p_ptevents & PTRACE_FORK) {
1072 			/*
1073 			 * If debugger still wants auto-attach for the
1074 			 * parent's children, do it now.
1075 			 */
1076 			dbg = p->p_pptr->p_pptr;
1077 			proc_set_traced(p, true);
1078 			CTR2(KTR_PTRACE,
1079 		    "fork_return: attaching to new child pid %d: oppid %d",
1080 			    p->p_pid, p->p_oppid);
1081 			proc_reparent(p, dbg);
1082 			sx_xunlock(&proctree_lock);
1083 			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1084 			ptracestop(td, SIGSTOP, NULL);
1085 			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1086 		} else {
1087 			/*
1088 			 * ... otherwise clear the request.
1089 			 */
1090 			sx_xunlock(&proctree_lock);
1091 			td->td_dbgflags &= ~TDB_STOPATFORK;
1092 			cv_broadcast(&p->p_dbgwait);
1093 		}
1094 		PROC_UNLOCK(p);
1095 	} else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
1096  		/*
1097 		 * This is the start of a new thread in a traced
1098 		 * process.  Report a system call exit event.
1099 		 */
1100 		PROC_LOCK(p);
1101 		td->td_dbgflags |= TDB_SCX;
1102 		_STOPEVENT(p, S_SCX, td->td_dbg_sc_code);
1103 		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1104 		    (td->td_dbgflags & TDB_BORN) != 0)
1105 			ptracestop(td, SIGTRAP, NULL);
1106 		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1107 		PROC_UNLOCK(p);
1108 	}
1109 
1110 	userret(td, frame);
1111 
1112 #ifdef KTRACE
1113 	if (KTRPOINT(td, KTR_SYSRET))
1114 		ktrsysret(SYS_fork, 0, 0);
1115 #endif
1116 }
1117