xref: /freebsd/sys/kern/kern_fork.c (revision 037479ff5ee18977b1c48e1e59770aad2f200a5a)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ktrace.h"
43 #include "opt_kstack_pages.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/eventhandler.h>
49 #include <sys/fcntl.h>
50 #include <sys/filedesc.h>
51 #include <sys/jail.h>
52 #include <sys/kernel.h>
53 #include <sys/kthread.h>
54 #include <sys/sysctl.h>
55 #include <sys/lock.h>
56 #include <sys/malloc.h>
57 #include <sys/mutex.h>
58 #include <sys/priv.h>
59 #include <sys/proc.h>
60 #include <sys/procdesc.h>
61 #include <sys/pioctl.h>
62 #include <sys/ptrace.h>
63 #include <sys/racct.h>
64 #include <sys/resourcevar.h>
65 #include <sys/sched.h>
66 #include <sys/syscall.h>
67 #include <sys/vmmeter.h>
68 #include <sys/vnode.h>
69 #include <sys/acct.h>
70 #include <sys/ktr.h>
71 #include <sys/ktrace.h>
72 #include <sys/unistd.h>
73 #include <sys/sdt.h>
74 #include <sys/sx.h>
75 #include <sys/sysent.h>
76 #include <sys/signalvar.h>
77 
78 #include <security/audit/audit.h>
79 #include <security/mac/mac_framework.h>
80 
81 #include <vm/vm.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_extern.h>
85 #include <vm/uma.h>
86 
87 #ifdef KDTRACE_HOOKS
88 #include <sys/dtrace_bsd.h>
89 dtrace_fork_func_t	dtrace_fasttrap_fork;
90 #endif
91 
92 SDT_PROVIDER_DECLARE(proc);
93 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
94 
95 #ifndef _SYS_SYSPROTO_H_
96 struct fork_args {
97 	int     dummy;
98 };
99 #endif
100 
101 EVENTHANDLER_LIST_DECLARE(process_fork);
102 
103 /* ARGSUSED */
104 int
105 sys_fork(struct thread *td, struct fork_args *uap)
106 {
107 	struct fork_req fr;
108 	int error, pid;
109 
110 	bzero(&fr, sizeof(fr));
111 	fr.fr_flags = RFFDG | RFPROC;
112 	fr.fr_pidp = &pid;
113 	error = fork1(td, &fr);
114 	if (error == 0) {
115 		td->td_retval[0] = pid;
116 		td->td_retval[1] = 0;
117 	}
118 	return (error);
119 }
120 
121 /* ARGUSED */
122 int
123 sys_pdfork(struct thread *td, struct pdfork_args *uap)
124 {
125 	struct fork_req fr;
126 	int error, fd, pid;
127 
128 	bzero(&fr, sizeof(fr));
129 	fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
130 	fr.fr_pidp = &pid;
131 	fr.fr_pd_fd = &fd;
132 	fr.fr_pd_flags = uap->flags;
133 	/*
134 	 * It is necessary to return fd by reference because 0 is a valid file
135 	 * descriptor number, and the child needs to be able to distinguish
136 	 * itself from the parent using the return value.
137 	 */
138 	error = fork1(td, &fr);
139 	if (error == 0) {
140 		td->td_retval[0] = pid;
141 		td->td_retval[1] = 0;
142 		error = copyout(&fd, uap->fdp, sizeof(fd));
143 	}
144 	return (error);
145 }
146 
147 /* ARGSUSED */
148 int
149 sys_vfork(struct thread *td, struct vfork_args *uap)
150 {
151 	struct fork_req fr;
152 	int error, pid;
153 
154 	bzero(&fr, sizeof(fr));
155 	fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
156 	fr.fr_pidp = &pid;
157 	error = fork1(td, &fr);
158 	if (error == 0) {
159 		td->td_retval[0] = pid;
160 		td->td_retval[1] = 0;
161 	}
162 	return (error);
163 }
164 
165 int
166 sys_rfork(struct thread *td, struct rfork_args *uap)
167 {
168 	struct fork_req fr;
169 	int error, pid;
170 
171 	/* Don't allow kernel-only flags. */
172 	if ((uap->flags & RFKERNELONLY) != 0)
173 		return (EINVAL);
174 
175 	AUDIT_ARG_FFLAGS(uap->flags);
176 	bzero(&fr, sizeof(fr));
177 	fr.fr_flags = uap->flags;
178 	fr.fr_pidp = &pid;
179 	error = fork1(td, &fr);
180 	if (error == 0) {
181 		td->td_retval[0] = pid;
182 		td->td_retval[1] = 0;
183 	}
184 	return (error);
185 }
186 
187 int	nprocs = 1;		/* process 0 */
188 int	lastpid = 0;
189 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
190     "Last used PID");
191 
192 /*
193  * Random component to lastpid generation.  We mix in a random factor to make
194  * it a little harder to predict.  We sanity check the modulus value to avoid
195  * doing it in critical paths.  Don't let it be too small or we pointlessly
196  * waste randomness entropy, and don't let it be impossibly large.  Using a
197  * modulus that is too big causes a LOT more process table scans and slows
198  * down fork processing as the pidchecked caching is defeated.
