1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the University of 21 * California, Berkeley and its contributors. 22 * 4. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 39 * $FreeBSD$ 40 */ 41 42 #include "opt_ktrace.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/sysproto.h> 47 #include <sys/filedesc.h> 48 #include <sys/kernel.h> 49 #include <sys/sysctl.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mutex.h> 53 #include <sys/proc.h> 54 #include <sys/resourcevar.h> 55 #include <sys/syscall.h> 56 #include <sys/vnode.h> 57 #include <sys/acct.h> 58 #include <sys/ktr.h> 59 #include <sys/ktrace.h> 60 #include <sys/kthread.h> 61 #include <sys/unistd.h> 62 #include <sys/jail.h> 63 #include <sys/sx.h> 64 65 #include <vm/vm.h> 66 #include <vm/pmap.h> 67 #include <vm/vm_map.h> 68 #include <vm/vm_extern.h> 69 #include <vm/vm_zone.h> 70 71 #include <sys/vmmeter.h> 72 #include <sys/user.h> 73 74 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback"); 75 76 /* 77 * These are the stuctures used to create a callout list for things to do 78 * when forking a process 79 */ 80 struct forklist { 81 forklist_fn function; 82 TAILQ_ENTRY(forklist) next; 83 }; 84 85 static struct sx fork_list_lock; 86 87 TAILQ_HEAD(forklist_head, forklist); 88 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list); 89 90 #ifndef _SYS_SYSPROTO_H_ 91 struct fork_args { 92 int dummy; 93 }; 94 #endif 95 96 static void 97 init_fork_list(void *data __unused) 98 { 99 100 sx_init(&fork_list_lock, "fork list"); 101 } 102 SYSINIT(fork_list, SI_SUB_INTRINSIC, SI_ORDER_ANY, init_fork_list, NULL); 103 104 /* 105 * MPSAFE 106 */ 107 /* ARGSUSED */ 108 int 109 fork(td, uap) 110 struct thread *td; 111 struct fork_args *uap; 112 { 113 int error; 114 struct proc *p2; 115 116 mtx_lock(&Giant); 117 error = fork1(td, RFFDG | RFPROC, &p2); 118 if (error == 0) { 119 td->td_retval[0] = p2->p_pid; 120 td->td_retval[1] = 0; 121 } 122 mtx_unlock(&Giant); 123 return error; 124 } 125 126 /* 127 * MPSAFE 128 */ 129 /* ARGSUSED */ 130 int 131 vfork(td, uap) 132 struct thread *td; 133 struct vfork_args *uap; 134 { 135 int error; 136 struct proc *p2; 137 138 mtx_lock(&Giant); 139 error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, &p2); 140 if (error == 0) { 141 td->td_retval[0] = p2->p_pid; 142 td->td_retval[1] = 0; 143 } 144 mtx_unlock(&Giant); 145 return error; 146 } 147 148 /* 149 * MPSAFE 150 */ 151 int 152 rfork(td, uap) 153 struct thread *td; 154 struct rfork_args *uap; 155 { 156 int error; 157 struct proc *p2; 158 159 /* Don't allow kernel only flags. */ 160 if ((uap->flags & RFKERNELONLY) != 0) 161 return (EINVAL); 162 mtx_lock(&Giant); 163 error = fork1(td, uap->flags, &p2); 164 if (error == 0) { 165 td->td_retval[0] = p2 ? p2->p_pid : 0; 166 td->td_retval[1] = 0; 167 } 168 mtx_unlock(&Giant); 169 return error; 170 } 171 172 173 int nprocs = 1; /* process 0 */ 174 int lastpid = 0; 175 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 176 "Last used PID"); 177 178 /* 179 * Random component to lastpid generation. We mix in a random factor to make 180 * it a little harder to predict. We sanity check the modulus value to avoid 181 * doing it in critical paths. Don't let it be too small or we pointlessly 182 * waste randomness entropy, and don't let it be impossibly large. Using a 183 * modulus that is too big causes a LOT more process table scans and slows 184 * down fork processing as the pidchecked caching is defeated. 