xref: /freebsd/sys/kern/kern_fork.c (revision 079b7badea4419a07a141547b7323f4c168f40fd)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
39  * $FreeBSD$
40  */
41 
42 #include "opt_ktrace.h"
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/sysproto.h>
47 #include <sys/filedesc.h>
48 #include <sys/kernel.h>
49 #include <sys/sysctl.h>
50 #include <sys/lock.h>
51 #include <sys/malloc.h>
52 #include <sys/mutex.h>
53 #include <sys/proc.h>
54 #include <sys/resourcevar.h>
55 #include <sys/syscall.h>
56 #include <sys/vnode.h>
57 #include <sys/acct.h>
58 #include <sys/ktr.h>
59 #include <sys/ktrace.h>
60 #include <sys/kthread.h>
61 #include <sys/unistd.h>
62 #include <sys/jail.h>
63 #include <sys/sx.h>
64 
65 #include <vm/vm.h>
66 #include <vm/pmap.h>
67 #include <vm/vm_map.h>
68 #include <vm/vm_extern.h>
69 #include <vm/vm_zone.h>
70 
71 #include <sys/vmmeter.h>
72 #include <sys/user.h>
73 
74 static MALLOC_DEFINE(M_ATFORK, "atfork", "atfork callback");
75 
76 /*
77  * These are the stuctures used to create a callout list for things to do
78  * when forking a process
79  */
80 struct forklist {
81 	forklist_fn function;
82 	TAILQ_ENTRY(forklist) next;
83 };
84 
85 static struct sx fork_list_lock;
86 
87 TAILQ_HEAD(forklist_head, forklist);
88 static struct forklist_head fork_list = TAILQ_HEAD_INITIALIZER(fork_list);
89 
90 #ifndef _SYS_SYSPROTO_H_
91 struct fork_args {
92 	int     dummy;
93 };
94 #endif
95 
96 static void
97 init_fork_list(void *data __unused)
98 {
99 
100 	sx_init(&fork_list_lock, "fork list");
101 }
102 SYSINIT(fork_list, SI_SUB_INTRINSIC, SI_ORDER_ANY, init_fork_list, NULL);
103 
104 /*
105  * MPSAFE
106  */
107 /* ARGSUSED */
108 int
109 fork(td, uap)
110 	struct thread *td;
111 	struct fork_args *uap;
112 {
113 	int error;
114 	struct proc *p2;
115 
116 	mtx_lock(&Giant);
117 	error = fork1(td, RFFDG | RFPROC, &p2);
118 	if (error == 0) {
119 		td->td_retval[0] = p2->p_pid;
120 		td->td_retval[1] = 0;
121 	}
122 	mtx_unlock(&Giant);
123 	return error;
124 }
125 
126 /*
127  * MPSAFE
128  */
129 /* ARGSUSED */
130 int
131 vfork(td, uap)
132 	struct thread *td;
133 	struct vfork_args *uap;
134 {
135 	int error;
136 	struct proc *p2;
137 
138 	mtx_lock(&Giant);
139 	error = fork1(td, RFFDG | RFPROC | RFPPWAIT | RFMEM, &p2);
140 	if (error == 0) {
141 		td->td_retval[0] = p2->p_pid;
142 		td->td_retval[1] = 0;
143 	}
144 	mtx_unlock(&Giant);
145 	return error;
146 }
147 
148 /*
149  * MPSAFE
150  */
151 int
152 rfork(td, uap)
153 	struct thread *td;
154 	struct rfork_args *uap;
155 {
156 	int error;
157 	struct proc *p2;
158 
159 	/* Don't allow kernel only flags. */
160 	if ((uap->flags & RFKERNELONLY) != 0)
161 		return (EINVAL);
162 	mtx_lock(&Giant);
163 	error = fork1(td, uap->flags, &p2);
164 	if (error == 0) {
165 		td->td_retval[0] = p2 ? p2->p_pid : 0;
166 		td->td_retval[1] = 0;
167 	}
168 	mtx_unlock(&Giant);
169 	return error;
170 }
171 
172 
173 int	nprocs = 1;				/* process 0 */
174 int	lastpid = 0;
175 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
176     "Last used PID");
177 
178 /*
179  * Random component to lastpid generation.  We mix in a random factor to make
180  * it a little harder to predict.  We sanity check the modulus value to avoid
181  * doing it in critical paths.  Don't let it be too small or we pointlessly
182  * waste randomness entropy, and don't let it be impossibly large.  Using a
183  * modulus that is too big causes a LOT more process table scans and slows
184  * down fork processing as the pidchecked caching is defeated.
