xref: /freebsd/sys/kern/kern_fork.c (revision 08c4a937a6685f05667996228898521fc453f8f3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 #include "opt_kstack_pages.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/bitstring.h>
48 #include <sys/sysproto.h>
49 #include <sys/eventhandler.h>
50 #include <sys/fcntl.h>
51 #include <sys/filedesc.h>
52 #include <sys/jail.h>
53 #include <sys/kernel.h>
54 #include <sys/kthread.h>
55 #include <sys/sysctl.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/mutex.h>
59 #include <sys/priv.h>
60 #include <sys/proc.h>
61 #include <sys/procdesc.h>
62 #include <sys/pioctl.h>
63 #include <sys/ptrace.h>
64 #include <sys/racct.h>
65 #include <sys/resourcevar.h>
66 #include <sys/sched.h>
67 #include <sys/syscall.h>
68 #include <sys/vmmeter.h>
69 #include <sys/vnode.h>
70 #include <sys/acct.h>
71 #include <sys/ktr.h>
72 #include <sys/ktrace.h>
73 #include <sys/unistd.h>
74 #include <sys/sdt.h>
75 #include <sys/sx.h>
76 #include <sys/sysent.h>
77 #include <sys/signalvar.h>
78 
79 #include <security/audit/audit.h>
80 #include <security/mac/mac_framework.h>
81 
82 #include <vm/vm.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_extern.h>
86 #include <vm/uma.h>
87 
88 #ifdef KDTRACE_HOOKS
89 #include <sys/dtrace_bsd.h>
90 dtrace_fork_func_t	dtrace_fasttrap_fork;
91 #endif
92 
93 SDT_PROVIDER_DECLARE(proc);
94 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
95 
96 #ifndef _SYS_SYSPROTO_H_
97 struct fork_args {
98 	int     dummy;
99 };
100 #endif
101 
102 EVENTHANDLER_LIST_DECLARE(process_fork);
103 
104 /* ARGSUSED */
105 int
106 sys_fork(struct thread *td, struct fork_args *uap)
107 {
108 	struct fork_req fr;
109 	int error, pid;
110 
111 	bzero(&fr, sizeof(fr));
112 	fr.fr_flags = RFFDG | RFPROC;
113 	fr.fr_pidp = &pid;
114 	error = fork1(td, &fr);
115 	if (error == 0) {
116 		td->td_retval[0] = pid;
117 		td->td_retval[1] = 0;
118 	}
119 	return (error);
120 }
121 
122 /* ARGUSED */
123 int
124 sys_pdfork(struct thread *td, struct pdfork_args *uap)
125 {
126 	struct fork_req fr;
127 	int error, fd, pid;
128 
129 	bzero(&fr, sizeof(fr));
130 	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
131 	fr.fr_pidp = &pid;
132 	fr.fr_pd_fd = &fd;
133 	fr.fr_pd_flags = uap->flags;
134 	/*
135 	 * It is necessary to return fd by reference because 0 is a valid file
136 	 * descriptor number, and the child needs to be able to distinguish
137 	 * itself from the parent using the return value.
138 	 */
139 	error = fork1(td, &fr);
140 	if (error == 0) {
141 		td->td_retval[0] = pid;
142 		td->td_retval[1] = 0;
143 		error = copyout(&fd, uap->fdp, sizeof(fd));
144 	}
145 	return (error);
146 }
147 
148 /* ARGSUSED */
149 int
150 sys_vfork(struct thread *td, struct vfork_args *uap)
151 {
152 	struct fork_req fr;
153 	int error, pid;
154 
155 	bzero(&fr, sizeof(fr));
156 	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
157 	fr.fr_pidp = &pid;
158 	error = fork1(td, &fr);
159 	if (error == 0) {
160 		td->td_retval[0] = pid;
161 		td->td_retval[1] = 0;
162 	}
163 	return (error);
164 }
165 
166 int
167 sys_rfork(struct thread *td, struct rfork_args *uap)
168 {
169 	struct fork_req fr;
170 	int error, pid;
171 
172 	/* Don't allow kernel-only flags. */
173 	if ((uap->flags & RFKERNELONLY) != 0)
174 		return (EINVAL);
175 
176 	AUDIT_ARG_FFLAGS(uap->flags);
177 	bzero(&fr, sizeof(fr));
178 	fr.fr_flags = uap->flags;
179 	fr.fr_pidp = &pid;
180 	error = fork1(td, &fr);
181 	if (error == 0) {
182 		td->td_retval[0] = pid;
183 		td->td_retval[1] = 0;
184 	}
185 	return (error);
186 }
187 
188 int	nprocs = 1;		/* process 0 */
189 int	lastpid = 0;
190 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
191     "Last used PID");
192 
193 /*
194  * Random component to lastpid generation.  We mix in a random factor to make
195  * it a little harder to predict.  We sanity check the modulus value to avoid
196  * doing it in critical paths.  Don't let it be too small or we pointlessly
197  * waste randomness entropy, and don't let it be impossibly large.  Using a
198  * modulus that is too big causes a LOT more process table scans and slows
199  * down fork processing as the pidchecked caching is defeated.