199  */
200 static int randompid = 0;
201 
202 static int
203 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
204 {
205 	int error, pid;
206 
207 	error = sysctl_wire_old_buffer(req, sizeof(int));
208 	if (error != 0)
209 		return(error);
210 	sx_xlock(&allproc_lock);
211 	pid = randompid;
212 	error = sysctl_handle_int(oidp, &pid, 0, req);
213 	if (error == 0 && req->newptr != NULL) {
214 		if (pid == 0)
215 			randompid = 0;
216 		else if (pid == 1)
217 			/* generate a random PID modulus between 100 and 1123 */
218 			randompid = 100 + arc4random() % 1024;
219 		else if (pid < 0 || pid > pid_max - 100)
220 			/* out of range */
221 			randompid = pid_max - 100;
222 		else if (pid < 100)
223 			/* Make it reasonable */
224 			randompid = 100;
225 		else
226 			randompid = pid;
227 	}
228 	sx_xunlock(&allproc_lock);
229 	return (error);
230 }
231 
232 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW,
233     0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value");
234 
235 static int
236 fork_findpid(int flags)
237 {
238 	struct proc *p;
239 	int trypid;
240 	static int pidchecked = 0;
241 	bool locked_zomb = false;
242 
243 	/*
244 	 * Requires allproc_lock in order to iterate over the list
245 	 * of processes, and proctree_lock to access p_pgrp.
246 	 */
247 	sx_assert(&allproc_lock, SX_LOCKED);
248 	sx_assert(&proctree_lock, SX_LOCKED);
249 
250 	/*
251 	 * Find an unused process ID.  We remember a range of unused IDs
252 	 * ready to use (from lastpid+1 through pidchecked-1).
253 	 *
254 	 * If RFHIGHPID is set (used during system boot), do not allocate
255 	 * low-numbered pids.
256 	 */
257 	trypid = lastpid + 1;
258 	if (flags & RFHIGHPID) {
259 		if (trypid < 10)
260 			trypid = 10;
261 	} else {
262 		if (randompid)
263 			trypid += arc4random() % randompid;
264 	}
265 retry:
266 	/*
267 	 * If the process ID prototype has wrapped around,
268 	 * restart somewhat above 0, as the low-numbered procs
269 	 * tend to include daemons that don't exit.
270 	 */
271 	if (trypid >= pid_max) {
272 		trypid = trypid % pid_max;
273 		if (trypid < 100)
274 			trypid += 100;
275 		pidchecked = 0;
276 	}
277 	if (trypid >= pidchecked) {
278 		int doingzomb = 0;
279 
280 		pidchecked = PID_MAX;
281 		/*
282 		 * Scan the active and zombie procs to check whether this pid
283 		 * is in use.  Remember the lowest pid that's greater
284 		 * than trypid, so we can avoid checking for a while.
285 		 *
286 		 * Avoid reuse of the process group id, session id or
287 		 * the reaper subtree id.  Note that for process group
288 		 * and sessions, the amount of reserved pids is
289 		 * limited by process limit.  For the subtree ids, the
290 		 * id is kept reserved only while there is a
291 		 * non-reaped process in the subtree, so amount of
292 		 * reserved pids is limited by process limit times
293 		 * two.
294 		 */
295 		p = LIST_FIRST(&allproc);
296 again:
297 		for (; p != NULL; p = LIST_NEXT(p, p_list)) {
298 			while (p->p_pid == trypid ||
299 			    p->p_reapsubtree == trypid ||
300 			    (p->p_pgrp != NULL &&
301 			    (p->p_pgrp->pg_id == trypid ||
302 			    (p->p_session != NULL &&
303 			    p->p_session->s_sid == trypid)))) {
304 				trypid++;
305 				if (trypid >= pidchecked)
306 					goto retry;
307 			}
308 			if (p->p_pid > trypid && pidchecked > p->p_pid)
309 				pidchecked = p->p_pid;
310 			if (p->p_pgrp != NULL) {
311 				if (p->p_pgrp->pg_id > trypid &&
312 				    pidchecked > p->p_pgrp->pg_id)
313 					pidchecked = p->p_pgrp->pg_id;
314 				if (p->p_session != NULL &&
315 				    p->p_session->s_sid > trypid &&
316 				    pidchecked > p->p_session->s_sid)
317 					pidchecked = p->p_session->s_sid;
318 			}
319 		}
320 		if (!doingzomb) {
321 			doingzomb = 1;
322 			if (!locked_zomb) {
323 				sx_slock(&zombproc_lock);
324 				locked_zomb = true;
325 			}
326 			p = LIST_FIRST(&zombproc);
327 			goto again;
328 		}
329 	}
330 
331 	/*
332 	 * RFHIGHPID does not mess with the lastpid counter during boot.
