xref: /freebsd/sys/kern/kern_fork.c (revision 09e8dea79366f1e5b3a73e8a271b26e4b6bf2e6a)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
39  * $FreeBSD$
40  */
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysproto.h>
47 #include <sys/filedesc.h>
48 #include <sys/kernel.h>
49 #include <sys/sysctl.h>
50 #include <sys/lock.h>
51 #include <sys/malloc.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/resourcevar.h>
55 #include <sys/syscall.h>
56 #include <sys/vnode.h>
57 #include <sys/acct.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/kthread.h>
61 #include <sys/unistd.h>
62 #include <sys/jail.h>
63 #include <sys/sx.h>
64 
65 #include <vm/vm.h>
66 #include <vm/pmap.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_extern.h>
69 #include <vm/uma.h>
70 
71 #include <sys/vmmeter.h>
72 #include <sys/user.h>
73 #include <machine/critical.h>
74 
75 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
76 
77 /*
78  * These are the stuctures used to create a callout list for things to do
79  * when forking a process
80  */
81 struct forklist {
82 	forklist_fn function;
83 	TAILQ_ENTRY(forklist) next;
84 };
85 
86 static struct sx fork_list_lock;
87 
88 TAILQ_HEAD(forklist_head, forklist);
89 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
90 
91 #ifndef _SYS_SYSPROTO_H_
92 struct fork_args {
93 	int     dummy;
94 };
95 #endif
96 
97 int forksleep; /* Place for fork1() to sleep on. */
98 
99 static void
100 init_fork_list(void *data __unused)
101 {
102 
103 	sx_init(&fork_list_lock, "fork list");
104 }
105 SYSINIT(fork_list, SI_SUB_INTRINSIC, SI_ORDER_ANY, init_fork_list, NULL);
106 
107 /*
108  * MPSAFE
109  */
110 /* ARGSUSED */
111 int
112 fork(td, uap)
113 	struct thread *td;
114 	struct fork_args *uap;
115 {
116 	int error;
117 	struct proc *p2;
118 
119 	mtx_lock(&Giant);
120 	error = fork1(td, RFFDG | RFPROC, &p2);
121 	if (error == 0) {
122 		td->td_retval[0] = p2->p_pid;
123 		td->td_retval[1] = 0;
124 	}
125 	mtx_unlock(&Giant);
126 	return error;
127 }
128 
129 /*
130  * MPSAFE
131  */
132 /* ARGSUSED */
133 int
134 vfork(td, uap)
135 	struct thread *td;
136 	struct vfork_args *uap;
137 {
138 	int error;
139 	struct proc *p2;
140 
141 	mtx_lock(&Giant);
142 	error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, &p2);
143 	if (error == 0) {
144 		td->td_retval[0] = p2->p_pid;
145 		td->td_retval[1] = 0;
146 	}
147 	mtx_unlock(&Giant);
148 	return error;
149 }
150 
151 /*
152  * MPSAFE
153  */
154 int
155 rfork(td, uap)
156 	struct thread *td;
157 	struct rfork_args *uap;
158 {
159 	int error;
160 	struct proc *p2;
161 
162 	/* Don't allow kernel only flags. */
163 	if ((uap->flags & RFKERNELONLY) != 0)
164 		return (EINVAL);
165 	mtx_lock(&Giant);
166 	error = fork1(td, uap->flags, &p2);
167 	if (error == 0) {
168 		td->td_retval[0] = p2 ? p2->p_pid : 0;
169 		td->td_retval[1] = 0;
170 	}
171 	mtx_unlock(&Giant);
172 	return error;
173 }
174 
175 
176 int	nprocs = 1;				/* process 0 */
177 int	lastpid = 0;
178 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
179     "Last used PID");
180 
181 /*
182  * Random component to lastpid generation.  We mix in a random factor to make
183  * it a little harder to predict.  We sanity check the modulus value to avoid
184  * doing it in critical paths.  Don't let it be too small or we pointlessly
185  * waste randomness entropy, and don't let it be impossibly large.  Using a
186  * modulus that is too big causes a LOT more process table scans and slows
187  * down fork processing as the pidchecked caching is defeated.