200  */
201 static int randompid = 0;
202 
203 static int
204 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
205 {
206 	int error, pid;
207 
208 	error = sysctl_wire_old_buffer(req, sizeof(int));
209 	if (error != 0)
210 		return(error);
211 	sx_xlock(&allproc_lock);
212 	pid = randompid;
213 	error = sysctl_handle_int(oidp, &pid, 0, req);
214 	if (error == 0 && req->newptr != NULL) {
215 		if (pid == 0)
216 			randompid = 0;
217 		else if (pid == 1)
218 			/* generate a random PID modulus between 100 and 1123 */
219 			randompid = 100 + arc4random() % 1024;
220 		else if (pid < 0 || pid > pid_max - 100)
221 			/* out of range */
222 			randompid = pid_max - 100;
223 		else if (pid < 100)
224 			/* Make it reasonable */
225 			randompid = 100;
226 		else
227 			randompid = pid;
228 	}
229 	sx_xunlock(&allproc_lock);
230 	return (error);
231 }
232 
233 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
234     0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value");
235 
236 extern bitstr_t proc_id_pidmap;
237 extern bitstr_t proc_id_grpidmap;
238 extern bitstr_t proc_id_sessidmap;
239 extern bitstr_t proc_id_reapmap;
240 
241 static int
242 fork_findpid(int flags)
243 {
244 	pid_t result;
245 	int trypid;
246 
247 	/*
248 	 * Find an unused process ID.  We remember a range of unused IDs
249 	 * ready to use (from lastpid+1 through pidchecked-1).
250 	 *
251 	 * If RFHIGHPID is set (used during system boot), do not allocate
252 	 * low-numbered pids.
253 	 */
254 	trypid = lastpid + 1;
255 	if (flags & RFHIGHPID) {
256 		if (trypid < 10)
257 			trypid = 10;
258 	} else {
259 		if (randompid)
260 			trypid += arc4random() % randompid;
261 	}
262 	mtx_lock(&procid_lock);
263 retry:
264 	/*
265 	 * If the process ID prototype has wrapped around,
266 	 * restart somewhat above 0, as the low-numbered procs
267 	 * tend to include daemons that don't exit.
268 	 */
269 	if (trypid >= pid_max) {
270 		trypid = trypid % pid_max;
271 		if (trypid < 100)
272 			trypid += 100;
273 	}
274 
275 	bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result);
276 	if (result == -1)
277 		goto retry;
278 	if (bit_test(&proc_id_grpidmap, result) ||
279 	    bit_test(&proc_id_sessidmap, result) ||
280 	    bit_test(&proc_id_reapmap, result)) {
281 		trypid++;
282 		goto retry;
283 	}
284 
285 	/*
286 	 * RFHIGHPID does not mess with the lastpid counter during boot.
287 	 */
288 	if ((flags & RFHIGHPID) == 0)
289 		lastpid = result;
290 
291 	bit_set(&proc_id_pidmap, result);
292 	mtx_unlock(&procid_lock);
293 
294 	return (result);
295 }
296 
297 static int
298 fork_norfproc(struct thread *td, int flags)
299 {
300 	int error;
301 	struct proc *p1;
302 
303 	KASSERT((flags & RFPROC) == 0,
304 	    ("fork_norfproc called with RFPROC set"));
305 	p1 = td->td_proc;
306 
307 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
308 	    (flags & (RFCFDG | RFFDG))) {
309 		PROC_LOCK(p1);
310 		if (thread_single(p1, SINGLE_BOUNDARY)) {
311 			PROC_UNLOCK(p1);
312 			return (ERESTART);
313 		}
314 		PROC_UNLOCK(p1);
315 	}
316 
317 	error = vm_forkproc(td, NULL, NULL, NULL, flags);
318 	if (error)
319 		goto fail;
320 
321 	/*
322 	 * Close all file descriptors.