333 	 */
334 	if (flags & RFHIGHPID)
335 		pidchecked = 0;
336 	else
337 		lastpid = trypid;
338 
339 	if (locked_zomb)
340 		sx_sunlock(&zombproc_lock);
341 
342 	return (trypid);
343 }
344 
345 static int
346 fork_norfproc(struct thread *td, int flags)
347 {
348 	int error;
349 	struct proc *p1;
350 
351 	KASSERT((flags & RFPROC) == 0,
352 	    ("fork_norfproc called with RFPROC set"));
353 	p1 = td->td_proc;
354 
355 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
356 	    (flags & (RFCFDG | RFFDG))) {
357 		PROC_LOCK(p1);
358 		if (thread_single(p1, SINGLE_BOUNDARY)) {
359 			PROC_UNLOCK(p1);
360 			return (ERESTART);
361 		}
362 		PROC_UNLOCK(p1);
363 	}
364 
365 	error = vm_forkproc(td, NULL, NULL, NULL, flags);
366 	if (error)
367 		goto fail;
368 
369 	/*
370 	 * Close all file descriptors.
371 	 */
372 	if (flags & RFCFDG) {
373 		struct filedesc *fdtmp;
374 		fdtmp = fdinit(td->td_proc->p_fd, false);
375 		fdescfree(td);
376 		p1->p_fd = fdtmp;
377 	}
378 
379 	/*
380 	 * Unshare file descriptors (from parent).
381 	 */
382 	if (flags & RFFDG)
383 		fdunshare(td);
384 
385 fail:
386 	if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) &&
387 	    (flags & (RFCFDG | RFFDG))) {
388 		PROC_LOCK(p1);
389 		thread_single_end(p1, SINGLE_BOUNDARY);
390 		PROC_UNLOCK(p1);
391 	}
392 	return (error);
393 }
394 
395 static void
396 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
397     struct vmspace *vm2, struct file *fp_procdesc)
398 {
399 	struct proc *p1, *pptr;
400 	int trypid;
401 	struct filedesc *fd;
402 	struct filedesc_to_leader *fdtol;
403 	struct sigacts *newsigacts;
404 
405 	sx_assert(&proctree_lock, SX_LOCKED);
406 	sx_assert(&allproc_lock, SX_XLOCKED);
407 
408 	p1 = td->td_proc;
409 
410 	trypid = fork_findpid(fr->fr_flags);
411 
412 	p2->p_state = PRS_NEW;		/* protect against others */
413 	p2->p_pid = trypid;
414 	AUDIT_ARG_PID(p2->p_pid);
415 	LIST_INSERT_HEAD(&allproc, p2, p_list);
416 	allproc_gen++;
417 	sx_xlock(PIDHASHLOCK(p2->p_pid));
418 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
419 	sx_xunlock(PIDHASHLOCK(p2->p_pid));
420 	PROC_LOCK(p2);
421 	PROC_LOCK(p1);
422 
423 	sx_xunlock(&allproc_lock);
424 	sx_xunlock(&proctree_lock);
425 
426 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
427 	    __rangeof(struct proc, p_startcopy, p_endcopy));
428 	pargs_hold(p2->p_args);
429 
430 	PROC_UNLOCK(p1);
431 
432 	bzero(&p2->p_startzero,
433 	    __rangeof(struct proc, p_startzero, p_endzero));
434 
435 	/* Tell the prison that we exist. */
436 	prison_proc_hold(p2->p_ucred->cr_prison);
437 
438 	PROC_UNLOCK(p2);
439 
440 	tidhash_add(td2);
441 
442 	/*
443 	 * Malloc things while we don't hold any locks.
444 	 */
445 	if (fr->fr_flags & RFSIGSHARE)
446 		newsigacts = NULL;
447 	else
448 		newsigacts = sigacts_alloc();
449 
450 	/*
451 	 * Copy filedesc.
452 	 */
453 	if (fr->fr_flags & RFCFDG) {
454 		fd = fdinit(p1->p_fd, false);
455 		fdtol = NULL;
456 	} else if (fr->fr_flags & RFFDG) {
457 		fd = fdcopy(p1->p_fd);
458 		fdtol = NULL;
459 	} else {
460 		fd = fdshare(p1->p_fd);
461 		if (p1->p_fdtol == NULL)
462 			p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
463 			    p1->p_leader);
464 		if ((fr->fr_flags & RFTHREAD) != 0) {
465 			/*
466 			 * Shared file descriptor table, and shared
467 			 * process leaders.