185 */ 186 static int randompid = 0; 187 188 static int 189 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 190 { 191 int error, pid; 192 193 pid = randompid; 194 error = sysctl_handle_int(oidp, &pid, 0, req); 195 if (error || !req->newptr) 196 return (error); 197 if (pid < 0 || pid > PID_MAX - 100) /* out of range */ 198 pid = PID_MAX - 100; 199 else if (pid < 2) /* NOP */ 200 pid = 0; 201 else if (pid < 100) /* Make it reasonable */ 202 pid = 100; 203 randompid = pid; 204 return (error); 205 } 206 207 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 208 0, 0, sysctl_kern_randompid, "I", "Random PID modulus"); 209 210 #if 0 211 void 212 kse_init(struct kse *kse1, struct kse *kse2) 213 { 214 } 215 216 void 217 thread_init(struct thread *thread1, struct thread *thread2) 218 { 219 } 220 221 void 222 ksegrp_init(struct ksegrp *ksegrp1, struct ksegrp *ksegrp2) 223 { 224 } 225 #endif 226 227 int 228 fork1(td, flags, procp) 229 struct thread *td; /* parent proc */ 230 int flags; 231 struct proc **procp; /* child proc */ 232 { 233 struct proc *p2, *pptr; 234 uid_t uid; 235 struct proc *newproc; 236 int trypid; 237 int ok; 238 static int pidchecked = 0; 239 struct forklist *ep; 240 struct filedesc *fd; 241 struct proc *p1 = td->td_proc; 242 struct thread *td2; 243 struct kse *ke2; 244 struct ksegrp *kg2; 245 246 GIANT_REQUIRED; 247 248 /* Can't copy and clear */ 249 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) 250 return (EINVAL); 251 252 /* 253 * Here we don't create a new process, but we divorce 254 * certain parts of a process from itself. 255 */ 256 if ((flags & RFPROC) == 0) { 257 vm_forkproc(td, NULL, NULL, flags); 258 259 /* 260 * Close all file descriptors. 261 */ 262 if (flags & RFCFDG) { 263 struct filedesc *fdtmp; 264 fdtmp = fdinit(td); /* XXXKSE */ 265 PROC_LOCK(p1); 266 fdfree(td); /* XXXKSE */ 267 p1->p_fd = fdtmp; 268 PROC_UNLOCK(p1); 269 } 270 271 /* 272 * Unshare file descriptors (from parent.) 273 */ 274 if (flags & RFFDG) { 275 FILEDESC_LOCK(p1->p_fd); 276 if (p1->p_fd->fd_refcnt > 1) { 277 struct filedesc *newfd; 278 279 newfd = fdcopy(td); 280 FILEDESC_UNLOCK(p1->p_fd); 281 PROC_LOCK(p1); 282 fdfree(td); 283 p1->p_fd = newfd; 284 PROC_UNLOCK(p1); 285 } else 286 FILEDESC_UNLOCK(p1->p_fd); 287 } 288 *procp = NULL; 289 return (0); 290 } 291 292 /* 293 * Although process entries are dynamically created, we still keep 294 * a global limit on the maximum number we will create. Don't allow 295 * a nonprivileged user to use the last process; don't let root 296 * exceed the limit. The variable nprocs is the current number of 297 * processes, maxproc is the limit. 298 */ 299 uid = p1->p_ucred->cr_ruid; 300 if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) { 301 tablefull("proc"); 302 return (EAGAIN); 303 } 304 /* 305 * Increment the nprocs resource before blocking can occur. There 306 * are hard-limits as to the number of processes that can run. 307 */ 308 nprocs++; 309 310 /* 311 * Increment the count of procs running with this uid. Don't allow 312 * a nonprivileged user to exceed their current limit. 313 */ 314 ok = chgproccnt(p1->p_ucred->cr_ruidinfo, 1, 315 (uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0); 316 if (!ok) { 317 /* 318 * Back out the process count 319 */ 320 nprocs--; 321 return (EAGAIN); 322 } 323 324 /* Allocate new proc. */ 325 newproc = zalloc(proc_zone); 326 327 /* 328 * Setup linkage for kernel based threading 329 */ 330 if((flags & RFTHREAD) != 0) { 331 newproc->p_peers = p1->p_peers; 332 p1->p_peers = newproc; 333 newproc->p_leader = p1->p_leader; 334 } else { 335 newproc->p_peers = NULL; 336 newproc->p_leader = newproc; 337 } 338 339 newproc->p_vmspace = NULL; 340 341 /* 342 * Find an unused process ID. We remember a range of unused IDs 343 * ready to use (from lastpid+1 through pidchecked-1). 