323 	 */
324 	if (flags & RFCFDG) {
325 		struct filedesc *fdtmp;
326 		fdtmp = fdinit(td->td_proc->p_fd, false);
327 		fdescfree(td);
328 		p1->p_fd = fdtmp;
329 	}
330 
331 	/*
332 	 * Unshare file descriptors (from parent).
333 	 */
334 	if (flags & RFFDG)
335 		fdunshare(td);
336 
337 fail:
338 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
339 	    (flags & (RFCFDG | RFFDG))) {
340 		PROC_LOCK(p1);
341 		thread_single_end(p1, SINGLE_BOUNDARY);
342 		PROC_UNLOCK(p1);
343 	}
344 	return (error);
345 }
346 
347 static void
348 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
349     struct vmspace *vm2, struct file *fp_procdesc)
350 {
351 	struct proc *p1, *pptr;
352 	int trypid;
353 	struct filedesc *fd;
354 	struct filedesc_to_leader *fdtol;
355 	struct sigacts *newsigacts;
356 
357 	sx_assert(&allproc_lock, SX_XLOCKED);
358 
359 	p1 = td->td_proc;
360 
361 	trypid = fork_findpid(fr->fr_flags);
362 	p2->p_state = PRS_NEW;		/* protect against others */
363 	p2->p_pid = trypid;
364 	AUDIT_ARG_PID(p2->p_pid);
365 	LIST_INSERT_HEAD(&allproc, p2, p_list);
366 	allproc_gen++;
367 	sx_xlock(PIDHASHLOCK(p2->p_pid));
368 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
369 	sx_xunlock(PIDHASHLOCK(p2->p_pid));
370 	PROC_LOCK(p2);
371 	PROC_LOCK(p1);
372 
373 	sx_xunlock(&allproc_lock);
374 
375 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
376 	    __rangeof(struct proc, p_startcopy, p_endcopy));
377 	pargs_hold(p2->p_args);
378 
379 	PROC_UNLOCK(p1);
380 
381 	bzero(&p2->p_startzero,
382 	    __rangeof(struct proc, p_startzero, p_endzero));
383 
384 	/* Tell the prison that we exist. */
385 	prison_proc_hold(p2->p_ucred->cr_prison);
386 
387 	PROC_UNLOCK(p2);
388 
389 	tidhash_add(td2);
390 
391 	/*
392 	 * Malloc things while we don't hold any locks.
393 	 */
394 	if (fr->fr_flags & RFSIGSHARE)
395 		newsigacts = NULL;
396 	else
397 		newsigacts = sigacts_alloc();
398 
399 	/*
400 	 * Copy filedesc.
401 	 */
402 	if (fr->fr_flags & RFCFDG) {
403 		fd = fdinit(p1->p_fd, false);
404 		fdtol = NULL;
405 	} else if (fr->fr_flags & RFFDG) {
406 		fd = fdcopy(p1->p_fd);
407 		fdtol = NULL;
408 	} else {
409 		fd = fdshare(p1->p_fd);
410 		if (p1->p_fdtol == NULL)
411 			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
412 			    p1->p_leader);
413 		if ((fr->fr_flags & RFTHREAD) != 0) {
414 			/*
415 			 * Shared file descriptor table, and shared
416 			 * process leaders.
417 			 */
418 			fdtol = p1->p_fdtol;
419 			FILEDESC_XLOCK(p1->p_fd);
420 			fdtol->fdl_refcount++;
421 			FILEDESC_XUNLOCK(p1->p_fd);
422 		} else {
423 			/*
424 			 * Shared file descriptor table, and different
425 			 * process leaders.
426 			 */
427 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
428 			    p1->p_fd, p2);
429 		}
430 	}
431 	/*
432 	 * Make a proc table entry for the new process.
433 	 * Start by zeroing the section of proc that is zero-initialized,
434 	 * then copy the section that is copied directly from the parent.