185  */
186 static int randompid = 0;
187 
188 static int
189 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
190 {
191 	int error, pid;
192 
193 	pid = randompid;
194 	error = sysctl_handle_int(oidp, &pid, 0, req);
195 	if (error || !req->newptr)
196 		return (error);
197 	if (pid < 0 || pid > PID_MAX - 100)	/* out of range */
198 		pid = PID_MAX - 100;
199 	else if (pid < 2)			/* NOP */
200 		pid = 0;
201 	else if (pid < 100)			/* Make it reasonable */
202 		pid = 100;
203 	randompid = pid;
204 	return (error);
205 }
206 
207 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
208     0, 0, sysctl_kern_randompid, "I", "Random PID modulus");
209 
210 #if 0
211 void
212 kse_init(struct kse *kse1, struct kse *kse2)
213 {
214 }
215 
216 void
217 thread_init(struct thread *thread1, struct thread *thread2)
218 {
219 }
220 
221 void
222 ksegrp_init(struct ksegrp *ksegrp1, struct ksegrp *ksegrp2)
223 {
224 }
225 #endif
226 
227 int
228 fork1(td, flags, procp)
229 	struct thread *td;			/* parent proc */
230 	int flags;
231 	struct proc **procp;			/* child proc */
232 {
233 	struct proc *p2, *pptr;
234 	uid_t uid;
235 	struct proc *newproc;
236 	int trypid;
237 	int ok;
238 	static int pidchecked = 0;
239 	struct forklist *ep;
240 	struct filedesc *fd;
241 	struct proc *p1 = td->td_proc;
242 	struct thread *td2;
243 	struct kse *ke2;
244 	struct ksegrp *kg2;
245 
246 	GIANT_REQUIRED;
247 
248 	/* Can't copy and clear */
249 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
250 		return (EINVAL);
251 
252 	/*
253 	 * Here we don't create a new process, but we divorce
254 	 * certain parts of a process from itself.
255 	 */
256 	if ((flags & RFPROC) == 0) {
257 		vm_forkproc(td, NULL, NULL, flags);
258 
259 		/*
260 		 * Close all file descriptors.
261 		 */
262 		if (flags & RFCFDG) {
263 			struct filedesc *fdtmp;
264 			fdtmp = fdinit(td);	/* XXXKSE */
265 			PROC_LOCK(p1);
266 			fdfree(td);		/* XXXKSE */
267 			p1->p_fd = fdtmp;
268 			PROC_UNLOCK(p1);
269 		}
270 
271 		/*
272 		 * Unshare file descriptors (from parent.)
273 		 */
274 		if (flags & RFFDG) {
275 			FILEDESC_LOCK(p1->p_fd);
276 			if (p1->p_fd->fd_refcnt > 1) {
277 				struct filedesc *newfd;
278 
279 				newfd = fdcopy(td);
280 				FILEDESC_UNLOCK(p1->p_fd);
281 				PROC_LOCK(p1);
282 				fdfree(td);
283 				p1->p_fd = newfd;
284 				PROC_UNLOCK(p1);
285 			} else
286 				FILEDESC_UNLOCK(p1->p_fd);
287 		}
288 		*procp = NULL;
289 		return (0);
290 	}
291 
292 	/*
293 	 * Although process entries are dynamically created, we still keep
294 	 * a global limit on the maximum number we will create.  Don't allow
295 	 * a nonprivileged user to use the last process; don't let root
296 	 * exceed the limit. The variable nprocs is the current number of
297 	 * processes, maxproc is the limit.