468 			 */
469 			fdtol = p1->p_fdtol;
470 			FILEDESC_XLOCK(p1->p_fd);
471 			fdtol->fdl_refcount++;
472 			FILEDESC_XUNLOCK(p1->p_fd);
473 		} else {
474 			/*
475 			 * Shared file descriptor table, and different
476 			 * process leaders.
477 			 */
478 			fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
479 			    p1->p_fd, p2);
480 		}
481 	}
482 	/*
483 	 * Make a proc table entry for the new process.
484 	 * Start by zeroing the section of proc that is zero-initialized,
485 	 * then copy the section that is copied directly from the parent.
486 	 */
487 
488 	PROC_LOCK(p2);
489 	PROC_LOCK(p1);
490 
491 	bzero(&td2->td_startzero,
492 	    __rangeof(struct thread, td_startzero, td_endzero));
493 
494 	bcopy(&td->td_startcopy, &td2->td_startcopy,
495 	    __rangeof(struct thread, td_startcopy, td_endcopy));
496 
497 	bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
498 	td2->td_sigstk = td->td_sigstk;
499 	td2->td_flags = TDF_INMEM;
500 	td2->td_lend_user_pri = PRI_MAX;
501 
502 #ifdef VIMAGE
503 	td2->td_vnet = NULL;
504 	td2->td_vnet_lpush = NULL;
505 #endif
506 
507 	/*
508 	 * Allow the scheduler to initialize the child.
509 	 */
510 	thread_lock(td);
511 	sched_fork(td, td2);
512 	thread_unlock(td);
513 
514 	/*
515 	 * Duplicate sub-structures as needed.
516 	 * Increase reference counts on shared objects.
517 	 */
518 	p2->p_flag = P_INMEM;
519 	p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP);
520 	p2->p_swtick = ticks;
521 	if (p1->p_flag & P_PROFIL)
522 		startprofclock(p2);
523 
524 	if (fr->fr_flags & RFSIGSHARE) {
525 		p2->p_sigacts = sigacts_hold(p1->p_sigacts);
526 	} else {
527 		sigacts_copy(newsigacts, p1->p_sigacts);
528 		p2->p_sigacts = newsigacts;
529 	}
530 
531 	if (fr->fr_flags & RFTSIGZMB)
532 	        p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
533 	else if (fr->fr_flags & RFLINUXTHPN)
534 	        p2->p_sigparent = SIGUSR1;
535 	else
536 	        p2->p_sigparent = SIGCHLD;
537 
538 	p2->p_textvp = p1->p_textvp;
539 	p2->p_fd = fd;
540 	p2->p_fdtol = fdtol;
541 
542 	if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
543 		p2->p_flag |= P_PROTECTED;
544 		p2->p_flag2 |= P2_INHERIT_PROTECTED;
545 	}
546 
547 	/*
548 	 * p_limit is copy-on-write.  Bump its refcount.
549 	 */
550 	lim_fork(p1, p2);
551 
552 	thread_cow_get_proc(td2, p2);
553 
554 	pstats_fork(p1->p_stats, p2->p_stats);
555 
556 	PROC_UNLOCK(p1);
557 	PROC_UNLOCK(p2);
558 
559 	/* Bump references to the text vnode (for procfs). */
560 	if (p2->p_textvp)
561 		vrefact(p2->p_textvp);
562 
563 	/*
564 	 * Set up linkage for kernel based threading.
565 	 */
566 	if ((fr->fr_flags & RFTHREAD) != 0) {
567 		mtx_lock(&ppeers_lock);
568 		p2->p_peers = p1->p_peers;
569 		p1->p_peers = p2;
570 		p2->p_leader = p1->p_leader;
571 		mtx_unlock(&ppeers_lock);
572 		PROC_LOCK(p1->p_leader);
573 		if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
574 			PROC_UNLOCK(p1->p_leader);
575 			/*
576 			 * The task leader is exiting, so process p1 is
577 			 * going to be killed shortly.  Since p1 obviously
578 			 * isn't dead yet, we know that the leader is either
579 			 * sending SIGKILL's to all the processes in this
580 			 * task or is sleeping waiting for all the peers to
581 			 * exit.  We let p1 complete the fork, but we need
582 			 * to go ahead and kill the new process p2 since
583 			 * the task leader may not get a chance to send
584 			 * SIGKILL to it.  We leave it on the list so that
585 			 * the task leader will wait for this new process
586 			 * to commit suicide.