435 	 */
436 
437 	PROC_LOCK(p2);
438 	PROC_LOCK(p1);
439 
440 	bzero(&td2->td_startzero,
441 	    __rangeof(struct thread, td_startzero, td_endzero));
442 
443 	bcopy(&td->td_startcopy, &td2->td_startcopy,
444 	    __rangeof(struct thread, td_startcopy, td_endcopy));
445 
446 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
447 	td2->td_sigstk = td->td_sigstk;
448 	td2->td_flags = TDF_INMEM;
449 	td2->td_lend_user_pri = PRI_MAX;
450 
451 #ifdef VIMAGE
452 	td2->td_vnet = NULL;
453 	td2->td_vnet_lpush = NULL;
454 #endif
455 
456 	/*
457 	 * Allow the scheduler to initialize the child.
458 	 */
459 	thread_lock(td);
460 	sched_fork(td, td2);
461 	thread_unlock(td);
462 
463 	/*
464 	 * Duplicate sub-structures as needed.
465 	 * Increase reference counts on shared objects.
466 	 */
467 	p2->p_flag = P_INMEM;
468 	p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP);
469 	p2->p_swtick = ticks;
470 	if (p1->p_flag & P_PROFIL)
471 		startprofclock(p2);
472 
473 	if (fr->fr_flags & RFSIGSHARE) {
474 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
475 	} else {
476 		sigacts_copy(newsigacts, p1->p_sigacts);
477 		p2->p_sigacts = newsigacts;
478 	}
479 
480 	if (fr->fr_flags & RFTSIGZMB)
481 	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
482 	else if (fr->fr_flags & RFLINUXTHPN)
483 	        p2->p_sigparent = SIGUSR1;
484 	else
485 	        p2->p_sigparent = SIGCHLD;
486 
487 	p2->p_textvp = p1->p_textvp;
488 	p2->p_fd = fd;
489 	p2->p_fdtol = fdtol;
490 
491 	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
492 		p2->p_flag |= P_PROTECTED;
493 		p2->p_flag2 |= P2_INHERIT_PROTECTED;
494 	}
495 
496 	/*
497 	 * p_limit is copy-on-write.  Bump its refcount.
498 	 */
499 	lim_fork(p1, p2);
500 
501 	thread_cow_get_proc(td2, p2);
502 
503 	pstats_fork(p1->p_stats, p2->p_stats);
504 
505 	PROC_UNLOCK(p1);
506 	PROC_UNLOCK(p2);
507 
508 	/* Bump references to the text vnode (for procfs). */
509 	if (p2->p_textvp)
510 		vrefact(p2->p_textvp);
511 
512 	/*
513 	 * Set up linkage for kernel based threading.
514 	 */
515 	if ((fr->fr_flags & RFTHREAD) != 0) {
516 		mtx_lock(&ppeers_lock);
517 		p2->p_peers = p1->p_peers;
518 		p1->p_peers = p2;
519 		p2->p_leader = p1->p_leader;
520 		mtx_unlock(&ppeers_lock);
521 		PROC_LOCK(p1->p_leader);
522 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
523 			PROC_UNLOCK(p1->p_leader);
524 			/*
525 			 * The task leader is exiting, so process p1 is
526 			 * going to be killed shortly.  Since p1 obviously
527 			 * isn't dead yet, we know that the leader is either
528 			 * sending SIGKILL's to all the processes in this
529 			 * task or is sleeping waiting for all the peers to
530 			 * exit.  We let p1 complete the fork, but we need
531 			 * to go ahead and kill the new process p2 since
532 			 * the task leader may not get a chance to send
533 			 * SIGKILL to it.  We leave it on the list so that
534 			 * the task leader will wait for this new process
535 			 * to commit suicide.
536 			 */
537 			PROC_LOCK(p2);
538 			kern_psignal(p2, SIGKILL);
539 			PROC_UNLOCK(p2);
540 		} else
541 			PROC_UNLOCK(p1->p_leader);
542 	} else {
543 		p2->p_peers = NULL;
544 		p2->p_leader = p2;
545 	}
546 
547 	sx_xlock(&proctree_lock);
548 	PGRP_LOCK(p1->p_pgrp);
549 	PROC_LOCK(p2);
550 	PROC_LOCK(p1);
551 
552 	/*
553 	 * Preserve some more flags in subprocess.  P_PROFIL has already
554 	 * been preserved.
