1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ktrace.h" 43 #include "opt_kstack_pages.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/bitstring.h> 48 #include <sys/sysproto.h> 49 #include <sys/eventhandler.h> 50 #include <sys/fcntl.h> 51 #include <sys/filedesc.h> 52 #include <sys/jail.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/sysctl.h> 56 #include <sys/lock.h> 57 #include <sys/malloc.h> 58 #include <sys/mutex.h> 59 #include <sys/priv.h> 60 #include <sys/proc.h> 61 #include <sys/procdesc.h> 62 #include <sys/pioctl.h> 63 #include <sys/ptrace.h> 64 #include <sys/racct.h> 65 #include <sys/resourcevar.h> 66 #include <sys/sched.h> 67 #include <sys/syscall.h> 68 #include <sys/vmmeter.h> 69 #include <sys/vnode.h> 70 #include <sys/acct.h> 71 #include <sys/ktr.h> 72 #include <sys/ktrace.h> 73 #include <sys/unistd.h> 74 #include <sys/sdt.h> 75 #include <sys/sx.h> 76 #include <sys/sysent.h> 77 #include <sys/signalvar.h> 78 79 #include <security/audit/audit.h> 80 #include <security/mac/mac_framework.h> 81 82 #include <vm/vm.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_extern.h> 86 #include <vm/uma.h> 87 88 #ifdef KDTRACE_HOOKS 89 #include <sys/dtrace_bsd.h> 90 dtrace_fork_func_t dtrace_fasttrap_fork; 91 #endif 92 93 SDT_PROVIDER_DECLARE(proc); 94 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int"); 95 96 #ifndef _SYS_SYSPROTO_H_ 97 struct fork_args { 98 int dummy; 99 }; 100 #endif 101 102 /* ARGSUSED */ 103 int 104 sys_fork(struct thread *td, struct fork_args *uap) 105 { 106 struct fork_req fr; 107 int error, pid; 108 109 bzero(&fr, sizeof(fr)); 110 fr.fr_flags = RFFDG | RFPROC; 111 fr.fr_pidp = &pid; 112 error = fork1(td, &fr); 113 if (error == 0) { 114 td->td_retval[0] = pid; 115 td->td_retval[1] = 0; 116 } 117 return (error); 118 } 119 120 /* ARGUSED */ 121 int 122 sys_pdfork(struct thread *td, struct pdfork_args *uap) 123 { 124 struct fork_req fr; 125 int error, fd, pid; 126 127 bzero(&fr, sizeof(fr)); 128 fr.fr_flags = RFFDG | RFPROC | RFPROCDESC; 129 fr.fr_pidp = &pid; 130 fr.fr_pd_fd = &fd; 131 fr.fr_pd_flags = uap->flags; 132 /* 133 * It is necessary to return fd by reference because 0 is a valid file 134 * descriptor number, and the child needs to be able to distinguish 135 * itself from the parent using the return value. 136 */ 137 error = fork1(td, &fr); 138 if (error == 0) { 139 td->td_retval[0] = pid; 140 td->td_retval[1] = 0; 141 error = copyout(&fd, uap->fdp, sizeof(fd)); 142 } 143 return (error); 144 } 145 146 /* ARGSUSED */ 147 int 148 sys_vfork(struct thread *td, struct vfork_args *uap) 149 { 150 struct fork_req fr; 151 int error, pid; 152 153 bzero(&fr, sizeof(fr)); 154 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; 155 fr.fr_pidp = &pid; 156 error = fork1(td, &fr); 157 if (error == 0) { 158 td->td_retval[0] = pid; 159 td->td_retval[1] = 0; 160 } 161 return (error); 162 } 163 164 int 165 sys_rfork(struct thread *td, struct rfork_args *uap) 166 { 167 struct fork_req fr; 168 int error, pid; 169 170 /* Don't allow kernel-only flags. */ 171 if ((uap->flags & RFKERNELONLY) != 0) 172 return (EINVAL); 173 174 AUDIT_ARG_FFLAGS(uap->flags); 175 bzero(&fr, sizeof(fr)); 176 fr.fr_flags = uap->flags; 177 fr.fr_pidp = &pid; 178 error = fork1(td, &fr); 179 if (error == 0) { 180 td->td_retval[0] = pid; 181 td->td_retval[1] = 0; 182 } 183 return (error); 184 } 185 186 int __exclusive_cache_line nprocs = 1; /* process 0 */ 187 int lastpid = 0; 188 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 189 "Last used PID"); 190 191 /* 192 * Random component to lastpid generation. We mix in a random factor to make 193 * it a little harder to predict. We sanity check the modulus value to avoid 194 * doing it in critical paths. Don't let it be too small or we pointlessly 195 * waste randomness entropy, and don't let it be impossibly large. Using a 196 * modulus that is too big causes a LOT more process table scans and slows 197 * down fork processing as the pidchecked caching is defeated. 