587 			 */
588 			PROC_LOCK(p2);
589 			kern_psignal(p2, SIGKILL);
590 			PROC_UNLOCK(p2);
591 		} else
592 			PROC_UNLOCK(p1->p_leader);
593 	} else {
594 		p2->p_peers = NULL;
595 		p2->p_leader = p2;
596 	}
597 
598 	sx_xlock(&proctree_lock);
599 	PGRP_LOCK(p1->p_pgrp);
600 	PROC_LOCK(p2);
601 	PROC_LOCK(p1);
602 
603 	/*
604 	 * Preserve some more flags in subprocess.  P_PROFIL has already
605 	 * been preserved.
606 	 */
607 	p2->p_flag |= p1->p_flag & P_SUGID;
608 	td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING;
609 	SESS_LOCK(p1->p_session);
610 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
611 		p2->p_flag |= P_CONTROLT;
612 	SESS_UNLOCK(p1->p_session);
613 	if (fr->fr_flags & RFPPWAIT)
614 		p2->p_flag |= P_PPWAIT;
615 
616 	p2->p_pgrp = p1->p_pgrp;
617 	LIST_INSERT_AFTER(p1, p2, p_pglist);
618 	PGRP_UNLOCK(p1->p_pgrp);
619 	LIST_INIT(&p2->p_children);
620 	LIST_INIT(&p2->p_orphans);
621 
622 	callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
623 
624 	/*
625 	 * If PF_FORK is set, the child process inherits the
626 	 * procfs ioctl flags from its parent.
627 	 */
628 	if (p1->p_pfsflags & PF_FORK) {
629 		p2->p_stops = p1->p_stops;
630 		p2->p_pfsflags = p1->p_pfsflags;
631 	}
632 
633 	/*
634 	 * This begins the section where we must prevent the parent
635 	 * from being swapped.
636 	 */
637 	_PHOLD(p1);
638 	PROC_UNLOCK(p1);
639 
640 	/*
641 	 * Attach the new process to its parent.
642 	 *
643 	 * If RFNOWAIT is set, the newly created process becomes a child
644 	 * of init.  This effectively disassociates the child from the
645 	 * parent.
646 	 */
647 	if ((fr->fr_flags & RFNOWAIT) != 0) {
648 		pptr = p1->p_reaper;
649 		p2->p_reaper = pptr;
650 	} else {
651 		p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
652 		    p1 : p1->p_reaper;
653 		pptr = p1;
654 	}
655 	p2->p_pptr = pptr;
656 	p2->p_oppid = pptr->p_pid;
657 	LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
658 	LIST_INIT(&p2->p_reaplist);
659 	LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
660 	if (p2->p_reaper == p1)
661 		p2->p_reapsubtree = p2->p_pid;
662 	sx_xunlock(&proctree_lock);
663 
664 	/* Inform accounting that we have forked. */
665 	p2->p_acflag = AFORK;
666 	PROC_UNLOCK(p2);
667 
668 #ifdef KTRACE
669 	ktrprocfork(p1, p2);
670 #endif
671 
672 	/*
673 	 * Finish creating the child process.  It will return via a different
674 	 * execution path later.  (ie: directly into user mode)
675 	 */
676 	vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
677 
678 	if (fr->fr_flags == (RFFDG | RFPROC)) {
679 		VM_CNT_INC(v_forks);
680 		VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
681 		    p2->p_vmspace->vm_ssize);
682 	} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
683 		VM_CNT_INC(v_vforks);
684 		VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
685 		    p2->p_vmspace->vm_ssize);
686 	} else if (p1 == &proc0) {
687 		VM_CNT_INC(v_kthreads);
688 		VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
689 		    p2->p_vmspace->vm_ssize);
690 	} else {
691 		VM_CNT_INC(v_rforks);
692 		VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
693 		    p2->p_vmspace->vm_ssize);
694 	}
695 
696 	/*
697 	 * Associate the process descriptor with the process before anything
698 	 * can happen that might cause that process to need the descriptor.
699 	 * However, don't do this until after fork(2) can no longer fail.
700 	 */
701 	if (fr->fr_flags & RFPROCDESC)
702 		procdesc_new(p2, fr->fr_pd_flags);
703 
704 	/*
705 	 * Both processes are set up, now check if any loadable modules want
706 	 * to adjust anything.
707 	 */
708 	EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
709 
710 	/*
711 	 * Set the child start time and mark the process as being complete.
712 	 */
713 	PROC_LOCK(p2);
714 	PROC_LOCK(p1);
715 	microuptime(&p2->p_stats->p_start);
716 	PROC_SLOCK(p2);
717 	p2->p_state = PRS_NORMAL;
718 	PROC_SUNLOCK(p2);
719 
720 #ifdef KDTRACE_HOOKS
721 	/*
722 	 * Tell the DTrace fasttrap provider about the new process so that any
723 	 * tracepoints inherited from the parent can be removed. We have to do
724 	 * this only after p_state is PRS_NORMAL since the fasttrap module will
725 	 * use pfind() later on.