555 	 */
556 	p2->p_flag |= p1->p_flag & P_SUGID;
557 	td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING;
558 	SESS_LOCK(p1->p_session);
559 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
560 		p2->p_flag |= P_CONTROLT;
561 	SESS_UNLOCK(p1->p_session);
562 	if (fr->fr_flags & RFPPWAIT)
563 		p2->p_flag |= P_PPWAIT;
564 
565 	p2->p_pgrp = p1->p_pgrp;
566 	LIST_INSERT_AFTER(p1, p2, p_pglist);
567 	PGRP_UNLOCK(p1->p_pgrp);
568 	LIST_INIT(&p2->p_children);
569 	LIST_INIT(&p2->p_orphans);
570 
571 	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
572 
573 	/*
574 	 * If PF_FORK is set, the child process inherits the
575 	 * procfs ioctl flags from its parent.
576 	 */
577 	if (p1->p_pfsflags & PF_FORK) {
578 		p2->p_stops = p1->p_stops;
579 		p2->p_pfsflags = p1->p_pfsflags;
580 	}
581 
582 	/*
583 	 * This begins the section where we must prevent the parent
584 	 * from being swapped.
585 	 */
586 	_PHOLD(p1);
587 	PROC_UNLOCK(p1);
588 
589 	/*
590 	 * Attach the new process to its parent.
591 	 *
592 	 * If RFNOWAIT is set, the newly created process becomes a child
593 	 * of init.  This effectively disassociates the child from the
594 	 * parent.
595 	 */
596 	if ((fr->fr_flags & RFNOWAIT) != 0) {
597 		pptr = p1->p_reaper;
598 		p2->p_reaper = pptr;
599 	} else {
600 		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
601 		    p1 : p1->p_reaper;
602 		pptr = p1;
603 	}
604 	p2->p_pptr = pptr;
605 	p2->p_oppid = pptr->p_pid;
606 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
607 	LIST_INIT(&p2->p_reaplist);
608 	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
609 	if (p2->p_reaper == p1 && p1 != initproc) {
610 		p2->p_reapsubtree = p2->p_pid;
611 		proc_id_set_cond(PROC_ID_REAP, p2->p_pid);
612 	}
613 	sx_xunlock(&proctree_lock);
614 
615 	/* Inform accounting that we have forked. */
616 	p2->p_acflag = AFORK;
617 	PROC_UNLOCK(p2);
618 
619 #ifdef KTRACE
620 	ktrprocfork(p1, p2);
621 #endif
622 
623 	/*
624 	 * Finish creating the child process.  It will return via a different
625 	 * execution path later.  (ie: directly into user mode)
626 	 */
627 	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
628 
629 	if (fr->fr_flags == (RFFDG | RFPROC)) {
630 		VM_CNT_INC(v_forks);
631 		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
632 		    p2->p_vmspace->vm_ssize);
633 	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
634 		VM_CNT_INC(v_vforks);
635 		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
636 		    p2->p_vmspace->vm_ssize);
637 	} else if (p1 == &proc0) {
638 		VM_CNT_INC(v_kthreads);
639 		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
640 		    p2->p_vmspace->vm_ssize);
641 	} else {
642 		VM_CNT_INC(v_rforks);
643 		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
644 		    p2->p_vmspace->vm_ssize);
645 	}
646 
647 	/*
648 	 * Associate the process descriptor with the process before anything
649 	 * can happen that might cause that process to need the descriptor.
650 	 * However, don't do this until after fork(2) can no longer fail.
651 	 */
652 	if (fr->fr_flags & RFPROCDESC)
653 		procdesc_new(p2, fr->fr_pd_flags);
654 
655 	/*
656 	 * Both processes are set up, now check if any loadable modules want
657 	 * to adjust anything.
658 	 */
659 	EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
660 
661 	/*
662 	 * Set the child start time and mark the process as being complete.
663 	 */
664 	PROC_LOCK(p2);
665 	PROC_LOCK(p1);
666 	microuptime(&p2->p_stats->p_start);
667 	PROC_SLOCK(p2);
668 	p2->p_state = PRS_NORMAL;
669 	PROC_SUNLOCK(p2);
670 
671 #ifdef KDTRACE_HOOKS
672 	/*
673 	 * Tell the DTrace fasttrap provider about the new process so that any
674 	 * tracepoints inherited from the parent can be removed. We have to do
675 	 * this only after p_state is PRS_NORMAL since the fasttrap module will
676 	 * use pfind() later on.
677 	 */
678 	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
679 		dtrace_fasttrap_fork(p1, p2);
680 #endif
681 	if (fr->fr_flags & RFPPWAIT) {
682 		td->td_pflags |= TDP_RFPPWAIT;
683 		td->td_rfppwait_p = p2;
684 		td->td_dbgflags |= TDB_VFORK;
685 	}
686 	PROC_UNLOCK(p2);
687 
688 	/*
689 	 * Now can be swapped.