198 */ 199 static int randompid = 0; 200 201 static int 202 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 203 { 204 int error, pid; 205 206 error = sysctl_wire_old_buffer(req, sizeof(int)); 207 if (error != 0) 208 return(error); 209 sx_xlock(&allproc_lock); 210 pid = randompid; 211 error = sysctl_handle_int(oidp, &pid, 0, req); 212 if (error == 0 && req->newptr != NULL) { 213 if (pid == 0) 214 randompid = 0; 215 else if (pid == 1) 216 /* generate a random PID modulus between 100 and 1123 */ 217 randompid = 100 + arc4random() % 1024; 218 else if (pid < 0 || pid > pid_max - 100) 219 /* out of range */ 220 randompid = pid_max - 100; 221 else if (pid < 100) 222 /* Make it reasonable */ 223 randompid = 100; 224 else 225 randompid = pid; 226 } 227 sx_xunlock(&allproc_lock); 228 return (error); 229 } 230 231 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 232 0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value"); 233 234 extern bitstr_t proc_id_pidmap; 235 extern bitstr_t proc_id_grpidmap; 236 extern bitstr_t proc_id_sessidmap; 237 extern bitstr_t proc_id_reapmap; 238 239 /* 240 * Find an unused process ID 241 * 242 * If RFHIGHPID is set (used during system boot), do not allocate 243 * low-numbered pids. 244 */ 245 static int 246 fork_findpid(int flags) 247 { 248 pid_t result; 249 int trypid; 250 251 trypid = lastpid + 1; 252 if (flags & RFHIGHPID) { 253 if (trypid < 10) 254 trypid = 10; 255 } else { 256 if (randompid) 257 trypid += arc4random() % randompid; 258 } 259 mtx_lock(&procid_lock); 260 retry: 261 /* 262 * If the process ID prototype has wrapped around, 263 * restart somewhat above 0, as the low-numbered procs 264 * tend to include daemons that don't exit. 265 */ 266 if (trypid >= pid_max) { 267 trypid = trypid % pid_max; 268 if (trypid < 100) 269 trypid += 100; 270 } 271 272 bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result); 273 if (result == -1) { 274 trypid = 100; 275 goto retry; 276 } 277 if (bit_test(&proc_id_grpidmap, result) || 278 bit_test(&proc_id_sessidmap, result) || 279 bit_test(&proc_id_reapmap, result)) { 280 trypid = result + 1; 281 goto retry; 282 } 283 284 /* 285 * RFHIGHPID does not mess with the lastpid counter during boot. 286 */ 287 if ((flags & RFHIGHPID) == 0) 288 lastpid = result; 289 290 bit_set(&proc_id_pidmap, result); 291 mtx_unlock(&procid_lock); 292 293 return (result); 294 } 295 296 static int 297 fork_norfproc(struct thread *td, int flags) 298 { 299 int error; 300 struct proc *p1; 301 302 KASSERT((flags & RFPROC) == 0, 303 ("fork_norfproc called with RFPROC set")); 304 p1 = td->td_proc; 305 306 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 307 (flags & (RFCFDG | RFFDG))) { 308 PROC_LOCK(p1); 309 if (thread_single(p1, SINGLE_BOUNDARY)) { 310 PROC_UNLOCK(p1); 311 return (ERESTART); 312 } 313 PROC_UNLOCK(p1); 314 } 315 316 error = vm_forkproc(td, NULL, NULL, NULL, flags); 317 if (error) 318 goto fail; 319 320 /* 321 * Close all file descriptors. 322 */ 323 if (flags & RFCFDG) { 324 struct filedesc *fdtmp; 325 fdtmp = fdinit(td->td_proc->p_fd, false); 326 fdescfree(td); 327 p1->p_fd = fdtmp; 328 } 329 330 /* 331 * Unshare file descriptors (from parent). 