188  */
189 static int randompid = 0;
190 
191 static int
192 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
193 {
194 	int error, pid;
195 
196 	sx_xlock(&allproc_lock);
197 	pid = randompid;
198 	error = sysctl_handle_int(oidp, &pid, 0, req);
199 	if (error == 0 && req->newptr != NULL) {
200 		if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
201 			pid = PID_MAX - 100;
202 		else if (pid < 2)			/* NOP */
203 			pid = 0;
204 		else if (pid < 100)			/* Make it reasonable */
205 			pid = 100;
206 		randompid = pid;
207 	}
208 	sx_xunlock(&allproc_lock);
209 	return (error);
210 }
211 
212 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
213     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
214 
215 #if 0
216 void
217 kse_init(struct kse *kse1, struct kse *kse2)
218 {
219 }
220 
221 void
222 thread_init(struct thread *thread1, struct thread *thread2)
223 {
224 }
225 
226 void
227 ksegrp_init(struct ksegrp *ksegrp1, struct ksegrp *ksegrp2)
228 {
229 }
230 #endif
231 
232 int
233 fork1(td, flags, procp)
234 	struct thread *td;			/* parent proc */
235 	int flags;
236 	struct proc **procp;			/* child proc */
237 {
238 	struct proc *p2, *pptr;
239 	uid_t uid;
240 	struct proc *newproc;
241 	int trypid;
242 	int ok;
243 	static int pidchecked = 0;
244 	struct forklist *ep;
245 	struct filedesc *fd;
246 	struct proc *p1 = td->td_proc;
247 	struct thread *td2;
248 	struct kse *ke2;
249 	struct ksegrp *kg2;
250 	struct sigacts *newsigacts;
251 	struct procsig *newprocsig;
252 
253 	GIANT_REQUIRED;
254 
255 	/* Can't copy and clear */
256 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
257 		return (EINVAL);
258 
259 	/*
260 	 * Here we don't create a new process, but we divorce
261 	 * certain parts of a process from itself.
262 	 */
263 	if ((flags & RFPROC) == 0) {
264 		vm_forkproc(td, NULL, NULL, flags);
265 
266 		/*
267 		 * Close all file descriptors.
268 		 */
269 		if (flags & RFCFDG) {
270 			struct filedesc *fdtmp;
271 			fdtmp = fdinit(td);	/* XXXKSE */
272 			PROC_LOCK(p1);
273 			fdfree(td);		/* XXXKSE */
274 			p1->p_fd = fdtmp;
275 			PROC_UNLOCK(p1);
276 		}
277 
278 		/*
279 		 * Unshare file descriptors (from parent.)
280 		 */
281 		if (flags & RFFDG) {
282 			FILEDESC_LOCK(p1->p_fd);
283 			if (p1->p_fd->fd_refcnt > 1) {
284 				struct filedesc *newfd;
285 
286 				newfd = fdcopy(td);
287 				FILEDESC_UNLOCK(p1->p_fd);
288 				PROC_LOCK(p1);
289 				fdfree(td);
290 				p1->p_fd = newfd;
291 				PROC_UNLOCK(p1);
292 			} else
293 				FILEDESC_UNLOCK(p1->p_fd);
294 		}
295 		*procp = NULL;
296 		return (0);
297 	}
298 
299 	/* Allocate new proc. */
300 	newproc = uma_zalloc(proc_zone, M_WAITOK);
301 
302 	/*
303 	 * Although process entries are dynamically created, we still keep
304 	 * a global limit on the maximum number we will create.  Don't allow
305 	 * a nonprivileged user to use the last process; don't let root
306 	 * exceed the limit. The variable nprocs is the current number of
307 	 * processes, maxproc is the limit.
308 	 */
309 	sx_xlock(&allproc_lock);
310 	uid = td->td_ucred->cr_ruid;
311 	if ((nprocs >= maxproc - 10 && uid != 0) || nprocs >= maxproc) {
312 		sx_xunlock(&allproc_lock);
313 		uma_zfree(proc_zone, newproc);
314 		tsleep(&forksleep, PUSER, "fork", hz / 2);
315 		return (EAGAIN);
316 	}
317 	/*
318 	 * Increment the count of procs running with this uid. Don't allow
319 	 * a nonprivileged user to exceed their current limit.