690 	 */
691 	_PRELE(p1);
692 	PROC_UNLOCK(p1);
693 
694 	/*
695 	 * Tell any interested parties about the new process.
696 	 */
697 	knote_fork(p1->p_klist, p2->p_pid);
698 	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
699 
700 	if (fr->fr_flags & RFPROCDESC) {
701 		procdesc_finit(p2->p_procdesc, fp_procdesc);
702 		fdrop(fp_procdesc, td);
703 	}
704 
705 	/*
706 	 * Speculative check for PTRACE_FORK. PTRACE_FORK is not
707 	 * synced with forks in progress so it is OK if we miss it
708 	 * if being set atm.
709 	 */
710 	if ((p1->p_ptevents & PTRACE_FORK) != 0) {
711 		sx_xlock(&proctree_lock);
712 		PROC_LOCK(p2);
713 
714 		/*
715 		 * p1->p_ptevents & p1->p_pptr are protected by both
716 		 * process and proctree locks for modifications,
717 		 * so owning proctree_lock allows the race-free read.
718 		 */
719 		if ((p1->p_ptevents & PTRACE_FORK) != 0) {
720 			/*
721 			 * Arrange for debugger to receive the fork event.
722 			 *
723 			 * We can report PL_FLAG_FORKED regardless of
724 			 * P_FOLLOWFORK settings, but it does not make a sense
725 			 * for runaway child.
726 			 */
727 			td->td_dbgflags |= TDB_FORK;
728 			td->td_dbg_forked = p2->p_pid;
729 			td2->td_dbgflags |= TDB_STOPATFORK;
730 			proc_set_traced(p2, true);
731 			CTR2(KTR_PTRACE,
732 			    "do_fork: attaching to new child pid %d: oppid %d",
733 			    p2->p_pid, p2->p_oppid);
734 			proc_reparent(p2, p1->p_pptr, false);
735 		}
736 		PROC_UNLOCK(p2);
737 		sx_xunlock(&proctree_lock);
738 	}
739 
740 	racct_proc_fork_done(p2);
741 
742 	if ((fr->fr_flags & RFSTOPPED) == 0) {
743 		if (fr->fr_pidp != NULL)
744 			*fr->fr_pidp = p2->p_pid;
745 		/*
746 		 * If RFSTOPPED not requested, make child runnable and
747 		 * add to run queue.
748 		 */
749 		thread_lock(td2);
750 		TD_SET_CAN_RUN(td2);
751 		sched_add(td2, SRQ_BORING);
752 		thread_unlock(td2);
753 	} else {
754 		*fr->fr_procp = p2;
755 	}
756 }
757 
758 int
759 fork1(struct thread *td, struct fork_req *fr)
760 {
761 	struct proc *p1, *newproc;
762 	struct thread *td2;
763 	struct vmspace *vm2;
764 	struct file *fp_procdesc;
765 	vm_ooffset_t mem_charged;
766 	int error, nprocs_new, ok;
767 	static int curfail;
768 	static struct timeval lastfail;
769 	int flags, pages;
770 
771 	flags = fr->fr_flags;
772 	pages = fr->fr_pages;
773 
774 	if ((flags & RFSTOPPED) != 0)
775 		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
776 	else
777 		MPASS(fr->fr_procp == NULL);
778 
779 	/* Check for the undefined or unimplemented flags. */
780 	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
781 		return (EINVAL);
782 
783 	/* Signal value requires RFTSIGZMB. */
784 	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
785 		return (EINVAL);
786 
787 	/* Can't copy and clear. */
788 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
789 		return (EINVAL);
790 
791 	/* Check the validity of the signal number. */
792 	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
793 		return (EINVAL);
794 
795 	if ((flags & RFPROCDESC) != 0) {
796 		/* Can't not create a process yet get a process descriptor. */
797 		if ((flags & RFPROC) == 0)
798 			return (EINVAL);
799 
800 		/* Must provide a place to put a procdesc if creating one. */
801 		if (fr->fr_pd_fd == NULL)
802 			return (EINVAL);
803 
804 		/* Check if we are using supported flags. */
805 		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
806 			return (EINVAL);
807 	}
808 
809 	p1 = td->td_proc;
810 
811 	/*
812 	 * Here we don't create a new process, but we divorce
813 	 * certain parts of a process from itself.