332 */ 333 if (flags & RFFDG) 334 fdunshare(td); 335 336 fail: 337 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 338 (flags & (RFCFDG | RFFDG))) { 339 PROC_LOCK(p1); 340 thread_single_end(p1, SINGLE_BOUNDARY); 341 PROC_UNLOCK(p1); 342 } 343 return (error); 344 } 345 346 static void 347 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2, 348 struct vmspace *vm2, struct file *fp_procdesc) 349 { 350 struct proc *p1, *pptr; 351 int trypid; 352 struct filedesc *fd; 353 struct filedesc_to_leader *fdtol; 354 struct sigacts *newsigacts; 355 356 sx_assert(&allproc_lock, SX_XLOCKED); 357 358 p1 = td->td_proc; 359 360 trypid = fork_findpid(fr->fr_flags); 361 p2->p_state = PRS_NEW; /* protect against others */ 362 p2->p_pid = trypid; 363 AUDIT_ARG_PID(p2->p_pid); 364 LIST_INSERT_HEAD(&allproc, p2, p_list); 365 allproc_gen++; 366 sx_xlock(PIDHASHLOCK(p2->p_pid)); 367 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); 368 sx_xunlock(PIDHASHLOCK(p2->p_pid)); 369 PROC_LOCK(p2); 370 PROC_LOCK(p1); 371 372 sx_xunlock(&allproc_lock); 373 374 bcopy(&p1->p_startcopy, &p2->p_startcopy, 375 __rangeof(struct proc, p_startcopy, p_endcopy)); 376 pargs_hold(p2->p_args); 377 378 PROC_UNLOCK(p1); 379 380 bzero(&p2->p_startzero, 381 __rangeof(struct proc, p_startzero, p_endzero)); 382 383 /* Tell the prison that we exist. */ 384 prison_proc_hold(p2->p_ucred->cr_prison); 385 386 PROC_UNLOCK(p2); 387 388 tidhash_add(td2); 389 390 /* 391 * Malloc things while we don't hold any locks. 392 */ 393 if (fr->fr_flags & RFSIGSHARE) 394 newsigacts = NULL; 395 else 396 newsigacts = sigacts_alloc(); 397 398 /* 399 * Copy filedesc. 400 */ 401 if (fr->fr_flags & RFCFDG) { 402 fd = fdinit(p1->p_fd, false); 403 fdtol = NULL; 404 } else if (fr->fr_flags & RFFDG) { 405 fd = fdcopy(p1->p_fd); 406 fdtol = NULL; 407 } else { 408 fd = fdshare(p1->p_fd); 409 if (p1->p_fdtol == NULL) 410 p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL, 411 p1->p_leader); 412 if ((fr->fr_flags & RFTHREAD) != 0) { 413 /* 414 * Shared file descriptor table, and shared 415 * process leaders. 416 */ 417 fdtol = p1->p_fdtol; 418 FILEDESC_XLOCK(p1->p_fd); 419 fdtol->fdl_refcount++; 420 FILEDESC_XUNLOCK(p1->p_fd); 421 } else { 422 /* 423 * Shared file descriptor table, and different 424 * process leaders. 425 */ 426 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, 427 p1->p_fd, p2); 428 } 429 } 430 /* 431 * Make a proc table entry for the new process. 432 * Start by zeroing the section of proc that is zero-initialized, 433 * then copy the section that is copied directly from the parent. 434 */ 435 436 PROC_LOCK(p2); 437 PROC_LOCK(p1); 438 439 bzero(&td2->td_startzero, 440 __rangeof(struct thread, td_startzero, td_endzero)); 441 442 bcopy(&td->td_startcopy, &td2->td_startcopy, 443 __rangeof(struct thread, td_startcopy, td_endcopy)); 444 445 bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name)); 446 td2->td_sigstk = td->td_sigstk; 447 td2->td_flags = TDF_INMEM; 448 td2->td_lend_user_pri = PRI_MAX; 449 450 #ifdef VIMAGE 451 td2->td_vnet = NULL; 452 td2->td_vnet_lpush = NULL; 453 #endif 454 455 /* 456 * Allow the scheduler to initialize the child. 457 */ 458 thread_lock(td); 459 sched_fork(td, td2); 460 thread_unlock(td); 461 462 /* 463 * Duplicate sub-structures as needed. 464 * Increase reference counts on shared objects. 