726 	 */
727 	if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
728 		dtrace_fasttrap_fork(p1, p2);
729 #endif
730 	if (fr->fr_flags & RFPPWAIT) {
731 		td->td_pflags |= TDP_RFPPWAIT;
732 		td->td_rfppwait_p = p2;
733 		td->td_dbgflags |= TDB_VFORK;
734 	}
735 	PROC_UNLOCK(p2);
736 
737 	/*
738 	 * Now can be swapped.
739 	 */
740 	_PRELE(p1);
741 	PROC_UNLOCK(p1);
742 
743 	/*
744 	 * Tell any interested parties about the new process.
745 	 */
746 	knote_fork(p1->p_klist, p2->p_pid);
747 	SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
748 
749 	if (fr->fr_flags & RFPROCDESC) {
750 		procdesc_finit(p2->p_procdesc, fp_procdesc);
751 		fdrop(fp_procdesc, td);
752 	}
753 
754 	/*
755 	 * Speculative check for PTRACE_FORK. PTRACE_FORK is not
756 	 * synced with forks in progress so it is OK if we miss it
757 	 * if being set atm.
758 	 */
759 	if ((p1->p_ptevents & PTRACE_FORK) != 0) {
760 		sx_xlock(&proctree_lock);
761 		PROC_LOCK(p2);
762 
763 		/*
764 		 * p1->p_ptevents & p1->p_pptr are protected by both
765 		 * process and proctree locks for modifications,
766 		 * so owning proctree_lock allows the race-free read.
767 		 */
768 		if ((p1->p_ptevents & PTRACE_FORK) != 0) {
769 			/*
770 			 * Arrange for debugger to receive the fork event.
771 			 *
772 			 * We can report PL_FLAG_FORKED regardless of
773 			 * P_FOLLOWFORK settings, but it does not make a sense
774 			 * for runaway child.
775 			 */
776 			td->td_dbgflags |= TDB_FORK;
777 			td->td_dbg_forked = p2->p_pid;
778 			td2->td_dbgflags |= TDB_STOPATFORK;
779 			proc_set_traced(p2, true);
780 			CTR2(KTR_PTRACE,
781 			    "do_fork: attaching to new child pid %d: oppid %d",
782 			    p2->p_pid, p2->p_oppid);
783 			proc_reparent(p2, p1->p_pptr, false);
784 		}
785 		PROC_UNLOCK(p2);
786 		sx_xunlock(&proctree_lock);
787 	}
788 
789 	racct_proc_fork_done(p2);
790 
791 	if ((fr->fr_flags & RFSTOPPED) == 0) {
792 		if (fr->fr_pidp != NULL)
793 			*fr->fr_pidp = p2->p_pid;
794 		/*
795 		 * If RFSTOPPED not requested, make child runnable and
796 		 * add to run queue.
797 		 */
798 		thread_lock(td2);
799 		TD_SET_CAN_RUN(td2);
800 		sched_add(td2, SRQ_BORING);
801 		thread_unlock(td2);
802 	} else {
803 		*fr->fr_procp = p2;
804 	}
805 }
806 
807 int
808 fork1(struct thread *td, struct fork_req *fr)
809 {
810 	struct proc *p1, *newproc;
811 	struct thread *td2;
812 	struct vmspace *vm2;
813 	struct file *fp_procdesc;
814 	vm_ooffset_t mem_charged;
815 	int error, nprocs_new, ok;
816 	static int curfail;
817 	static struct timeval lastfail;
818 	int flags, pages;
819 
820 	flags = fr->fr_flags;
821 	pages = fr->fr_pages;
822 
823 	if ((flags & RFSTOPPED) != 0)
824 		MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
825 	else
826 		MPASS(fr->fr_procp == NULL);
827 
828 	/* Check for the undefined or unimplemented flags. */
829 	if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
830 		return (EINVAL);
831 
832 	/* Signal value requires RFTSIGZMB. */
833 	if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
834 		return (EINVAL);
835 
836 	/* Can't copy and clear. */
837 	if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
838 		return (EINVAL);
839 
840 	/* Check the validity of the signal number. */
841 	if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
842 		return (EINVAL);
843 
844 	if ((flags & RFPROCDESC) != 0) {
845 		/* Can't not create a process yet get a process descriptor. */
846 		if ((flags & RFPROC) == 0)
847 			return (EINVAL);
848 
849 		/* Must provide a place to put a procdesc if creating one. */
850 		if (fr->fr_pd_fd == NULL)
851 			return (EINVAL);
852 
853 		/* Check if we are using supported flags. */
854 		if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
855 			return (EINVAL);
856 	}
857 
858 	p1 = td->td_proc;
859 
860 	/*
861 	 * Here we don't create a new process, but we divorce
862 	 * certain parts of a process from itself.