814 	 */
815 	if ((flags & RFPROC) == 0) {
816 		if (fr->fr_procp != NULL)
817 			*fr->fr_procp = NULL;
818 		else if (fr->fr_pidp != NULL)
819 			*fr->fr_pidp = 0;
820 		return (fork_norfproc(td, flags));
821 	}
822 
823 	fp_procdesc = NULL;
824 	newproc = NULL;
825 	vm2 = NULL;
826 
827 	/*
828 	 * Increment the nprocs resource before allocations occur.
829 	 * Although process entries are dynamically created, we still
830 	 * keep a global limit on the maximum number we will
831 	 * create. There are hard-limits as to the number of processes
832 	 * that can run, established by the KVA and memory usage for
833 	 * the process data.
834 	 *
835 	 * Don't allow a nonprivileged user to use the last ten
836 	 * processes; don't let root exceed the limit.
837 	 */
838 	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
839 	if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred,
840 	    PRIV_MAXPROC, 0) != 0) || nprocs_new >= maxproc) {
841 		error = EAGAIN;
842 		sx_xlock(&allproc_lock);
843 		if (ppsratecheck(&lastfail, &curfail, 1)) {
844 			printf("maxproc limit exceeded by uid %u (pid %d); "
845 			    "see tuning(7) and login.conf(5)\n",
846 			    td->td_ucred->cr_ruid, p1->p_pid);
847 		}
848 		sx_xunlock(&allproc_lock);
849 		goto fail2;
850 	}
851 
852 	/*
853 	 * If required, create a process descriptor in the parent first; we
854 	 * will abandon it if something goes wrong. We don't finit() until
855 	 * later.
856 	 */
857 	if (flags & RFPROCDESC) {
858 		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
859 		    fr->fr_pd_flags, fr->fr_pd_fcaps);
860 		if (error != 0)
861 			goto fail2;
862 	}
863 
864 	mem_charged = 0;
865 	if (pages == 0)
866 		pages = kstack_pages;
867 	/* Allocate new proc. */
868 	newproc = uma_zalloc(proc_zone, M_WAITOK);
869 	td2 = FIRST_THREAD_IN_PROC(newproc);
870 	if (td2 == NULL) {
871 		td2 = thread_alloc(pages);
872 		if (td2 == NULL) {
873 			error = ENOMEM;
874 			goto fail2;
875 		}
876 		proc_linkup(newproc, td2);
877 	} else {
878 		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
879 			if (td2->td_kstack != 0)
880 				vm_thread_dispose(td2);
881 			if (!thread_alloc_stack(td2, pages)) {
882 				error = ENOMEM;
883 				goto fail2;
884 			}
885 		}
886 	}
887 
888 	if ((flags & RFMEM) == 0) {
889 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
890 		if (vm2 == NULL) {
891 			error = ENOMEM;
892 			goto fail2;
893 		}
894 		if (!swap_reserve(mem_charged)) {
895 			/*
896 			 * The swap reservation failed. The accounting
897 			 * from the entries of the copied vm2 will be
898 			 * subtracted in vmspace_free(), so force the
899 			 * reservation there.
900 			 */
901 			swap_reserve_force(mem_charged);
902 			error = ENOMEM;
903 			goto fail2;
904 		}
905 	} else
906 		vm2 = NULL;
907 
908 	/*
909 	 * XXX: This is ugly; when we copy resource usage, we need to bump
910 	 *      per-cred resource counters.
911 	 */
912 	proc_set_cred_init(newproc, crhold(td->td_ucred));
913 
914 	/*
915 	 * Initialize resource accounting for the child process.
916 	 */
917 	error = racct_proc_fork(p1, newproc);
918 	if (error != 0) {
919 		error = EAGAIN;
920 		goto fail1;
921 	}
922 
923 #ifdef MAC
924 	mac_proc_init(newproc);
925 #endif
926 	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
927 	STAILQ_INIT(&newproc->p_ktr);
928 
929 	sx_xlock(&allproc_lock);
930 
931 	/*
932 	 * Increment the count of procs running with this uid. Don't allow
933 	 * a nonprivileged user to exceed their current limit.
934 	 *
935 	 * XXXRW: Can we avoid privilege here if it's not needed?
