1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ktrace.h" 43 #include "opt_kstack_pages.h" 44 45 #include <sys/param.h> 46 #include <sys/systm.h> 47 #include <sys/sysproto.h> 48 #include <sys/eventhandler.h> 49 #include <sys/fcntl.h> 50 #include <sys/filedesc.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/kthread.h> 54 #include <sys/sysctl.h> 55 #include <sys/lock.h> 56 #include <sys/malloc.h> 57 #include <sys/mutex.h> 58 #include <sys/priv.h> 59 #include <sys/proc.h> 60 #include <sys/procdesc.h> 61 #include <sys/pioctl.h> 62 #include <sys/ptrace.h> 63 #include <sys/racct.h> 64 #include <sys/resourcevar.h> 65 #include <sys/sched.h> 66 #include <sys/syscall.h> 67 #include <sys/vmmeter.h> 68 #include <sys/vnode.h> 69 #include <sys/acct.h> 70 #include <sys/ktr.h> 71 #include <sys/ktrace.h> 72 #include <sys/unistd.h> 73 #include <sys/sdt.h> 74 #include <sys/sx.h> 75 #include <sys/sysent.h> 76 #include <sys/signalvar.h> 77 78 #include <security/audit/audit.h> 79 #include <security/mac/mac_framework.h> 80 81 #include <vm/vm.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_extern.h> 85 #include <vm/uma.h> 86 87 #ifdef KDTRACE_HOOKS 88 #include <sys/dtrace_bsd.h> 89 dtrace_fork_func_t dtrace_fasttrap_fork; 90 #endif 91 92 SDT_PROVIDER_DECLARE(proc); 93 SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int"); 94 95 #ifndef _SYS_SYSPROTO_H_ 96 struct fork_args { 97 int dummy; 98 }; 99 #endif 100 101 EVENTHANDLER_LIST_DECLARE(process_fork); 102 103 /* ARGSUSED */ 104 int 105 sys_fork(struct thread *td, struct fork_args *uap) 106 { 107 struct fork_req fr; 108 int error, pid; 109 110 bzero(&fr, sizeof(fr)); 111 fr.fr_flags = RFFDG | RFPROC; 112 fr.fr_pidp = &pid; 113 error = fork1(td, &fr); 114 if (error == 0) { 115 td->td_retval[0] = pid; 116 td->td_retval[1] = 0; 117 } 118 return (error); 119 } 120 121 /* ARGUSED */ 122 int 123 sys_pdfork(struct thread *td, struct pdfork_args *uap) 124 { 125 struct fork_req fr; 126 int error, fd, pid; 127 128 bzero(&fr, sizeof(fr)); 129 fr.fr_flags = RFFDG | RFPROC | RFPROCDESC; 130 fr.fr_pidp = &pid; 131 fr.fr_pd_fd = &fd; 132 fr.fr_pd_flags = uap->flags; 133 /* 134 * It is necessary to return fd by reference because 0 is a valid file 135 * descriptor number, and the child needs to be able to distinguish 136 * itself from the parent using the return value. 137 */ 138 error = fork1(td, &fr); 139 if (error == 0) { 140 td->td_retval[0] = pid; 141 td->td_retval[1] = 0; 142 error = copyout(&fd, uap->fdp, sizeof(fd)); 143 } 144 return (error); 145 } 146 147 /* ARGSUSED */ 148 int 149 sys_vfork(struct thread *td, struct vfork_args *uap) 150 { 151 struct fork_req fr; 152 int error, pid; 153 154 bzero(&fr, sizeof(fr)); 155 fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM; 156 fr.fr_pidp = &pid; 157 error = fork1(td, &fr); 158 if (error == 0) { 159 td->td_retval[0] = pid; 160 td->td_retval[1] = 0; 161 } 162 return (error); 163 } 164 165 int 166 sys_rfork(struct thread *td, struct rfork_args *uap) 167 { 168 struct fork_req fr; 169 int error, pid; 170 171 /* Don't allow kernel-only flags. */ 172 if ((uap->flags & RFKERNELONLY) != 0) 173 return (EINVAL); 174 175 AUDIT_ARG_FFLAGS(uap->flags); 176 bzero(&fr, sizeof(fr)); 177 fr.fr_flags = uap->flags; 178 fr.fr_pidp = &pid; 179 error = fork1(td, &fr); 180 if (error == 0) { 181 td->td_retval[0] = pid; 182 td->td_retval[1] = 0; 183 } 184 return (error); 185 } 186 187 int nprocs = 1; /* process 0 */ 188 int lastpid = 0; 189 SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0, 190 "Last used PID"); 191 192 /* 193 * Random component to lastpid generation. We mix in a random factor to make 194 * it a little harder to predict. We sanity check the modulus value to avoid 195 * doing it in critical paths. Don't let it be too small or we pointlessly 196 * waste randomness entropy, and don't let it be impossibly large. Using a 197 * modulus that is too big causes a LOT more process table scans and slows 198 * down fork processing as the pidchecked caching is defeated. 199 */ 200 static int randompid = 0; 201 202 static int 203 sysctl_kern_randompid(SYSCTL_HANDLER_ARGS) 204 { 205 int error, pid; 206 207 error = sysctl_wire_old_buffer(req, sizeof(int)); 208 if (error != 0) 209 return(error); 210 sx_xlock(&allproc_lock); 211 pid = randompid; 212 error = sysctl_handle_int(oidp, &pid, 0, req); 213 if (error == 0 && req->newptr != NULL) { 214 if (pid == 0) 215 randompid = 0; 216 else if (pid == 1) 217 /* generate a random PID modulus between 100 and 1123 */ 218 randompid = 100 + arc4random() % 1024; 219 else if (pid < 0 || pid > pid_max - 100) 220 /* out of range */ 221 randompid = pid_max - 100; 222 else if (pid < 100) 223 /* Make it reasonable */ 224 randompid = 100; 225 else 226 randompid = pid; 227 } 228 sx_xunlock(&allproc_lock); 229 return (error); 230 } 231 232 SYSCTL_PROC(_kern, OID_AUTO, randompid, CTLTYPE_INT|CTLFLAG_RW, 233 0, 0, sysctl_kern_randompid, "I", "Random PID modulus. Special values: 0: disable, 1: choose random value"); 234 235 static int 236 fork_findpid(int flags) 237 { 238 struct proc *p; 239 int trypid; 240 static int pidchecked = 0; 241 bool locked_zomb = false; 242 243 /* 244 * Requires allproc_lock in order to iterate over the list 245 * of processes, and proctree_lock to access p_pgrp. 246 */ 247 sx_assert(&allproc_lock, SX_LOCKED); 248 sx_assert(&proctree_lock, SX_LOCKED); 249 250 /* 251 * Find an unused process ID. We remember a range of unused IDs 252 * ready to use (from lastpid+1 through pidchecked-1). 253 * 254 * If RFHIGHPID is set (used during system boot), do not allocate 255 * low-numbered pids. 256 */ 257 trypid = lastpid + 1; 258 if (flags & RFHIGHPID) { 259 if (trypid < 10) 260 trypid = 10; 261 } else { 262 if (randompid) 263 trypid += arc4random() % randompid; 264 } 265 retry: 266 /* 267 * If the process ID prototype has wrapped around, 268 * restart somewhat above 0, as the low-numbered procs 269 * tend to include daemons that don't exit. 270 */ 271 if (trypid >= pid_max) { 272 trypid = trypid % pid_max; 273 if (trypid < 100) 274 trypid += 100; 275 pidchecked = 0; 276 } 277 if (trypid >= pidchecked) { 278 int doingzomb = 0; 279 280 pidchecked = PID_MAX; 281 /* 282 * Scan the active and zombie procs to check whether this pid 283 * is in use. Remember the lowest pid that's greater 284 * than trypid, so we can avoid checking for a while. 