298 	 */
299 	uid = p1->p_ucred->cr_ruid;
300 	if ((nprocs >= maxproc - 1 && uid != 0) || nprocs >= maxproc) {
301 		tablefull("proc");
302 		return (EAGAIN);
303 	}
304 	/*
305 	 * Increment the nprocs resource before blocking can occur.  There
306 	 * are hard-limits as to the number of processes that can run.
307 	 */
308 	nprocs++;
309 
310 	/*
311 	 * Increment the count of procs running with this uid. Don't allow
312 	 * a nonprivileged user to exceed their current limit.
313 	 */
314 	ok = chgproccnt(p1->p_ucred->cr_ruidinfo, 1,
315 		(uid != 0) ? p1->p_rlimit[RLIMIT_NPROC].rlim_cur : 0);
316 	if (!ok) {
317 		/*
318 		 * Back out the process count
319 		 */
320 		nprocs--;
321 		return (EAGAIN);
322 	}
323 
324 	/* Allocate new proc. */
325 	newproc = zalloc(proc_zone);
326 
327 	/*
328 	 * Setup linkage for kernel based threading
329 	 */
330 	if((flags & RFTHREAD) != 0) {
331 		newproc->p_peers = p1->p_peers;
332 		p1->p_peers = newproc;
333 		newproc->p_leader = p1->p_leader;
334 	} else {
335 		newproc->p_peers = NULL;
336 		newproc->p_leader = newproc;
337 	}
338 
339 	newproc->p_vmspace = NULL;
340 
341 	/*
342 	 * Find an unused process ID.  We remember a range of unused IDs
343 	 * ready to use (from lastpid+1 through pidchecked-1).
344 	 *
345 	 * If RFHIGHPID is set (used during system boot), do not allocate
346 	 * low-numbered pids.
347 	 */
348 	sx_xlock(&allproc_lock);
349 	trypid = lastpid + 1;
350 	if (flags & RFHIGHPID) {
351 		if (trypid < 10) {
352 			trypid = 10;
353 		}
354 	} else {
355 		if (randompid)
356 			trypid += arc4random() % randompid;
357 	}
358 retry:
359 	/*
360 	 * If the process ID prototype has wrapped around,
361 	 * restart somewhat above 0, as the low-numbered procs
362 	 * tend to include daemons that don't exit.
363 	 */
364 	if (trypid >= PID_MAX) {
365 		trypid = trypid % PID_MAX;
366 		if (trypid < 100)
367 			trypid += 100;
368 		pidchecked = 0;
369 	}
370 	if (trypid >= pidchecked) {
371 		int doingzomb = 0;
372 
373 		pidchecked = PID_MAX;
374 		/*
375 		 * Scan the active and zombie procs to check whether this pid
376 		 * is in use.  Remember the lowest pid that's greater
377 		 * than trypid, so we can avoid checking for a while.
378 		 */
379 		p2 = LIST_FIRST(&allproc);
380 again:
381 		for (; p2 != NULL; p2 = LIST_NEXT(p2, p_list)) {
382 			while (p2->p_pid == trypid ||
383 			    p2->p_pgrp->pg_id == trypid ||
384 			    p2->p_session->s_sid == trypid) {
385 				trypid++;
386 				if (trypid >= pidchecked)
387 					goto retry;
388 			}
389 			if (p2->p_pid > trypid && pidchecked > p2->p_pid)
390 				pidchecked = p2->p_pid;
391 			if (p2->p_pgrp->pg_id > trypid &&
392 			    pidchecked > p2->p_pgrp->pg_id)
393 				pidchecked = p2->p_pgrp->pg_id;
394 			if (p2->p_session->s_sid > trypid &&
395 			    pidchecked > p2->p_session->s_sid)
396 				pidchecked = p2->p_session->s_sid;
397 		}
398 		if (!doingzomb) {
399 			doingzomb = 1;
400 			p2 = LIST_FIRST(&zombproc);
401 			goto again;
402 		}
403 	}
404 
405 	/*
406 	 * RFHIGHPID does not mess with the lastpid counter during boot.