863 	 */
864 	if ((flags & RFPROC) == 0) {
865 		if (fr->fr_procp != NULL)
866 			*fr->fr_procp = NULL;
867 		else if (fr->fr_pidp != NULL)
868 			*fr->fr_pidp = 0;
869 		return (fork_norfproc(td, flags));
870 	}
871 
872 	fp_procdesc = NULL;
873 	newproc = NULL;
874 	vm2 = NULL;
875 
876 	/*
877 	 * Increment the nprocs resource before allocations occur.
878 	 * Although process entries are dynamically created, we still
879 	 * keep a global limit on the maximum number we will
880 	 * create. There are hard-limits as to the number of processes
881 	 * that can run, established by the KVA and memory usage for
882 	 * the process data.
883 	 *
884 	 * Don't allow a nonprivileged user to use the last ten
885 	 * processes; don't let root exceed the limit.
886 	 */
887 	nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
888 	if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred,
889 	    PRIV_MAXPROC, 0) != 0) || nprocs_new >= maxproc) {
890 		error = EAGAIN;
891 		sx_xlock(&allproc_lock);
892 		if (ppsratecheck(&lastfail, &curfail, 1)) {
893 			printf("maxproc limit exceeded by uid %u (pid %d); "
894 			    "see tuning(7) and login.conf(5)\n",
895 			    td->td_ucred->cr_ruid, p1->p_pid);
896 		}
897 		sx_xunlock(&allproc_lock);
898 		goto fail2;
899 	}
900 
901 	/*
902 	 * If required, create a process descriptor in the parent first; we
903 	 * will abandon it if something goes wrong. We don't finit() until
904 	 * later.
905 	 */
906 	if (flags & RFPROCDESC) {
907 		error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
908 		    fr->fr_pd_flags, fr->fr_pd_fcaps);
909 		if (error != 0)
910 			goto fail2;
911 	}
912 
913 	mem_charged = 0;
914 	if (pages == 0)
915 		pages = kstack_pages;
916 	/* Allocate new proc. */
917 	newproc = uma_zalloc(proc_zone, M_WAITOK);
918 	td2 = FIRST_THREAD_IN_PROC(newproc);
919 	if (td2 == NULL) {
920 		td2 = thread_alloc(pages);
921 		if (td2 == NULL) {
922 			error = ENOMEM;
923 			goto fail2;
924 		}
925 		proc_linkup(newproc, td2);
926 	} else {
927 		if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) {
928 			if (td2->td_kstack != 0)
929 				vm_thread_dispose(td2);
930 			if (!thread_alloc_stack(td2, pages)) {
931 				error = ENOMEM;
932 				goto fail2;
933 			}
934 		}
935 	}
936 
937 	if ((flags & RFMEM) == 0) {
938 		vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
939 		if (vm2 == NULL) {
940 			error = ENOMEM;
941 			goto fail2;
942 		}
943 		if (!swap_reserve(mem_charged)) {
944 			/*
945 			 * The swap reservation failed. The accounting
946 			 * from the entries of the copied vm2 will be
947 			 * subtracted in vmspace_free(), so force the
948 			 * reservation there.
949 			 */
950 			swap_reserve_force(mem_charged);
951 			error = ENOMEM;
952 			goto fail2;
953 		}
954 	} else
955 		vm2 = NULL;
956 
957 	/*
958 	 * XXX: This is ugly; when we copy resource usage, we need to bump
959 	 *      per-cred resource counters.
960 	 */
961 	proc_set_cred_init(newproc, crhold(td->td_ucred));
962 
963 	/*
964 	 * Initialize resource accounting for the child process.
965 	 */
966 	error = racct_proc_fork(p1, newproc);
967 	if (error != 0) {
968 		error = EAGAIN;
969 		goto fail1;
970 	}
971 
972 #ifdef MAC
973 	mac_proc_init(newproc);
974 #endif
975 	newproc->p_klist = knlist_alloc(&newproc->p_mtx);
976 	STAILQ_INIT(&newproc->p_ktr);
977 
978 	/* We have to lock the process tree while we look for a pid. */
979 	sx_xlock(&proctree_lock);
980 	sx_xlock(&allproc_lock);
981 
982 	/*
983 	 * Increment the count of procs running with this uid. Don't allow
984 	 * a nonprivileged user to exceed their current limit.
985 	 *
986 	 * XXXRW: Can we avoid privilege here if it's not needed?