320 	 */
321 	PROC_LOCK(p1);
322 	ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
323 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
324 	PROC_UNLOCK(p1);
325 	if (!ok) {
326 		sx_xunlock(&allproc_lock);
327 		uma_zfree(proc_zone, newproc);
328 		tsleep(&forksleep, PUSER, "fork", hz / 2);
329 		return (EAGAIN);
330 	}
331 
332 	/*
333 	 * Increment the nprocs resource before blocking can occur.  There
334 	 * are hard-limits as to the number of processes that can run.
335 	 */
336 	nprocs++;
337 
338 	/*
339 	 * Find an unused process ID.  We remember a range of unused IDs
340 	 * ready to use (from lastpid+1 through pidchecked-1).
341 	 *
342 	 * If RFHIGHPID is set (used during system boot), do not allocate
343 	 * low-numbered pids.
344 	 */
345 	trypid = lastpid + 1;
346 	if (flags & RFHIGHPID) {
347 		if (trypid < 10) {
348 			trypid = 10;
349 		}
350 	} else {
351 		if (randompid)
352 			trypid += arc4random() % randompid;
353 	}
354 retry:
355 	/*
356 	 * If the process ID prototype has wrapped around,
357 	 * restart somewhat above 0, as the low-numbered procs
358 	 * tend to include daemons that don't exit.
359 	 */
360 	if (trypid >= PID_MAX) {
361 		trypid = trypid % PID_MAX;
362 		if (trypid < 100)
363 			trypid += 100;
364 		pidchecked = 0;
365 	}
366 	if (trypid >= pidchecked) {
367 		int doingzomb = 0;
368 
369 		pidchecked = PID_MAX;
370 		/*
371 		 * Scan the active and zombie procs to check whether this pid
372 		 * is in use.  Remember the lowest pid that's greater
373 		 * than trypid, so we can avoid checking for a while.
374 		 */
375 		p2 = LIST_FIRST(&allproc);
376 again:
377 		for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
378 			PROC_LOCK(p2);
379 			while (p2->p_pid == trypid ||
380 			    p2->p_pgrp->pg_id == trypid ||
381 			    p2->p_session->s_sid == trypid) {
382 				trypid++;
383 				if (trypid >= pidchecked) {
384 					PROC_UNLOCK(p2);
385 					goto retry;
386 				}
387 			}
388 			if (p2->p_pid > trypid && pidchecked > p2->p_pid)
389 				pidchecked = p2->p_pid;
390 			if (p2->p_pgrp->pg_id > trypid &&
391 			    pidchecked > p2->p_pgrp->pg_id)
392 				pidchecked = p2->p_pgrp->pg_id;
393 			if (p2->p_session->s_sid > trypid &&
394 			    pidchecked > p2->p_session->s_sid)
395 				pidchecked = p2->p_session->s_sid;
396 			PROC_UNLOCK(p2);
397 		}
398 		if (!doingzomb) {
399 			doingzomb = 1;
400 			p2 = LIST_FIRST(&zombproc);
401 			goto again;
402 		}
403 	}
404 
405 	/*
406 	 * RFHIGHPID does not mess with the lastpid counter during boot.
407 	 */
408 	if (flags & RFHIGHPID)
409 		pidchecked = 0;
410 	else
411 		lastpid = trypid;
412 
413 	p2 = newproc;
414 	p2->p_stat = SIDL;			/* protect against others */
415 	p2->p_pid = trypid;
416 	LIST_INSERT_HEAD(&allproc, p2, p_list);
417 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
418 	sx_xunlock(&allproc_lock);
419 
420 	/*
421 	 * Malloc things while we don't hold any locks.
422 	 */
423 	if (flags & RFSIGSHARE) {
424 		MALLOC(newsigacts, struct sigacts *,
425 		    sizeof(struct sigacts), M_SUBPROC, M_WAITOK);
426 		newprocsig = NULL;
427 	} else {
428 		newsigacts = NULL;
429 		MALLOC(newprocsig, struct procsig *, sizeof(struct procsig),
430 		    M_SUBPROC, M_WAITOK);
431 	}
432 
433 	/*
434 	 * Copy filedesc.
435 	 * XXX: This is busted.  fd*() need to not take proc
436 	 * arguments or something.