407 	 */
408 	if (flags & RFHIGHPID)
409 		pidchecked = 0;
410 	else
411 		lastpid = trypid;
412 
413 	p2 = newproc;
414 	p2->p_stat = SIDL;			/* protect against others */
415 	p2->p_pid = trypid;
416 	LIST_INSERT_HEAD(&allproc, p2, p_list);
417 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
418 	sx_xunlock(&allproc_lock);
419 
420 
421 	/*
422 	 * Make a proc table entry for the new process.
423 	 * Start by zeroing the section of proc that is zero-initialized,
424 	 * then copy the section that is copied directly from the parent.
425 	 */
426 	td2 = thread_get(p2);
427 	ke2 = &p2->p_kse;
428 	kg2 = &p2->p_ksegrp;
429 
430 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
431 
432 	bzero(&p2->p_startzero,
433 	    (unsigned) RANGEOF(struct proc, p_startzero, p_endzero));
434 	bzero(&ke2->ke_startzero,
435 	    (unsigned) RANGEOF(struct kse, ke_startzero, ke_endzero));
436 	bzero(&td2->td_startzero,
437 	    (unsigned) RANGEOF(struct thread, td_startzero, td_endzero));
438 	bzero(&kg2->kg_startzero,
439 	    (unsigned) RANGEOF(struct ksegrp, kg_startzero, kg_endzero));
440 
441 	PROC_LOCK(p1);
442 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
443 	    (unsigned) RANGEOF(struct proc, p_startcopy, p_endcopy));
444 	bcopy(&td->td_kse->ke_startcopy, &ke2->ke_startcopy,
445 	    (unsigned) RANGEOF(struct kse, ke_startcopy, ke_endcopy));
446 	bcopy(&td->td_startcopy, &td2->td_startcopy,
447 	    (unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy));
448 	bcopy(&td->td_ksegrp->kg_startcopy, &kg2->kg_startcopy,
449 	    (unsigned) RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy));
450 #undef RANGEOF
451 	PROC_UNLOCK(p1);
452 
453 	/*
454 	 * XXXKSE Theoretically only the running thread would get copied
455 	 * Others in the kernel would be 'aborted' in the child.
456 	 * i.e return E*something*
457 	 */
458 	proc_linkup(p2, kg2, ke2, td2);
459 
460 	mtx_init(&p2->p_mtx, "process lock", MTX_DEF);
461 	PROC_LOCK(p2);
462 	/* note.. XXXKSE no pcb or u-area yet */
463 
464 	/*
465 	 * Duplicate sub-structures as needed.
466 	 * Increase reference counts on shared objects.
467 	 * The p_stats and p_sigacts substructs are set in vm_forkproc.
468 	 */
469 	p2->p_flag = 0;
470 	mtx_lock_spin(&sched_lock);
471 	p2->p_sflag = PS_INMEM;
472 	if (p1->p_sflag & PS_PROFIL)
473 		startprofclock(p2);
474 	mtx_unlock_spin(&sched_lock);
475 	PROC_LOCK(p1);
476 	p2->p_ucred = crhold(p1->p_ucred);
477 	td2->td_ucred = crhold(p2->p_ucred);	/* XXXKSE */
478 
479 	if (p2->p_args)
480 		p2->p_args->ar_ref++;
481 
482 	if (flags & RFSIGSHARE) {
483 		p2->p_procsig = p1->p_procsig;
484 		p2->p_procsig->ps_refcnt++;
485 		if (p1->p_sigacts == &p1->p_uarea->u_sigacts) {
486 			struct sigacts *newsigacts;
487 
488 			PROC_UNLOCK(p1);
489 			PROC_UNLOCK(p2);
490 			/* Create the shared sigacts structure */
491 			MALLOC(newsigacts, struct sigacts *,
492 			    sizeof(struct sigacts), M_SUBPROC, M_WAITOK);
493 			PROC_LOCK(p2);
494 			PROC_LOCK(p1);
495 			/*
496 			 * Set p_sigacts to the new shared structure.
497 			 * Note that this is updating p1->p_sigacts at the
498 			 * same time, since p_sigacts is just a pointer to
499 			 * the shared p_procsig->ps_sigacts.