344 * 345 * If RFHIGHPID is set (used during system boot), do not allocate 346 * low-numbered pids. 347 */ 348 sx_xlock(&allproc_lock); 349 trypid = lastpid + 1; 350 if (flags & RFHIGHPID) { 351 if (trypid < 10) { 352 trypid = 10; 353 } 354 } else { 355 if (randompid) 356 trypid += arc4random() % randompid; 357 } 358 retry: 359 /* 360 * If the process ID prototype has wrapped around, 361 * restart somewhat above 0, as the low-numbered procs 362 * tend to include daemons that don't exit. 363 */ 364 if (trypid >= PID_MAX) { 365 trypid = trypid % PID_MAX; 366 if (trypid < 100) 367 trypid += 100; 368 pidchecked = 0; 369 } 370 if (trypid >= pidchecked) { 371 int doingzomb = 0; 372 373 pidchecked = PID_MAX; 374 /* 375 * Scan the active and zombie procs to check whether this pid 376 * is in use. Remember the lowest pid that's greater 377 * than trypid, so we can avoid checking for a while. 378 */ 379 p2 = LIST_FIRST(&allproc); 380 again: 381 for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) { 382 while (p2->p_pid == trypid || 383 p2->p_pgrp->pg_id == trypid || 384 p2->p_session->s_sid == trypid) { 385 trypid++; 386 if (trypid >= pidchecked) 387 goto retry; 388 } 389 if (p2->p_pid > trypid && pidchecked > p2->p_pid) 390 pidchecked = p2->p_pid; 391 if (p2->p_pgrp->pg_id > trypid && 392 pidchecked > p2->p_pgrp->pg_id) 393 pidchecked = p2->p_pgrp->pg_id; 394 if (p2->p_session->s_sid > trypid && 395 pidchecked > p2->p_session->s_sid) 396 pidchecked = p2->p_session->s_sid; 397 } 398 if (!doingzomb) { 399 doingzomb = 1; 400 p2 = LIST_FIRST(&zombproc); 401 goto again; 402 } 403 } 404 405 /* 406 * RFHIGHPID does not mess with the lastpid counter during boot. 407 */ 408 if (flags & RFHIGHPID) 409 pidchecked = 0; 410 else 411 lastpid = trypid; 412 413 p2 = newproc; 414 p2->p_stat = SIDL; /* protect against others */ 415 p2->p_pid = trypid; 416 LIST_INSERT_HEAD(&allproc, p2, p_list); 417 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); 418 sx_xunlock(&allproc_lock); 419 420 421 /* 422 * Make a proc table entry for the new process. 423 * Start by zeroing the section of proc that is zero-initialized, 424 * then copy the section that is copied directly from the parent. 425 */ 426 td2 = thread_get(p2); 427 ke2 = &p2->p_kse; 428 kg2 = &p2->p_ksegrp; 429 430 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start)) 431 432 bzero(&p2->p_startzero, 433 (unsigned) RANGEOF(struct proc, p_startzero, p_endzero)); 434 bzero(&ke2->ke_startzero, 435 (unsigned) RANGEOF(struct kse, ke_startzero, ke_endzero)); 436 bzero(&td2->td_startzero, 437 (unsigned) RANGEOF(struct thread, td_startzero, td_endzero)); 438 bzero(&kg2->kg_startzero, 439 (unsigned) RANGEOF(struct ksegrp, kg_startzero, kg_endzero)); 440 441 PROC_LOCK(p1); 442 bcopy(&p1->p_startcopy, &p2->p_startcopy, 443 (unsigned) RANGEOF(struct proc, p_startcopy, p_endcopy)); 444 bcopy(&td->td_kse->ke_startcopy, &ke2->ke_startcopy, 445 (unsigned) RANGEOF(struct kse, ke_startcopy, ke_endcopy)); 446 bcopy(&td->td_startcopy, &td2->td_startcopy, 447 (unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy)); 448 bcopy(&td->td_ksegrp->kg_startcopy, &kg2->kg_startcopy, 449 (unsigned) RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy)); 450 #undef RANGEOF 451 PROC_UNLOCK(p1); 452 453 /* 454 * XXXKSE Theoretically only the running thread would get copied 455 * Others in the kernel would be 'aborted' in the child. 