936 	 */
937 	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
938 	if (error == 0)
939 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
940 	else {
941 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
942 		    lim_cur(td, RLIMIT_NPROC));
943 	}
944 	if (ok) {
945 		do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
946 		return (0);
947 	}
948 
949 	error = EAGAIN;
950 	sx_xunlock(&allproc_lock);
951 #ifdef MAC
952 	mac_proc_destroy(newproc);
953 #endif
954 	racct_proc_exit(newproc);
955 fail1:
956 	crfree(newproc->p_ucred);
957 	newproc->p_ucred = NULL;
958 fail2:
959 	if (vm2 != NULL)
960 		vmspace_free(vm2);
961 	uma_zfree(proc_zone, newproc);
962 	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
963 		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
964 		fdrop(fp_procdesc, td);
965 	}
966 	atomic_add_int(&nprocs, -1);
967 	pause("fork", hz / 2);
968 	return (error);
969 }
970 
971 /*
972  * Handle the return of a child process from fork1().  This function
973  * is called from the MD fork_trampoline() entry point.
974  */
975 void
976 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
977     struct trapframe *frame)
978 {
979 	struct proc *p;
980 	struct thread *td;
981 	struct thread *dtd;
982 
983 	td = curthread;
984 	p = td->td_proc;
985 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
986 
987 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
988 	    td, td_get_sched(td), p->p_pid, td->td_name);
989 
990 	sched_fork_exit(td);
991 	/*
992 	* Processes normally resume in mi_switch() after being
993 	* cpu_switch()'ed to, but when children start up they arrive here
994 	* instead, so we must do much the same things as mi_switch() would.
995 	*/
996 	if ((dtd = PCPU_GET(deadthread))) {
997 		PCPU_SET(deadthread, NULL);
998 		thread_stash(dtd);
999 	}
1000 	thread_unlock(td);
1001 
1002 	/*
1003 	 * cpu_fork_kthread_handler intercepts this function call to
1004 	 * have this call a non-return function to stay in kernel mode.
1005 	 * initproc has its own fork handler, but it does return.
1006 	 */
1007 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1008 	callout(arg, frame);
1009 
1010 	/*
1011 	 * Check if a kernel thread misbehaved and returned from its main
1012 	 * function.
1013 	 */
1014 	if (p->p_flag & P_KPROC) {
1015 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1016 		    td->td_name, p->p_pid);
1017 		kthread_exit();
1018 	}
1019 	mtx_assert(&Giant, MA_NOTOWNED);
1020 
1021 	if (p->p_sysent->sv_schedtail != NULL)
1022 		(p->p_sysent->sv_schedtail)(td);
1023 	td->td_pflags &= ~TDP_FORKING;
1024 }
1025 
1026 /*
1027  * Simplified back end of syscall(), used when returning from fork()
1028  * directly into user mode.  This function is passed in to fork_exit()
1029  * as the first parameter and is called when returning to a new
1030  * userland process.
1031  */
1032 void
1033 fork_return(struct thread *td, struct trapframe *frame)
1034 {
1035 	struct proc *p;
1036 
1037 	p = td->td_proc;
1038 	if (td->td_dbgflags & TDB_STOPATFORK) {
1039 		PROC_LOCK(p);
1040 		if ((p->p_flag & P_TRACED) != 0) {
1041 			/*
1042 			 * Inform the debugger if one is still present.
1043 			 */
1044 			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1045 			ptracestop(td, SIGSTOP, NULL);
1046 			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1047 		} else {
1048 			/*
1049 			 * ... otherwise clear the request.
1050 			 */
1051 			td->td_dbgflags &= ~TDB_STOPATFORK;
1052 		}
1053 		PROC_UNLOCK(p);
1054 	} else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
1055  		/*
1056 		 * This is the start of a new thread in a traced
1057 		 * process.  Report a system call exit event.
1058 		 */
1059 		PROC_LOCK(p);
1060 		td->td_dbgflags |= TDB_SCX;
1061 		_STOPEVENT(p, S_SCX, td->td_sa.code);
1062 		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1063 		    (td->td_dbgflags & TDB_BORN) != 0)
1064 			ptracestop(td, SIGTRAP, NULL);
1065 		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1066 		PROC_UNLOCK(p);
1067 	}
1068 
1069 	userret(td, frame);
1070 
1071 #ifdef KTRACE
1072 	if (KTRPOINT(td, KTR_SYSRET))
1073 		ktrsysret(SYS_fork, 0, 0);
1074 #endif
1075 }
1076