500 			 */
501 			p2->p_sigacts  = newsigacts;
502 			*p2->p_sigacts = p1->p_uarea->u_sigacts;
503 		}
504 	} else {
505 		PROC_UNLOCK(p1);
506 		PROC_UNLOCK(p2);
507 		MALLOC(p2->p_procsig, struct procsig *, sizeof(struct procsig),
508 		    M_SUBPROC, M_WAITOK);
509 		PROC_LOCK(p2);
510 		PROC_LOCK(p1);
511 		bcopy(p1->p_procsig, p2->p_procsig, sizeof(*p2->p_procsig));
512 		p2->p_procsig->ps_refcnt = 1;
513 		p2->p_sigacts = NULL;	/* finished in vm_forkproc() */
514 	}
515 	if (flags & RFLINUXTHPN)
516 	        p2->p_sigparent = SIGUSR1;
517 	else
518 	        p2->p_sigparent = SIGCHLD;
519 
520 	/* bump references to the text vnode (for procfs) */
521 	p2->p_textvp = p1->p_textvp;
522 	PROC_UNLOCK(p1);
523 	PROC_UNLOCK(p2);
524 	if (p2->p_textvp)
525 		VREF(p2->p_textvp);
526 
527 	if (flags & RFCFDG)
528 		fd = fdinit(td);
529 	else if (flags & RFFDG) {
530 		FILEDESC_LOCK(p1->p_fd);
531 		fd = fdcopy(td);
532 		FILEDESC_UNLOCK(p1->p_fd);
533 	} else
534 		fd = fdshare(p1);
535 	PROC_LOCK(p2);
536 	p2->p_fd = fd;
537 
538 	/*
539 	 * If p_limit is still copy-on-write, bump refcnt,
540 	 * otherwise get a copy that won't be modified.
541 	 * (If PL_SHAREMOD is clear, the structure is shared
542 	 * copy-on-write.)
543 	 */
544 	PROC_LOCK(p1);
545 	if (p1->p_limit->p_lflags & PL_SHAREMOD)
546 		p2->p_limit = limcopy(p1->p_limit);
547 	else {
548 		p2->p_limit = p1->p_limit;
549 		p2->p_limit->p_refcnt++;
550 	}
551 
552 	/*
553 	 * Preserve some more flags in subprocess.  PS_PROFIL has already
554 	 * been preserved.
555 	 */
556 	p2->p_flag |= p1->p_flag & (P_SUGID | P_ALTSTACK);
557 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
558 		p2->p_flag |= P_CONTROLT;
559 	if (flags & RFPPWAIT)
560 		p2->p_flag |= P_PPWAIT;
561 
562 	LIST_INSERT_AFTER(p1, p2, p_pglist);
563 	PROC_UNLOCK(p1);
564 	PROC_UNLOCK(p2);
565 
566 	/*
567 	 * Attach the new process to its parent.
568 	 *
569 	 * If RFNOWAIT is set, the newly created process becomes a child
570 	 * of init.  This effectively disassociates the child from the
571 	 * parent.
572 	 */
573 	if (flags & RFNOWAIT)
574 		pptr = initproc;
575 	else
576 		pptr = p1;
577 	sx_xlock(&proctree_lock);
578 	PROC_LOCK(p2);
579 	p2->p_pptr = pptr;
580 	PROC_UNLOCK(p2);
581 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
582 	sx_xunlock(&proctree_lock);
583 	PROC_LOCK(p2);
584 	LIST_INIT(&p2->p_children);
585 	LIST_INIT(&td2->td_contested); /* XXXKSE only 1 thread? */
586 
587 	callout_init(&p2->p_itcallout, 0);
588 	callout_init(&td2->td_slpcallout, 1); /* XXXKSE */
589 
590 	PROC_LOCK(p1);
591 #ifdef KTRACE
592 	/*
593 	 * Copy traceflag and tracefile if enabled.  If not inherited,
594 	 * these were zeroed above but we still could have a trace race
595 	 * so make sure p2's p_tracep is NULL.