437 	 */
438 	if (flags & RFCFDG)
439 		fd = fdinit(td);
440 	else if (flags & RFFDG) {
441 		FILEDESC_LOCK(p1->p_fd);
442 		fd = fdcopy(td);
443 		FILEDESC_UNLOCK(p1->p_fd);
444 	} else
445 		fd = fdshare(p1);
446 
447 	/*
448 	 * Make a proc table entry for the new process.
449 	 * Start by zeroing the section of proc that is zero-initialized,
450 	 * then copy the section that is copied directly from the parent.
451 	 */
452 	td2 = thread_get(p2);
453 	ke2 = &p2->p_kse;
454 	kg2 = &p2->p_ksegrp;
455 
456 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
457 
458 	bzero(&p2->p_startzero,
459 	    (unsigned) RANGEOF(struct proc, p_startzero, p_endzero));
460 	bzero(&ke2->ke_startzero,
461 	    (unsigned) RANGEOF(struct kse, ke_startzero, ke_endzero));
462 	bzero(&td2->td_startzero,
463 	    (unsigned) RANGEOF(struct thread, td_startzero, td_endzero));
464 	bzero(&kg2->kg_startzero,
465 	    (unsigned) RANGEOF(struct ksegrp, kg_startzero, kg_endzero));
466 
467 	mtx_init(&p2->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
468 	PROC_LOCK(p2);
469 	PROC_LOCK(p1);
470 
471 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
472 	    (unsigned) RANGEOF(struct proc, p_startcopy, p_endcopy));
473 	bcopy(&td->td_kse->ke_startcopy, &ke2->ke_startcopy,
474 	    (unsigned) RANGEOF(struct kse, ke_startcopy, ke_endcopy));
475 	bcopy(&td->td_startcopy, &td2->td_startcopy,
476 	    (unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy));
477 	bcopy(&td->td_ksegrp->kg_startcopy, &kg2->kg_startcopy,
478 	    (unsigned) RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy));
479 #undef RANGEOF
480 
481 	/*
482 	 * XXXKSE Theoretically only the running thread would get copied
483 	 * Others in the kernel would be 'aborted' in the child.
484 	 * i.e return E*something*
485 	 */
486 	proc_linkup(p2, kg2, ke2, td2);
487 
488 	/* note.. XXXKSE no pcb or u-area yet */
489 
490 	/*
491 	 * Duplicate sub-structures as needed.
492 	 * Increase reference counts on shared objects.
493 	 * The p_stats and p_sigacts substructs are set in vm_forkproc.
494 	 */
495 	p2->p_flag = 0;
496 	mtx_lock_spin(&sched_lock);
497 	p2->p_sflag = PS_INMEM;
498 	if (p1->p_sflag & PS_PROFIL)
499 		startprofclock(p2);
500 	mtx_unlock_spin(&sched_lock);
501 	p2->p_ucred = crhold(td->td_ucred);
502 	td2->td_ucred = crhold(p2->p_ucred);	/* XXXKSE */
503 
504 	/*
505 	 * Setup linkage for kernel based threading
506 	 */
507 	if((flags & RFTHREAD) != 0) {
508 		/*
509 		 * XXX: This assumes a leader is a parent or grandparent of
510 		 * all processes in a task.
511 		 */
512 		if (p1->p_leader != p1)
513 			PROC_LOCK(p1->p_leader);
514 		p2->p_peers = p1->p_peers;
515 		p1->p_peers = p2;
516 		p2->p_leader = p1->p_leader;
517 		if (p1->p_leader != p1)
518 			PROC_UNLOCK(p1->p_leader);
519 	} else {
520 		p2->p_peers = NULL;
521 		p2->p_leader = p2;
522 	}
523 
524 	pargs_hold(p2->p_args);
525 
526 	if (flags & RFSIGSHARE) {
527 		p2->p_procsig = p1->p_procsig;
528 		p2->p_procsig->ps_refcnt++;
529 		if (p1->p_sigacts == &p1->p_uarea->u_sigacts) {
530 			/*
531 			 * Set p_sigacts to the new shared structure.
532 			 * Note that this is updating p1->p_sigacts at the
533 			 * same time, since p_sigacts is just a pointer to
534 			 * the shared p_procsig->ps_sigacts.