465 */ 466 p2->p_flag = P_INMEM; 467 p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE | 468 P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC | 469 P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP); 470 p2->p_swtick = ticks; 471 if (p1->p_flag & P_PROFIL) 472 startprofclock(p2); 473 474 if (fr->fr_flags & RFSIGSHARE) { 475 p2->p_sigacts = sigacts_hold(p1->p_sigacts); 476 } else { 477 sigacts_copy(newsigacts, p1->p_sigacts); 478 p2->p_sigacts = newsigacts; 479 } 480 481 if (fr->fr_flags & RFTSIGZMB) 482 p2->p_sigparent = RFTSIGNUM(fr->fr_flags); 483 else if (fr->fr_flags & RFLINUXTHPN) 484 p2->p_sigparent = SIGUSR1; 485 else 486 p2->p_sigparent = SIGCHLD; 487 488 p2->p_textvp = p1->p_textvp; 489 p2->p_fd = fd; 490 p2->p_fdtol = fdtol; 491 492 if (p1->p_flag2 & P2_INHERIT_PROTECTED) { 493 p2->p_flag |= P_PROTECTED; 494 p2->p_flag2 |= P2_INHERIT_PROTECTED; 495 } 496 497 /* 498 * p_limit is copy-on-write. Bump its refcount. 499 */ 500 lim_fork(p1, p2); 501 502 thread_cow_get_proc(td2, p2); 503 504 pstats_fork(p1->p_stats, p2->p_stats); 505 506 PROC_UNLOCK(p1); 507 PROC_UNLOCK(p2); 508 509 /* Bump references to the text vnode (for procfs). */ 510 if (p2->p_textvp) 511 vrefact(p2->p_textvp); 512 513 /* 514 * Set up linkage for kernel based threading. 515 */ 516 if ((fr->fr_flags & RFTHREAD) != 0) { 517 mtx_lock(&ppeers_lock); 518 p2->p_peers = p1->p_peers; 519 p1->p_peers = p2; 520 p2->p_leader = p1->p_leader; 521 mtx_unlock(&ppeers_lock); 522 PROC_LOCK(p1->p_leader); 523 if ((p1->p_leader->p_flag & P_WEXIT) != 0) { 524 PROC_UNLOCK(p1->p_leader); 525 /* 526 * The task leader is exiting, so process p1 is 527 * going to be killed shortly. Since p1 obviously 528 * isn't dead yet, we know that the leader is either 529 * sending SIGKILL's to all the processes in this 530 * task or is sleeping waiting for all the peers to 531 * exit. We let p1 complete the fork, but we need 532 * to go ahead and kill the new process p2 since 533 * the task leader may not get a chance to send 534 * SIGKILL to it. We leave it on the list so that 535 * the task leader will wait for this new process 536 * to commit suicide. 537 */ 538 PROC_LOCK(p2); 539 kern_psignal(p2, SIGKILL); 540 PROC_UNLOCK(p2); 541 } else 542 PROC_UNLOCK(p1->p_leader); 543 } else { 544 p2->p_peers = NULL; 545 p2->p_leader = p2; 546 } 547 548 sx_xlock(&proctree_lock); 549 PGRP_LOCK(p1->p_pgrp); 550 PROC_LOCK(p2); 551 PROC_LOCK(p1); 552 553 /* 554 * Preserve some more flags in subprocess. P_PROFIL has already 555 * been preserved. 556 */ 557 p2->p_flag |= p1->p_flag & P_SUGID; 558 td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING; 559 SESS_LOCK(p1->p_session); 560 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) 561 p2->p_flag |= P_CONTROLT; 562 SESS_UNLOCK(p1->p_session); 563 if (fr->fr_flags & RFPPWAIT) 564 p2->p_flag |= P_PPWAIT; 565 566 p2->p_pgrp = p1->p_pgrp; 567 LIST_INSERT_AFTER(p1, p2, p_pglist); 568 PGRP_UNLOCK(p1->p_pgrp); 569 LIST_INIT(&p2->p_children); 570 LIST_INIT(&p2->p_orphans); 571 572 callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0); 573 574 /* 575 * If PF_FORK is set, the child process inherits the 576 * procfs ioctl flags from its parent. 577 */ 578 if (p1->p_pfsflags & PF_FORK) { 579 p2->p_stops = p1->p_stops; 580 p2->p_pfsflags = p1->p_pfsflags; 581 } 582 583 /* 584 * This begins the section where we must prevent the parent 585 * from being swapped. 586 */ 587 _PHOLD(p1); 588 PROC_UNLOCK(p1); 589 590 /* 591 * Attach the new process to its parent. 592 * 593 * If RFNOWAIT is set, the newly created process becomes a child 594 * of init. This effectively disassociates the child from the 595 * parent. 596 */ 597 if ((fr->fr_flags & RFNOWAIT) != 0) { 598 pptr = p1->p_reaper; 599 p2->p_reaper = pptr; 600 } else { 601 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ? 