285 * 286 * Avoid reuse of the process group id, session id or 287 * the reaper subtree id. Note that for process group 288 * and sessions, the amount of reserved pids is 289 * limited by process limit. For the subtree ids, the 290 * id is kept reserved only while there is a 291 * non-reaped process in the subtree, so amount of 292 * reserved pids is limited by process limit times 293 * two. 294 */ 295 p = LIST_FIRST(&allproc); 296 again: 297 for (; p != NULL; p = LIST_NEXT(p, p_list)) { 298 while (p->p_pid == trypid || 299 p->p_reapsubtree == trypid || 300 (p->p_pgrp != NULL && 301 (p->p_pgrp->pg_id == trypid || 302 (p->p_session != NULL && 303 p->p_session->s_sid == trypid)))) { 304 trypid++; 305 if (trypid >= pidchecked) 306 goto retry; 307 } 308 if (p->p_pid > trypid && pidchecked > p->p_pid) 309 pidchecked = p->p_pid; 310 if (p->p_pgrp != NULL) { 311 if (p->p_pgrp->pg_id > trypid && 312 pidchecked > p->p_pgrp->pg_id) 313 pidchecked = p->p_pgrp->pg_id; 314 if (p->p_session != NULL && 315 p->p_session->s_sid > trypid && 316 pidchecked > p->p_session->s_sid) 317 pidchecked = p->p_session->s_sid; 318 } 319 } 320 if (!doingzomb) { 321 doingzomb = 1; 322 if (!locked_zomb) { 323 sx_slock(&zombproc_lock); 324 locked_zomb = true; 325 } 326 p = LIST_FIRST(&zombproc); 327 goto again; 328 } 329 } 330 331 /* 332 * RFHIGHPID does not mess with the lastpid counter during boot. 333 */ 334 if (flags & RFHIGHPID) 335 pidchecked = 0; 336 else 337 lastpid = trypid; 338 339 if (locked_zomb) 340 sx_sunlock(&zombproc_lock); 341 342 return (trypid); 343 } 344 345 static int 346 fork_norfproc(struct thread *td, int flags) 347 { 348 int error; 349 struct proc *p1; 350 351 KASSERT((flags & RFPROC) == 0, 352 ("fork_norfproc called with RFPROC set")); 353 p1 = td->td_proc; 354 355 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 356 (flags & (RFCFDG | RFFDG))) { 357 PROC_LOCK(p1); 358 if (thread_single(p1, SINGLE_BOUNDARY)) { 359 PROC_UNLOCK(p1); 360 return (ERESTART); 361 } 362 PROC_UNLOCK(p1); 363 } 364 365 error = vm_forkproc(td, NULL, NULL, NULL, flags); 366 if (error) 367 goto fail; 368 369 /* 370 * Close all file descriptors. 371 */ 372 if (flags & RFCFDG) { 373 struct filedesc *fdtmp; 374 fdtmp = fdinit(td->td_proc->p_fd, false); 375 fdescfree(td); 376 p1->p_fd = fdtmp; 377 } 378 379 /* 380 * Unshare file descriptors (from parent). 381 */ 382 if (flags & RFFDG) 383 fdunshare(td); 384 385 fail: 386 if (((p1->p_flag & (P_HADTHREADS|P_SYSTEM)) == P_HADTHREADS) && 387 (flags & (RFCFDG | RFFDG))) { 388 PROC_LOCK(p1); 389 thread_single_end(p1, SINGLE_BOUNDARY); 390 PROC_UNLOCK(p1); 391 } 392 return (error); 393 } 394 395 static void 396 do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2, 397 struct vmspace *vm2, struct file *fp_procdesc) 398 { 399 struct proc *p1, *pptr; 400 int trypid; 401 struct filedesc *fd; 402 struct filedesc_to_leader *fdtol; 403 struct sigacts *newsigacts; 404 405 sx_assert(&proctree_lock, SX_LOCKED); 406 sx_assert(&allproc_lock, SX_XLOCKED); 407 408 p1 = td->td_proc; 409 410 trypid = fork_findpid(fr->fr_flags); 411 412 p2->p_state = PRS_NEW; /* protect against others */ 413 p2->p_pid = trypid; 414 AUDIT_ARG_PID(p2->p_pid); 415 LIST_INSERT_HEAD(&allproc, p2, p_list); 416 allproc_gen++; 417 sx_xlock(PIDHASHLOCK(p2->p_pid)); 418 LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash); 419 sx_xunlock(PIDHASHLOCK(p2->p_pid)); 420 PROC_LOCK(p2); 421 PROC_LOCK(p1); 422 423 sx_xunlock(&allproc_lock); 424 sx_xunlock(&proctree_lock); 425 426 bcopy(&p1->p_startcopy, &p2->p_startcopy, 427 __rangeof(struct proc, p_startcopy, p_endcopy)); 428 pargs_hold(p2->p_args); 429 430 PROC_UNLOCK(p1); 431 432 bzero(&p2->p_startzero, 433 __rangeof(struct proc, p_startzero, p_endzero)); 434 435 /* Tell the prison that we exist. */ 436 prison_proc_hold(p2->p_ucred->cr_prison); 437 438 PROC_UNLOCK(p2); 439 440 tidhash_add(td2); 441 442 /* 443 * Malloc things while we don't hold any locks. 