535 			 */
536 			p2->p_sigacts  = newsigacts;
537 			newsigacts = NULL;
538 			*p2->p_sigacts = p1->p_uarea->u_sigacts;
539 		}
540 	} else {
541 		p2->p_procsig = newprocsig;
542 		newprocsig = NULL;
543 		bcopy(p1->p_procsig, p2->p_procsig, sizeof(*p2->p_procsig));
544 		p2->p_procsig->ps_refcnt = 1;
545 		p2->p_sigacts = NULL;	/* finished in vm_forkproc() */
546 	}
547 	if (flags & RFLINUXTHPN)
548 	        p2->p_sigparent = SIGUSR1;
549 	else
550 	        p2->p_sigparent = SIGCHLD;
551 
552 	/* Bump references to the text vnode (for procfs) */
553 	p2->p_textvp = p1->p_textvp;
554 	if (p2->p_textvp)
555 		VREF(p2->p_textvp);
556 	p2->p_fd = fd;
557 	PROC_UNLOCK(p1);
558 	PROC_UNLOCK(p2);
559 
560 	/*
561 	 * If p_limit is still copy-on-write, bump refcnt,
562 	 * otherwise get a copy that won't be modified.
563 	 * (If PL_SHAREMOD is clear, the structure is shared
564 	 * copy-on-write.)
565 	 */
566 	if (p1->p_limit->p_lflags & PL_SHAREMOD)
567 		p2->p_limit = limcopy(p1->p_limit);
568 	else {
569 		p2->p_limit = p1->p_limit;
570 		p2->p_limit->p_refcnt++;
571 	}
572 
573 	sx_xlock(&proctree_lock);
574 	PGRP_LOCK(p1->p_pgrp);
575 	PROC_LOCK(p2);
576 	PROC_LOCK(p1);
577 
578 	/*
579 	 * Preserve some more flags in subprocess.  PS_PROFIL has already
580 	 * been preserved.
581 	 */
582 	p2->p_flag |= p1->p_flag & (P_SUGID | P_ALTSTACK);
583 	SESS_LOCK(p1->p_session);
584 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
585 		p2->p_flag |= P_CONTROLT;
586 	SESS_UNLOCK(p1->p_session);
587 	if (flags & RFPPWAIT)
588 		p2->p_flag |= P_PPWAIT;
589 
590 	LIST_INSERT_AFTER(p1, p2, p_pglist);
591 	PGRP_UNLOCK(p1->p_pgrp);
592 	LIST_INIT(&p2->p_children);
593 	LIST_INIT(&td2->td_contested); /* XXXKSE only 1 thread? */
594 
595 	callout_init(&p2->p_itcallout, 0);
596 	callout_init(&td2->td_slpcallout, 1); /* XXXKSE */
597 
598 #ifdef KTRACE
599 	/*
600 	 * Copy traceflag and tracefile if enabled.
601 	 */
602 	mtx_lock(&ktrace_mtx);
603 	KASSERT(p2->p_tracep == NULL, ("new process has a ktrace vnode"));
604 	if (p1->p_traceflag & KTRFAC_INHERIT) {
605 		p2->p_traceflag = p1->p_traceflag;
606 		if ((p2->p_tracep = p1->p_tracep) != NULL)
607 			VREF(p2->p_tracep);
608 	}
609 	mtx_unlock(&ktrace_mtx);
610 #endif
611 
612 	/*
613 	 * set priority of child to be that of parent
614 	 * XXXKSE hey! copying the estcpu seems dodgy.. should split it..
615 	 */
616 	mtx_lock_spin(&sched_lock);
617 	p2->p_ksegrp.kg_estcpu = p1->p_ksegrp.kg_estcpu;
618 	mtx_unlock_spin(&sched_lock);
619 
620 	/*
621 	 * This begins the section where we must prevent the parent
622 	 * from being swapped.
623 	 */
624 	_PHOLD(p1);
625 	PROC_UNLOCK(p1);
626 
627 	/*
628 	 * Attach the new process to its parent.
629 	 *
630 	 * If RFNOWAIT is set, the newly created process becomes a child
631 	 * of init.  This effectively disassociates the child from the
632 	 * parent.