596 	 */
597 	if ((p1->p_traceflag & KTRFAC_INHERIT) && p2->p_tracep == NULL) {
598 		p2->p_traceflag = p1->p_traceflag;
599 		if ((p2->p_tracep = p1->p_tracep) != NULL) {
600 			PROC_UNLOCK(p1);
601 			PROC_UNLOCK(p2);
602 			VREF(p2->p_tracep);
603 			PROC_LOCK(p2);
604 			PROC_LOCK(p1);
605 		}
606 	}
607 #endif
608 
609 	/*
610 	 * set priority of child to be that of parent
611 	 * XXXKSE hey! copying the estcpu seems dodgy.. should split it..
612 	 */
613 	mtx_lock_spin(&sched_lock);
614 	p2->p_ksegrp.kg_estcpu = p1->p_ksegrp.kg_estcpu;
615 	mtx_unlock_spin(&sched_lock);
616 
617 	/*
618 	 * This begins the section where we must prevent the parent
619 	 * from being swapped.
620 	 */
621 	_PHOLD(p1);
622 	PROC_UNLOCK(p1);
623 	PROC_UNLOCK(p2);
624 
625 	/*
626 	 * Finish creating the child process.  It will return via a different
627 	 * execution path later.  (ie: directly into user mode)
628 	 */
629 	vm_forkproc(td, p2, td2, flags);
630 
631 	if (flags == (RFFDG | RFPROC)) {
632 		cnt.v_forks++;
633 		cnt.v_forkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
634 	} else if (flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
635 		cnt.v_vforks++;
636 		cnt.v_vforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
637 	} else if (p1 == &proc0) {
638 		cnt.v_kthreads++;
639 		cnt.v_kthreadpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
640 	} else {
641 		cnt.v_rforks++;
642 		cnt.v_rforkpages += p2->p_vmspace->vm_dsize + p2->p_vmspace->vm_ssize;
643 	}
644 
645 	/*
646 	 * Both processes are set up, now check if any loadable modules want
647 	 * to adjust anything.
648 	 *   What if they have an error? XXX
649 	 */
650 	sx_slock(&fork_list_lock);
651 	TAILQ_FOREACH(ep, &fork_list, next) {
652 		(*ep->function)(p1, p2, flags);
653 	}
654 	sx_sunlock(&fork_list_lock);
655 
656 	/*
657 	 * If RFSTOPPED not requested, make child runnable and add to
658 	 * run queue.
659 	 */
660 	microtime(&(p2->p_stats->p_start));
661 	p2->p_acflag = AFORK;
662 	if ((flags & RFSTOPPED) == 0) {
663 		mtx_lock_spin(&sched_lock);
664 		p2->p_stat = SRUN;
665 		setrunqueue(td2);
666 		mtx_unlock_spin(&sched_lock);
667 	}
668 
669 	/*
670 	 * Now can be swapped.
671 	 */
672 	PROC_LOCK(p1);
673 	_PRELE(p1);
674 
675 	/*
676 	 * tell any interested parties about the new process
677 	 */
678 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
679 	PROC_UNLOCK(p1);
680 
681 	/*
682 	 * Preserve synchronization semantics of vfork.  If waiting for
683 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
684 	 * proc (in case of exit).
685 	 */
686 	PROC_LOCK(p2);
687 	while (p2->p_flag & P_PPWAIT)
688 		msleep(p1, &p2->p_mtx, PWAIT, "ppwait", 0);
689 	PROC_UNLOCK(p2);
690 
691 	/*
692 	 * Return child proc pointer to parent.
693 	 */
694 	*procp = p2;
695 	return (0);
696 }
697 
698 /*
699  * The next two functionms are general routines to handle adding/deleting
700  * items on the fork callout list.
701  *
702  * at_fork():
703  * Take the arguments given and put them onto the fork callout list,
704  * However first make sure that it's not already there.
705  * Returns 0 on success or a standard error number.