456 * i.e return E*something* 457 */ 458 proc_linkup(p2, kg2, ke2, td2); 459 460 mtx_init(&p2->p_mtx, "process lock", MTX_DEF); 461 PROC_LOCK(p2); 462 /* note.. XXXKSE no pcb or u-area yet */ 463 464 /* 465 * Duplicate sub-structures as needed. 466 * Increase reference counts on shared objects. 467 * The p_stats and p_sigacts substructs are set in vm_forkproc. 468 */ 469 p2->p_flag = 0; 470 mtx_lock_spin(&sched_lock); 471 p2->p_sflag = PS_INMEM; 472 if (p1->p_sflag & PS_PROFIL) 473 startprofclock(p2); 474 mtx_unlock_spin(&sched_lock); 475 PROC_LOCK(p1); 476 p2->p_ucred = crhold(p1->p_ucred); 477 td2->td_ucred = crhold(p2->p_ucred); /* XXXKSE */ 478 479 if (p2->p_args) 480 p2->p_args->ar_ref++; 481 482 if (flags & RFSIGSHARE) { 483 p2->p_procsig = p1->p_procsig; 484 p2->p_procsig->ps_refcnt++; 485 if (p1->p_sigacts == &p1->p_uarea->u_sigacts) { 486 struct sigacts *newsigacts; 487 488 PROC_UNLOCK(p1); 489 PROC_UNLOCK(p2); 490 /* Create the shared sigacts structure */ 491 MALLOC(newsigacts, struct sigacts *, 492 sizeof(struct sigacts), M_SUBPROC, M_WAITOK); 493 PROC_LOCK(p2); 494 PROC_LOCK(p1); 495 /* 496 * Set p_sigacts to the new shared structure. 497 * Note that this is updating p1->p_sigacts at the 498 * same time, since p_sigacts is just a pointer to 499 * the shared p_procsig->ps_sigacts. 500 */ 501 p2->p_sigacts = newsigacts; 502 *p2->p_sigacts = p1->p_uarea->u_sigacts; 503 } 504 } else { 505 PROC_UNLOCK(p1); 506 PROC_UNLOCK(p2); 507 MALLOC(p2->p_procsig, struct procsig *, sizeof(struct procsig), 508 M_SUBPROC, M_WAITOK); 509 PROC_LOCK(p2); 510 PROC_LOCK(p1); 511 bcopy(p1->p_procsig, p2->p_procsig, sizeof(*p2->p_procsig)); 512 p2->p_procsig->ps_refcnt = 1; 513 p2->p_sigacts = NULL; /* finished in vm_forkproc() */ 514 } 515 if (flags & RFLINUXTHPN) 516 p2->p_sigparent = SIGUSR1; 517 else 518 p2->p_sigparent = SIGCHLD; 519 520 /* bump references to the text vnode (for procfs) */ 521 p2->p_textvp = p1->p_textvp; 522 PROC_UNLOCK(p1); 523 PROC_UNLOCK(p2); 524 if (p2->p_textvp) 525 VREF(p2->p_textvp); 526 527 if (flags & RFCFDG) 528 fd = fdinit(td); 529 else if (flags & RFFDG) { 530 FILEDESC_LOCK(p1->p_fd); 531 fd = fdcopy(td); 532 FILEDESC_UNLOCK(p1->p_fd); 533 } else 534 fd = fdshare(p1); 535 PROC_LOCK(p2); 536 p2->p_fd = fd; 537 538 /* 539 * If p_limit is still copy-on-write, bump refcnt, 540 * otherwise get a copy that won't be modified. 541 * (If PL_SHAREMOD is clear, the structure is shared 542 * copy-on-write.) 543 */ 544 PROC_LOCK(p1); 545 if (p1->p_limit->p_lflags & PL_SHAREMOD) 546 p2->p_limit = limcopy(p1->p_limit); 547 else { 548 p2->p_limit = p1->p_limit; 549 p2->p_limit->p_refcnt++; 550 } 551 552 /* 553 * Preserve some more flags in subprocess. PS_PROFIL has already 554 * been preserved. 555 */ 556 p2->p_flag |= p1->p_flag & (P_SUGID | P_ALTSTACK); 557 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) 558 p2->p_flag |= P_CONTROLT; 559 if (flags & RFPPWAIT) 560 p2->p_flag |= P_PPWAIT; 561 562 LIST_INSERT_AFTER(p1, p2, p_pglist); 563 PROC_UNLOCK(p1); 564 PROC_UNLOCK(p2); 565 566 /* 567 * Attach the new process to its parent. 568 * 569 * If RFNOWAIT is set, the newly created process becomes a child 570 * of init. This effectively disassociates the child from the 571 * parent. 