987 	 */
988 	error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0);
989 	if (error == 0)
990 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0);
991 	else {
992 		ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1,
993 		    lim_cur(td, RLIMIT_NPROC));
994 	}
995 	if (ok) {
996 		do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
997 		return (0);
998 	}
999 
1000 	error = EAGAIN;
1001 	sx_xunlock(&allproc_lock);
1002 	sx_xunlock(&proctree_lock);
1003 #ifdef MAC
1004 	mac_proc_destroy(newproc);
1005 #endif
1006 	racct_proc_exit(newproc);
1007 fail1:
1008 	crfree(newproc->p_ucred);
1009 	newproc->p_ucred = NULL;
1010 fail2:
1011 	if (vm2 != NULL)
1012 		vmspace_free(vm2);
1013 	uma_zfree(proc_zone, newproc);
1014 	if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
1015 		fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1016 		fdrop(fp_procdesc, td);
1017 	}
1018 	atomic_add_int(&nprocs, -1);
1019 	pause("fork", hz / 2);
1020 	return (error);
1021 }
1022 
1023 /*
1024  * Handle the return of a child process from fork1().  This function
1025  * is called from the MD fork_trampoline() entry point.
1026  */
1027 void
1028 fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1029     struct trapframe *frame)
1030 {
1031 	struct proc *p;
1032 	struct thread *td;
1033 	struct thread *dtd;
1034 
1035 	td = curthread;
1036 	p = td->td_proc;
1037 	KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1038 
1039 	CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1040 	    td, td_get_sched(td), p->p_pid, td->td_name);
1041 
1042 	sched_fork_exit(td);
1043 	/*
1044 	* Processes normally resume in mi_switch() after being
1045 	* cpu_switch()'ed to, but when children start up they arrive here
1046 	* instead, so we must do much the same things as mi_switch() would.
1047 	*/
1048 	if ((dtd = PCPU_GET(deadthread))) {
1049 		PCPU_SET(deadthread, NULL);
1050 		thread_stash(dtd);
1051 	}
1052 	thread_unlock(td);
1053 
1054 	/*
1055 	 * cpu_fork_kthread_handler intercepts this function call to
1056 	 * have this call a non-return function to stay in kernel mode.
1057 	 * initproc has its own fork handler, but it does return.
1058 	 */
1059 	KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1060 	callout(arg, frame);
1061 
1062 	/*
1063 	 * Check if a kernel thread misbehaved and returned from its main
1064 	 * function.
1065 	 */
1066 	if (p->p_flag & P_KPROC) {
1067 		printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1068 		    td->td_name, p->p_pid);
1069 		kthread_exit();
1070 	}
1071 	mtx_assert(&Giant, MA_NOTOWNED);
1072 
1073 	if (p->p_sysent->sv_schedtail != NULL)
1074 		(p->p_sysent->sv_schedtail)(td);
1075 	td->td_pflags &= ~TDP_FORKING;
1076 }
1077 
1078 /*
1079  * Simplified back end of syscall(), used when returning from fork()
1080  * directly into user mode.  This function is passed in to fork_exit()
1081  * as the first parameter and is called when returning to a new
1082  * userland process.
1083  */
1084 void
1085 fork_return(struct thread *td, struct trapframe *frame)
1086 {
1087 	struct proc *p;
1088 
1089 	p = td->td_proc;
1090 	if (td->td_dbgflags & TDB_STOPATFORK) {
1091 		PROC_LOCK(p);
1092 		if ((p->p_flag & P_TRACED) != 0) {
1093 			/*
1094 			 * Inform the debugger if one is still present.
1095 			 */
1096 			td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1097 			ptracestop(td, SIGSTOP, NULL);
1098 			td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1099 		} else {
1100 			/*
1101 			 * ... otherwise clear the request.
1102 			 */
1103 			td->td_dbgflags &= ~TDB_STOPATFORK;
1104 		}
1105 		PROC_UNLOCK(p);
1106 	} else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) {
1107  		/*
1108 		 * This is the start of a new thread in a traced
1109 		 * process.  Report a system call exit event.
1110 		 */
1111 		PROC_LOCK(p);
1112 		td->td_dbgflags |= TDB_SCX;
1113 		_STOPEVENT(p, S_SCX, td->td_sa.code);
1114 		if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1115 		    (td->td_dbgflags & TDB_BORN) != 0)
1116 			ptracestop(td, SIGTRAP, NULL);
1117 		td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1118 		PROC_UNLOCK(p);
1119 	}
1120 
1121 	userret(td, frame);
1122 
1123 #ifdef KTRACE
1124 	if (KTRPOINT(td, KTR_SYSRET))
1125 		ktrsysret(SYS_fork, 0, 0);
1126 #endif
1127 }
1128