706  */
707 
708 int
709 at_fork(function)
710 	forklist_fn function;
711 {
712 	struct forklist *ep;
713 
714 #ifdef INVARIANTS
715 	/* let the programmer know if he's been stupid */
716 	if (rm_at_fork(function))
717 		printf("WARNING: fork callout entry (%p) already present\n",
718 		    function);
719 #endif
720 	ep = malloc(sizeof(*ep), M_ATFORK, M_NOWAIT);
721 	if (ep == NULL)
722 		return (ENOMEM);
723 	ep->function = function;
724 	sx_xlock(&fork_list_lock);
725 	TAILQ_INSERT_TAIL(&fork_list, ep, next);
726 	sx_xunlock(&fork_list_lock);
727 	return (0);
728 }
729 
730 /*
731  * Scan the exit callout list for the given item and remove it..
732  * Returns the number of items removed (0 or 1)
733  */
734 
735 int
736 rm_at_fork(function)
737 	forklist_fn function;
738 {
739 	struct forklist *ep;
740 
741 	sx_xlock(&fork_list_lock);
742 	TAILQ_FOREACH(ep, &fork_list, next) {
743 		if (ep->function == function) {
744 			TAILQ_REMOVE(&fork_list, ep, next);
745 			sx_xunlock(&fork_list_lock);
746 			free(ep, M_ATFORK);
747 			return(1);
748 		}
749 	}
750 	sx_xunlock(&fork_list_lock);
751 	return (0);
752 }
753 
754 /*
755  * Handle the return of a child process from fork1().  This function
756  * is called from the MD fork_trampoline() entry point.
757  */
758 void
759 fork_exit(callout, arg, frame)
760 	void (*callout)(void *, struct trapframe *);
761 	void *arg;
762 	struct trapframe *frame;
763 {
764 	struct thread *td = curthread;
765 	struct proc *p = td->td_proc;
766 
767 	td->td_kse->ke_oncpu = PCPU_GET(cpuid);
768 	/*
769 	 * Setup the sched_lock state so that we can release it.
770 	 */
771 	sched_lock.mtx_lock = (uintptr_t)td;
772 	sched_lock.mtx_recurse = 0;
773 	td->td_critnest = 1;
774 	td->td_savecrit = CRITICAL_FORK;
775 	CTR3(KTR_PROC, "fork_exit: new proc %p (pid %d, %s)", p, p->p_pid,
776 	    p->p_comm);
777 	if (PCPU_GET(switchtime.tv_sec) == 0)
778 		microuptime(PCPU_PTR(switchtime));
779 	PCPU_SET(switchticks, ticks);
780 	mtx_unlock_spin(&sched_lock);
781 
782 	/*
783 	 * cpu_set_fork_handler intercepts this function call to
784          * have this call a non-return function to stay in kernel mode.
785          * initproc has its own fork handler, but it does return.
786          */
787 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
788 	callout(arg, frame);
789 
790 	/*
791 	 * Check if a kernel thread misbehaved and returned from its main
792 	 * function.
793 	 */
794 	PROC_LOCK(p);
795 	if (p->p_flag & P_KTHREAD) {
796 		PROC_UNLOCK(p);
797 		mtx_lock(&Giant);
798 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
799 		    p->p_comm, p->p_pid);
800 		kthread_exit(0);
801 	}
802 	PROC_UNLOCK(p);
803 	mtx_lock(&Giant);
804 	crfree(td->td_ucred);
805 	mtx_unlock(&Giant);
806 	td->td_ucred = NULL;
807 	mtx_assert(&Giant, MA_NOTOWNED);
808 }
809 
810 /*
811  * Simplified back end of syscall(), used when returning from fork()
812  * directly into user mode.  Giant is not held on entry, and must not
813  * be held on return.  This function is passed in to fork_exit() as the
814  * first parameter and is called when returning to a new userland process.
815  */
816 void
817 fork_return(td, frame)
818 	struct thread *td;
819 	struct trapframe *frame;
820 {
821 
822 	userret(td, frame, 0);
823 #ifdef KTRACE
824 	if (KTRPOINT(td->td_proc, KTR_SYSRET)) {
825 		ktrsysret(td->td_proc->p_tracep, SYS_fork, 0, 0);
826 	}
827 #endif
828 	mtx_assert(&Giant, MA_NOTOWNED);
829 }
830