572 */ 573 if (flags & RFNOWAIT) 574 pptr = initproc; 575 else 576 pptr = p1; 577 sx_xlock(&proctree_lock); 578 PROC_LOCK(p2); 579 p2->p_pptr = pptr; 580 PROC_UNLOCK(p2); 581 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); 582 sx_xunlock(&proctree_lock); 583 PROC_LOCK(p2); 584 LIST_INIT(&p2->p_children); 585 LIST_INIT(&td2->td_contested); /* XXXKSE only 1 thread? */ 586 587 callout_init(&p2->p_itcallout, 0); 588 callout_init(&td2->td_slpcallout, 1); /* XXXKSE */ 589 590 PROC_LOCK(p1); 591 #ifdef KTRACE 592 /* 593 * Copy traceflag and tracefile if enabled. If not inherited, 594 * these were zeroed above but we still could have a trace race 595 * so make sure p2's p_tracep is NULL. 596 */ 597 if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracep == NULL) { 598 p2->p_traceflag = p1->p_traceflag; 599 if ((p2->p_tracep = p1->p_tracep) != NULL) { 600 PROC_UNLOCK(p1); 601 PROC_UNLOCK(p2); 602 VREF(p2->p_tracep); 603 PROC_LOCK(p2); 604 PROC_LOCK(p1); 605 } 606 } 607 #endif 608 609 /* 610 * set priority of child to be that of parent 611 * XXXKSE hey! copying the estcpu seems dodgy.. should split it.. 612 */ 613 mtx_lock_spin(&sched_lock); 614 p2->p_ksegrp.kg_estcpu = p1->p_ksegrp.kg_estcpu; 615 mtx_unlock_spin(&sched_lock); 616 617 /* 618 * This begins the section where we must prevent the parent 619 * from being swapped. 620 */ 621 _PHOLD(p1); 622 PROC_UNLOCK(p1); 623 PROC_UNLOCK(p2); 624 625 /* 626 * Finish creating the child process. It will return via a different 627 * execution path later. (ie: directly into user mode) 628 */ 629 vm_forkproc(td, p2, td2, flags); 630 631 if (flags == (RFFDG | RFPROC)) { 632 cnt.v_forks++; 633 cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize; 634 } else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { 635 cnt.v_vforks++; 636 cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize; 637 } else if (p1 == &proc0) { 638 cnt.v_kthreads++; 639 cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize; 640 } else { 641 cnt.v_rforks++; 642 cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize; 643 } 644 645 /* 646 * Both processes are set up, now check if any loadable modules want 647 * to adjust anything. 648 * What if they have an error? XXX 649 */ 650 sx_slock(&fork_list_lock); 651 TAILQ_FOREACH(ep, &fork_list, next) { 652 (*ep->function)(p1, p2, flags); 653 } 654 sx_sunlock(&fork_list_lock); 655 656 /* 657 * If RFSTOPPED not requested, make child runnable and add to 658 * run queue. 659 */ 660 microtime(&(p2->p_stats->p_start)); 661 p2->p_acflag = AFORK; 662 if ((flags & RFSTOPPED) == 0) { 663 mtx_lock_spin(&sched_lock); 664 p2->p_stat = SRUN; 665 setrunqueue(td2); 666 mtx_unlock_spin(&sched_lock); 667 } 668 669 /* 670 * Now can be swapped. 671 */ 672 PROC_LOCK(p1); 673 _PRELE(p1); 674 675 /* 676 * tell any interested parties about the new process 677 */ 678 KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid); 679 PROC_UNLOCK(p1); 680 681 /* 682 * Preserve synchronization semantics of vfork. If waiting for 683 * child to exec or exit, set P_PPWAIT on child, and sleep on our 684 * proc (in case of exit). 685 */ 686 PROC_LOCK(p2); 687 while (p2->p_flag & P_PPWAIT) 688 msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0); 689 PROC_UNLOCK(p2); 690 691 /* 692 * Return child proc pointer to parent. 693 */ 694 *procp = p2; 695 return (0); 696 } 697 698 /* 699 * The next two functionms are general routines to handle adding/deleting 700 * items on the fork callout list. 701 * 702 * at_fork(): 703 * Take the arguments given and put them onto the fork callout list, 704 * However first make sure that it's not already there. 