602 p1 : p1->p_reaper; 603 pptr = p1; 604 } 605 p2->p_pptr = pptr; 606 p2->p_oppid = pptr->p_pid; 607 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); 608 LIST_INIT(&p2->p_reaplist); 609 LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling); 610 if (p2->p_reaper == p1 && p1 != initproc) { 611 p2->p_reapsubtree = p2->p_pid; 612 proc_id_set_cond(PROC_ID_REAP, p2->p_pid); 613 } 614 sx_xunlock(&proctree_lock); 615 616 /* Inform accounting that we have forked. */ 617 p2->p_acflag = AFORK; 618 PROC_UNLOCK(p2); 619 620 #ifdef KTRACE 621 ktrprocfork(p1, p2); 622 #endif 623 624 /* 625 * Finish creating the child process. It will return via a different 626 * execution path later. (ie: directly into user mode) 627 */ 628 vm_forkproc(td, p2, td2, vm2, fr->fr_flags); 629 630 if (fr->fr_flags == (RFFDG | RFPROC)) { 631 VM_CNT_INC(v_forks); 632 VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize + 633 p2->p_vmspace->vm_ssize); 634 } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { 635 VM_CNT_INC(v_vforks); 636 VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize + 637 p2->p_vmspace->vm_ssize); 638 } else if (p1 == &proc0) { 639 VM_CNT_INC(v_kthreads); 640 VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize + 641 p2->p_vmspace->vm_ssize); 642 } else { 643 VM_CNT_INC(v_rforks); 644 VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize + 645 p2->p_vmspace->vm_ssize); 646 } 647 648 /* 649 * Associate the process descriptor with the process before anything 650 * can happen that might cause that process to need the descriptor. 651 * However, don't do this until after fork(2) can no longer fail. 652 */ 653 if (fr->fr_flags & RFPROCDESC) 654 procdesc_new(p2, fr->fr_pd_flags); 655 656 /* 657 * Both processes are set up, now check if any loadable modules want 658 * to adjust anything. 659 */ 660 EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags); 661 662 /* 663 * Set the child start time and mark the process as being complete. 664 */ 665 PROC_LOCK(p2); 666 PROC_LOCK(p1); 667 microuptime(&p2->p_stats->p_start); 668 PROC_SLOCK(p2); 669 p2->p_state = PRS_NORMAL; 670 PROC_SUNLOCK(p2); 671 672 #ifdef KDTRACE_HOOKS 673 /* 674 * Tell the DTrace fasttrap provider about the new process so that any 675 * tracepoints inherited from the parent can be removed. We have to do 676 * this only after p_state is PRS_NORMAL since the fasttrap module will 677 * use pfind() later on. 678 */ 679 if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork) 680 dtrace_fasttrap_fork(p1, p2); 681 #endif 682 if (fr->fr_flags & RFPPWAIT) { 683 td->td_pflags |= TDP_RFPPWAIT; 684 td->td_rfppwait_p = p2; 685 td->td_dbgflags |= TDB_VFORK; 686 } 687 PROC_UNLOCK(p2); 688 689 /* 690 * Tell any interested parties about the new process. 691 */ 692 knote_fork(p1->p_klist, p2->p_pid); 693 694 /* 695 * Now can be swapped. 696 */ 697 _PRELE(p1); 698 PROC_UNLOCK(p1); 699 SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags); 700 701 if (fr->fr_flags & RFPROCDESC) { 702 procdesc_finit(p2->p_procdesc, fp_procdesc); 703 fdrop(fp_procdesc, td); 704 } 705 706 /* 707 * Speculative check for PTRACE_FORK. PTRACE_FORK is not 708 * synced with forks in progress so it is OK if we miss it 709 * if being set atm. 710 */ 711 if ((p1->p_ptevents & PTRACE_FORK) != 0) { 712 sx_xlock(&proctree_lock); 713 PROC_LOCK(p2); 714 715 /* 716 * p1->p_ptevents & p1->p_pptr are protected by both 717 * process and proctree locks for modifications, 718 * so owning proctree_lock allows the race-free read. 719 */ 720 if ((p1->p_ptevents & PTRACE_FORK) != 0) { 721 /* 722 * Arrange for debugger to receive the fork event. 723 * 724 * We can report PL_FLAG_FORKED regardless of 725 * P_FOLLOWFORK settings, but it does not make a sense 726 * for runaway child. 