633 	 */
634 	if (flags & RFNOWAIT)
635 		pptr = initproc;
636 	else
637 		pptr = p1;
638 	p2->p_pptr = pptr;
639 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
640 	PROC_UNLOCK(p2);
641 	sx_xunlock(&proctree_lock);
642 
643 	/*
644 	 * XXXKSE: In KSE, there would be a race here if one thread was
645 	 * dieing due to a signal (or calling exit1() for that matter) while
646 	 * another thread was calling fork1().  Not sure how KSE wants to work
647 	 * around that.  The problem is that up until the point above, if p1
648 	 * gets killed, it won't find p2 in its list in order for it to be
649 	 * reparented.  Alternatively, we could add a new p_flag that gets set
650 	 * before we reparent all the children that we check above and just
651 	 * use init as our parent if that if that flag is set.  (Either that
652 	 * or abort the fork if the flag is set since our parent died trying
653 	 * to fork us (which is evil)).
654 	 */
655 
656 	KASSERT(newprocsig == NULL, ("unused newprocsig"));
657 	if (newsigacts != NULL)
658 		FREE(newsigacts, M_SUBPROC);
659 	/*
660 	 * Finish creating the child process.  It will return via a different
661 	 * execution path later.  (ie: directly into user mode)
662 	 */
663 	vm_forkproc(td, p2, td2, flags);
664 
665 	if (flags == (RFFDG | RFPROC)) {
666 		cnt.v_forks++;
667 		cnt.v_forkpages += p2->p_vmspace->vm_dsize +
668 		    p2->p_vmspace->vm_ssize;
669 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
670 		cnt.v_vforks++;
671 		cnt.v_vforkpages += p2->p_vmspace->vm_dsize +
672 		    p2->p_vmspace->vm_ssize;
673 	} else if (p1 == &proc0) {
674 		cnt.v_kthreads++;
675 		cnt.v_kthreadpages += p2->p_vmspace->vm_dsize +
676 		    p2->p_vmspace->vm_ssize;
677 	} else {
678 		cnt.v_rforks++;
679 		cnt.v_rforkpages += p2->p_vmspace->vm_dsize +
680 		    p2->p_vmspace->vm_ssize;
681 	}
682 
683 	/*
684 	 * Both processes are set up, now check if any loadable modules want
685 	 * to adjust anything.
686 	 *   What if they have an error? XXX
687 	 */
688 	sx_slock(&fork_list_lock);
689 	TAILQ_FOREACH(ep, &fork_list, next) {
690 		(*ep->function)(p1, p2, flags);
691 	}
692 	sx_sunlock(&fork_list_lock);
693 
694 	/*
695 	 * If RFSTOPPED not requested, make child runnable and add to
696 	 * run queue.
697 	 */
698 	microtime(&(p2->p_stats->p_start));
699 	p2->p_acflag = AFORK;
700 	if ((flags & RFSTOPPED) == 0) {
701 		mtx_lock_spin(&sched_lock);
702 		p2->p_stat = SRUN;
703 		setrunqueue(td2);
704 		mtx_unlock_spin(&sched_lock);
705 	}
706 
707 	/*
708 	 * Now can be swapped.
709 	 */
710 	PROC_LOCK(p1);
711 	_PRELE(p1);
712 
713 	/*
714 	 * tell any interested parties about the new process
715 	 */
716 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
717 	PROC_UNLOCK(p1);
718 
719 	/*
720 	 * Preserve synchronization semantics of vfork.  If waiting for
721 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
722 	 * proc (in case of exit).
723 	 */
724 	PROC_LOCK(p2);
725 	while (p2->p_flag & P_PPWAIT)
726 		msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
727 	PROC_UNLOCK(p2);
728 
729 	/*
730 	 * Return child proc pointer to parent.
731 	 */
732 	*procp = p2;
733 	return (0);
734 }
735 
736 /*
737  * The next two functionms are general routines to handle adding/deleting
738  * items on the fork callout list.
739  *
740  * at_fork():
741  * Take the arguments given and put them onto the fork callout list,
742  * However first make sure that it's not already there.
743  * Returns 0 on success or a standard error number.