705 * Returns 0 on success or a standard error number. 706 */ 707 708 int 709 at_fork(function) 710 forklist_fn function; 711 { 712 struct forklist *ep; 713 714 #ifdef INVARIANTS 715 /* let the programmer know if he's been stupid */ 716 if (rm_at_fork(function)) 717 printf("WARNING: fork callout entry (%p) already present\n", 718 function); 719 #endif 720 ep = malloc(sizeof(*ep), M_ATFORK, M_NOWAIT); 721 if (ep == NULL) 722 return (ENOMEM); 723 ep->function = function; 724 sx_xlock(&fork_list_lock); 725 TAILQ_INSERT_TAIL(&fork_list, ep, next); 726 sx_xunlock(&fork_list_lock); 727 return (0); 728 } 729 730 /* 731 * Scan the exit callout list for the given item and remove it.. 732 * Returns the number of items removed (0 or 1) 733 */ 734 735 int 736 rm_at_fork(function) 737 forklist_fn function; 738 { 739 struct forklist *ep; 740 741 sx_xlock(&fork_list_lock); 742 TAILQ_FOREACH(ep, &fork_list, next) { 743 if (ep->function == function) { 744 TAILQ_REMOVE(&fork_list, ep, next); 745 sx_xunlock(&fork_list_lock); 746 free(ep, M_ATFORK); 747 return(1); 748 } 749 } 750 sx_xunlock(&fork_list_lock); 751 return (0); 752 } 753 754 /* 755 * Handle the return of a child process from fork1(). This function 756 * is called from the MD fork_trampoline() entry point. 757 */ 758 void 759 fork_exit(callout, arg, frame) 760 void (*callout)(void *, struct trapframe *); 761 void *arg; 762 struct trapframe *frame; 763 { 764 struct thread *td = curthread; 765 struct proc *p = td->td_proc; 766 767 td->td_kse->ke_oncpu = PCPU_GET(cpuid); 768 /* 769 * Setup the sched_lock state so that we can release it. 770 */ 771 sched_lock.mtx_lock = (uintptr_t)td; 772 sched_lock.mtx_recurse = 0; 773 td->td_critnest = 1; 774 td->td_savecrit = CRITICAL_FORK; 775 CTR3(KTR_PROC, "fork_exit: new proc %p (pid %d, %s)", p, p->p_pid, 776 p->p_comm); 777 if (PCPU_GET(switchtime.tv_sec) == 0) 778 microuptime(PCPU_PTR(switchtime)); 779 PCPU_SET(switchticks, ticks); 780 mtx_unlock_spin(&sched_lock); 781 782 /* 783 * cpu_set_fork_handler intercepts this function call to 784 * have this call a non-return function to stay in kernel mode. 785 * initproc has its own fork handler, but it does return. 786 */ 787 KASSERT(callout != NULL, ("NULL callout in fork_exit")); 788 callout(arg, frame); 789 790 /* 791 * Check if a kernel thread misbehaved and returned from its main 792 * function. 793 */ 794 PROC_LOCK(p); 795 if (p->p_flag & P_KTHREAD) { 796 PROC_UNLOCK(p); 797 mtx_lock(&Giant); 798 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n", 799 p->p_comm, p->p_pid); 800 kthread_exit(0); 801 } 802 PROC_UNLOCK(p); 803 mtx_lock(&Giant); 804 crfree(td->td_ucred); 805 mtx_unlock(&Giant); 806 td->td_ucred = NULL; 807 mtx_assert(&Giant, MA_NOTOWNED); 808 } 809 810 /* 811 * Simplified back end of syscall(), used when returning from fork() 812 * directly into user mode. Giant is not held on entry, and must not 813 * be held on return. This function is passed in to fork_exit() as the 814 * first parameter and is called when returning to a new userland process. 815 */ 816 void 817 fork_return(td, frame) 818 struct thread *td; 819 struct trapframe *frame; 820 { 821 822 userret(td, frame, 0); 823 #ifdef KTRACE 824 if (KTRPOINT(td->td_proc, KTR_SYSRET)) { 825 ktrsysret(td->td_proc->p_tracep, SYS_fork, 0, 0); 826 } 827 #endif 828 mtx_assert(&Giant, MA_NOTOWNED); 829 } 830