727 */ 728 td->td_dbgflags |= TDB_FORK; 729 td->td_dbg_forked = p2->p_pid; 730 td2->td_dbgflags |= TDB_STOPATFORK; 731 proc_set_traced(p2, true); 732 CTR2(KTR_PTRACE, 733 "do_fork: attaching to new child pid %d: oppid %d", 734 p2->p_pid, p2->p_oppid); 735 proc_reparent(p2, p1->p_pptr, false); 736 } 737 PROC_UNLOCK(p2); 738 sx_xunlock(&proctree_lock); 739 } 740 741 racct_proc_fork_done(p2); 742 743 if ((fr->fr_flags & RFSTOPPED) == 0) { 744 if (fr->fr_pidp != NULL) 745 *fr->fr_pidp = p2->p_pid; 746 /* 747 * If RFSTOPPED not requested, make child runnable and 748 * add to run queue. 749 */ 750 thread_lock(td2); 751 TD_SET_CAN_RUN(td2); 752 sched_add(td2, SRQ_BORING); 753 thread_unlock(td2); 754 } else { 755 *fr->fr_procp = p2; 756 } 757 } 758 759 void 760 fork_rfppwait(struct thread *td) 761 { 762 struct proc *p, *p2; 763 764 MPASS(td->td_pflags & TDP_RFPPWAIT); 765 766 p = td->td_proc; 767 /* 768 * Preserve synchronization semantics of vfork. If 769 * waiting for child to exec or exit, fork set 770 * P_PPWAIT on child, and there we sleep on our proc 771 * (in case of exit). 772 * 773 * Do it after the ptracestop() above is finished, to 774 * not block our debugger until child execs or exits 775 * to finish vfork wait. 776 */ 777 td->td_pflags &= ~TDP_RFPPWAIT; 778 p2 = td->td_rfppwait_p; 779 again: 780 PROC_LOCK(p2); 781 while (p2->p_flag & P_PPWAIT) { 782 PROC_LOCK(p); 783 if (thread_suspend_check_needed()) { 784 PROC_UNLOCK(p2); 785 thread_suspend_check(0); 786 PROC_UNLOCK(p); 787 goto again; 788 } else { 789 PROC_UNLOCK(p); 790 } 791 cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz); 792 } 793 PROC_UNLOCK(p2); 794 795 if (td->td_dbgflags & TDB_VFORK) { 796 PROC_LOCK(p); 797 if (p->p_ptevents & PTRACE_VFORK) 798 ptracestop(td, SIGTRAP, NULL); 799 td->td_dbgflags &= ~TDB_VFORK; 800 PROC_UNLOCK(p); 801 } 802 } 803 804 int 805 fork1(struct thread *td, struct fork_req *fr) 806 { 807 struct proc *p1, *newproc; 808 struct thread *td2; 809 struct vmspace *vm2; 810 struct file *fp_procdesc; 811 vm_ooffset_t mem_charged; 812 int error, nprocs_new, ok; 813 static int curfail; 814 static struct timeval lastfail; 815 int flags, pages; 816 817 flags = fr->fr_flags; 818 pages = fr->fr_pages; 819 820 if ((flags & RFSTOPPED) != 0) 821 MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL); 822 else 823 MPASS(fr->fr_procp == NULL); 824 825 /* Check for the undefined or unimplemented flags. */ 826 if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0) 827 return (EINVAL); 828 829 /* Signal value requires RFTSIGZMB. */ 830 if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0) 831 return (EINVAL); 832 833 /* Can't copy and clear. */ 834 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) 835 return (EINVAL); 836 837 /* Check the validity of the signal number. */ 838 if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG) 839 return (EINVAL); 840 841 if ((flags & RFPROCDESC) != 0) { 842 /* Can't not create a process yet get a process descriptor. */ 843 if ((flags & RFPROC) == 0) 844 return (EINVAL); 845 846 /* Must provide a place to put a procdesc if creating one. */ 847 if (fr->fr_pd_fd == NULL) 848 return (EINVAL); 849 850 /* Check if we are using supported flags. */ 851 if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0) 852 return (EINVAL); 853 } 854 855 p1 = td->td_proc; 856 857 /* 858 * Here we don't create a new process, but we divorce 859 * certain parts of a process from itself. 860 */ 861 if ((flags & RFPROC) == 0) { 862 if (fr->fr_procp != NULL) 863 *fr->fr_procp = NULL; 864 else if (fr->fr_pidp != NULL) 865 *fr->fr_pidp = 0; 866 return (fork_norfproc(td, flags)); 867 } 868 869 fp_procdesc = NULL; 870 newproc = NULL; 871 vm2 = NULL; 872 873 /* 874 * Increment the nprocs resource before allocations occur. 