744  */
745 
746 int
747 at_fork(function)
748 	forklist_fn function;
749 {
750 	struct forklist *ep;
751 
752 #ifdef INVARIANTS
753 	/* let the programmer know if he's been stupid */
754 	if (rm_at_fork(function))
755 		printf("WARNING: fork callout entry (%p) already present\n",
756 		    function);
757 #endif
758 	ep = malloc(sizeof(*ep), M_ATFORK, M_NOWAIT);
759 	if (ep == NULL)
760 		return (ENOMEM);
761 	ep->function = function;
762 	sx_xlock(&fork_list_lock);
763 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
764 	sx_xunlock(&fork_list_lock);
765 	return (0);
766 }
767 
768 /*
769  * Scan the exit callout list for the given item and remove it..
770  * Returns the number of items removed (0 or 1)
771  */
772 
773 int
774 rm_at_fork(function)
775 	forklist_fn function;
776 {
777 	struct forklist *ep;
778 
779 	sx_xlock(&fork_list_lock);
780 	TAILQ_FOREACH(ep, &fork_list, next) {
781 		if (ep->function == function) {
782 			TAILQ_REMOVE(&fork_list, ep, next);
783 			sx_xunlock(&fork_list_lock);
784 			free(ep, M_ATFORK);
785 			return(1);
786 		}
787 	}
788 	sx_xunlock(&fork_list_lock);
789 	return (0);
790 }
791 
792 /*
793  * Handle the return of a child process from fork1().  This function
794  * is called from the MD fork_trampoline() entry point.
795  */
796 void
797 fork_exit(callout, arg, frame)
798 	void (*callout)(void *, struct trapframe *);
799 	void *arg;
800 	struct trapframe *frame;
801 {
802 	struct thread *td = curthread;
803 	struct proc *p = td->td_proc;
804 
805 	td->td_kse->ke_oncpu = PCPU_GET(cpuid);
806 	/*
807 	 * Finish setting up thread glue.  We need to initialize
808 	 * the thread into a td_critnest=1 state.  Some platforms
809 	 * may have already partially or fully initialized td_critnest
810 	 * and/or td_md.md_savecrit (when applciable).
811 	 *
812 	 * see <arch>/<arch>/critical.c
813 	 */
814 	sched_lock.mtx_lock = (uintptr_t)td;
815 	sched_lock.mtx_recurse = 0;
816 	cpu_critical_fork_exit();
817 	CTR3(KTR_PROC, "fork_exit: new proc %p (pid %d, %s)", p, p->p_pid,
818 	    p->p_comm);
819 	if (PCPU_GET(switchtime.sec) == 0)
820 		binuptime(PCPU_PTR(switchtime));
821 	PCPU_SET(switchticks, ticks);
822 	mtx_unlock_spin(&sched_lock);
823 
824 	/*
825 	 * cpu_set_fork_handler intercepts this function call to
826          * have this call a non-return function to stay in kernel mode.
827          * initproc has its own fork handler, but it does return.
828          */
829 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
830 	callout(arg, frame);
831 
832 	/*
833 	 * Check if a kernel thread misbehaved and returned from its main
834 	 * function.
835 	 */
836 	PROC_LOCK(p);
837 	if (p->p_flag & P_KTHREAD) {
838 		PROC_UNLOCK(p);
839 		mtx_lock(&Giant);
840 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
841 		    p->p_comm, p->p_pid);
842 		kthread_exit(0);
843 	}
844 	PROC_UNLOCK(p);
845 	mtx_assert(&Giant, MA_NOTOWNED);
846 }
847 
848 /*
849  * Simplified back end of syscall(), used when returning from fork()
850  * directly into user mode.  Giant is not held on entry, and must not
851  * be held on return.  This function is passed in to fork_exit() as the
852  * first parameter and is called when returning to a new userland process.
853  */
854 void
855 fork_return(td, frame)
856 	struct thread *td;
857 	struct trapframe *frame;
858 {
859 
860 	userret(td, frame, 0);
861 #ifdef KTRACE
862 	if (KTRPOINT(td, KTR_SYSRET))
863 		ktrsysret(SYS_fork, 0, 0);
864 #endif
865 	mtx_assert(&Giant, MA_NOTOWNED);
866 }
867