875 * Although process entries are dynamically created, we still 876 * keep a global limit on the maximum number we will 877 * create. There are hard-limits as to the number of processes 878 * that can run, established by the KVA and memory usage for 879 * the process data. 880 * 881 * Don't allow a nonprivileged user to use the last ten 882 * processes; don't let root exceed the limit. 883 */ 884 nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1; 885 if (nprocs_new >= maxproc - 10) { 886 if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 || 887 nprocs_new >= maxproc) { 888 error = EAGAIN; 889 sx_xlock(&allproc_lock); 890 if (ppsratecheck(&lastfail, &curfail, 1)) { 891 printf("maxproc limit exceeded by uid %u " 892 "(pid %d); see tuning(7) and " 893 "login.conf(5)\n", 894 td->td_ucred->cr_ruid, p1->p_pid); 895 } 896 sx_xunlock(&allproc_lock); 897 goto fail2; 898 } 899 } 900 901 /* 902 * If required, create a process descriptor in the parent first; we 903 * will abandon it if something goes wrong. We don't finit() until 904 * later. 905 */ 906 if (flags & RFPROCDESC) { 907 error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd, 908 fr->fr_pd_flags, fr->fr_pd_fcaps); 909 if (error != 0) 910 goto fail2; 911 } 912 913 mem_charged = 0; 914 if (pages == 0) 915 pages = kstack_pages; 916 /* Allocate new proc. */ 917 newproc = uma_zalloc(proc_zone, M_WAITOK); 918 td2 = FIRST_THREAD_IN_PROC(newproc); 919 if (td2 == NULL) { 920 td2 = thread_alloc(pages); 921 if (td2 == NULL) { 922 error = ENOMEM; 923 goto fail2; 924 } 925 proc_linkup(newproc, td2); 926 } else { 927 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) { 928 if (td2->td_kstack != 0) 929 vm_thread_dispose(td2); 930 if (!thread_alloc_stack(td2, pages)) { 931 error = ENOMEM; 932 goto fail2; 933 } 934 } 935 } 936 937 if ((flags & RFMEM) == 0) { 938 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged); 939 if (vm2 == NULL) { 940 error = ENOMEM; 941 goto fail2; 942 } 943 if (!swap_reserve(mem_charged)) { 944 /* 945 * The swap reservation failed. The accounting 946 * from the entries of the copied vm2 will be 947 * subtracted in vmspace_free(), so force the 948 * reservation there. 949 */ 950 swap_reserve_force(mem_charged); 951 error = ENOMEM; 952 goto fail2; 953 } 954 } else 955 vm2 = NULL; 956 957 /* 958 * XXX: This is ugly; when we copy resource usage, we need to bump 959 * per-cred resource counters. 960 */ 961 proc_set_cred_init(newproc, crhold(td->td_ucred)); 962 963 /* 964 * Initialize resource accounting for the child process. 965 */ 966 error = racct_proc_fork(p1, newproc); 967 if (error != 0) { 968 error = EAGAIN; 969 goto fail1; 970 } 971 972 #ifdef MAC 973 mac_proc_init(newproc); 974 #endif 975 newproc->p_klist = knlist_alloc(&newproc->p_mtx); 976 STAILQ_INIT(&newproc->p_ktr); 977 978 sx_xlock(&allproc_lock); 979 980 /* 981 * Increment the count of procs running with this uid. Don't allow 982 * a nonprivileged user to exceed their current limit. 983 * 984 * XXXRW: Can we avoid privilege here if it's not needed? 985 */ 986 error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT); 987 if (error == 0) 988 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0); 989 else { 990 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 991 lim_cur(td, RLIMIT_NPROC)); 992 } 993 if (ok) { 994 do_fork(td, fr, newproc, td2, vm2, fp_procdesc); 995 return (0); 996 } 997 998 error = EAGAIN; 999 sx_xunlock(&allproc_lock); 1000 #ifdef MAC 1001 mac_proc_destroy(newproc); 1002 #endif 1003 racct_proc_exit(newproc); 1004 fail1: 1005 crfree(newproc->p_ucred); 1006 newproc->p_ucred = NULL; 1007 fail2: 1008 if (vm2 != NULL) 1009 vmspace_free(vm2); 1010 uma_zfree(proc_zone, newproc); 1011 if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) { 1012 fdclose(td, fp_procdesc, *fr->fr_pd_fd); 1013 fdrop(fp_procdesc, td); 1014 } 1015 atomic_add_int(&nprocs, -1); 1016 pause("fork", hz / 2); 1017 return (error); 1018 } 1019 1020 /* 1021 * Handle the return of a child process from fork1(). This function 1022 * is called from the MD fork_trampoline() entry point. 1023 */ 1024 void 1025 fork_exit(void (*callout)(void *, struct trapframe *), void *arg, 1026 struct trapframe *frame) 1027 { 1028 struct proc *p; 1029 struct thread *td; 1030 struct thread *dtd; 1031 1032 td = curthread; 1033 p = td->td_proc; 1034 KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new")); 1035 1036 CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)", 1037 td, td_get_sched(td), p->p_pid, td->td_name); 1038 1039 sched_fork_exit(td); 1040 /* 1041 * Processes normally resume in mi_switch() after being 1042 * cpu_switch()'ed to, but when children start up they arrive here 1043 * instead, so we must do much the same things as mi_switch() would. 1044 */ 1045 if ((dtd = PCPU_GET(deadthread))) { 1046 PCPU_SET(deadthread, NULL); 1047 thread_stash(dtd); 1048 } 1049 thread_unlock(td); 1050 1051 /* 1052 * cpu_fork_kthread_handler intercepts this function call to 1053 * have this call a non-return function to stay in kernel mode. 1054 * initproc has its own fork handler, but it does return. 1055 */ 1056 KASSERT(callout != NULL, ("NULL callout in fork_exit")); 1057 callout(arg, frame); 1058 1059 /* 1060 * Check if a kernel thread misbehaved and returned from its main 1061 * function. 1062 */ 1063 if (p->p_flag & P_KPROC) { 1064 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n", 1065 td->td_name, p->p_pid); 1066 kthread_exit(); 1067 } 1068 mtx_assert(&Giant, MA_NOTOWNED); 1069 1070 if (p->p_sysent->sv_schedtail != NULL) 1071 (p->p_sysent->sv_schedtail)(td); 1072 td->td_pflags &= ~TDP_FORKING; 1073 } 1074 1075 /* 1076 * Simplified back end of syscall(), used when returning from fork() 1077 * directly into user mode. This function is passed in to fork_exit() 1078 * as the first parameter and is called when returning to a new 1079 * userland process. 1080 */ 1081 void 1082 fork_return(struct thread *td, struct trapframe *frame) 1083 { 1084 struct proc *p; 1085 1086 p = td->td_proc; 1087 if (td->td_dbgflags & TDB_STOPATFORK) { 1088 PROC_LOCK(p); 1089 if ((p->p_flag & P_TRACED) != 0) { 1090 /* 1091 * Inform the debugger if one is still present. 1092 */ 1093 td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP; 1094 ptracestop(td, SIGSTOP, NULL); 1095 td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX); 1096 } else { 1097 /* 1098 * ... otherwise clear the request. 1099 */ 1100 td->td_dbgflags &= ~TDB_STOPATFORK; 1101 } 1102 PROC_UNLOCK(p); 1103 } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) { 1104 /* 1105 * This is the start of a new thread in a traced 1106 * process. Report a system call exit event. 1107 */ 1108 PROC_LOCK(p); 1109 td->td_dbgflags |= TDB_SCX; 1110 _STOPEVENT(p, S_SCX, td->td_sa.code); 1111 if ((p->p_ptevents & PTRACE_SCX) != 0 || 1112 (td->td_dbgflags & TDB_BORN) != 0) 1113 ptracestop(td, SIGTRAP, NULL); 1114 td->td_dbgflags &= ~(TDB_SCX | TDB_BORN); 1115 PROC_UNLOCK(p); 1116 } 1117 1118 userret(td, frame); 1119 1120 #ifdef KTRACE 1121 if (KTRPOINT(td, KTR_SYSRET)) 1122 ktrsysret(SYS_fork, 0, 0); 1123 #endif 1124 } 1125