444 */ 445 if (fr->fr_flags & RFSIGSHARE) 446 newsigacts = NULL; 447 else 448 newsigacts = sigacts_alloc(); 449 450 /* 451 * Copy filedesc. 452 */ 453 if (fr->fr_flags & RFCFDG) { 454 fd = fdinit(p1->p_fd, false); 455 fdtol = NULL; 456 } else if (fr->fr_flags & RFFDG) { 457 fd = fdcopy(p1->p_fd); 458 fdtol = NULL; 459 } else { 460 fd = fdshare(p1->p_fd); 461 if (p1->p_fdtol == NULL) 462 p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL, 463 p1->p_leader); 464 if ((fr->fr_flags & RFTHREAD) != 0) { 465 /* 466 * Shared file descriptor table, and shared 467 * process leaders. 468 */ 469 fdtol = p1->p_fdtol; 470 FILEDESC_XLOCK(p1->p_fd); 471 fdtol->fdl_refcount++; 472 FILEDESC_XUNLOCK(p1->p_fd); 473 } else { 474 /* 475 * Shared file descriptor table, and different 476 * process leaders. 477 */ 478 fdtol = filedesc_to_leader_alloc(p1->p_fdtol, 479 p1->p_fd, p2); 480 } 481 } 482 /* 483 * Make a proc table entry for the new process. 484 * Start by zeroing the section of proc that is zero-initialized, 485 * then copy the section that is copied directly from the parent. 486 */ 487 488 PROC_LOCK(p2); 489 PROC_LOCK(p1); 490 491 bzero(&td2->td_startzero, 492 __rangeof(struct thread, td_startzero, td_endzero)); 493 494 bcopy(&td->td_startcopy, &td2->td_startcopy, 495 __rangeof(struct thread, td_startcopy, td_endcopy)); 496 497 bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name)); 498 td2->td_sigstk = td->td_sigstk; 499 td2->td_flags = TDF_INMEM; 500 td2->td_lend_user_pri = PRI_MAX; 501 502 #ifdef VIMAGE 503 td2->td_vnet = NULL; 504 td2->td_vnet_lpush = NULL; 505 #endif 506 507 /* 508 * Allow the scheduler to initialize the child. 509 */ 510 thread_lock(td); 511 sched_fork(td, td2); 512 thread_unlock(td); 513 514 /* 515 * Duplicate sub-structures as needed. 516 * Increase reference counts on shared objects. 517 */ 518 p2->p_flag = P_INMEM; 519 p2->p_flag2 = p1->p_flag2 & (P2_NOTRACE | P2_NOTRACE_EXEC | P2_TRAPCAP); 520 p2->p_swtick = ticks; 521 if (p1->p_flag & P_PROFIL) 522 startprofclock(p2); 523 524 if (fr->fr_flags & RFSIGSHARE) { 525 p2->p_sigacts = sigacts_hold(p1->p_sigacts); 526 } else { 527 sigacts_copy(newsigacts, p1->p_sigacts); 528 p2->p_sigacts = newsigacts; 529 } 530 531 if (fr->fr_flags & RFTSIGZMB) 532 p2->p_sigparent = RFTSIGNUM(fr->fr_flags); 533 else if (fr->fr_flags & RFLINUXTHPN) 534 p2->p_sigparent = SIGUSR1; 535 else 536 p2->p_sigparent = SIGCHLD; 537 538 p2->p_textvp = p1->p_textvp; 539 p2->p_fd = fd; 540 p2->p_fdtol = fdtol; 541 542 if (p1->p_flag2 & P2_INHERIT_PROTECTED) { 543 p2->p_flag |= P_PROTECTED; 544 p2->p_flag2 |= P2_INHERIT_PROTECTED; 545 } 546 547 /* 548 * p_limit is copy-on-write. Bump its refcount. 549 */ 550 lim_fork(p1, p2); 551 552 thread_cow_get_proc(td2, p2); 553 554 pstats_fork(p1->p_stats, p2->p_stats); 555 556 PROC_UNLOCK(p1); 557 PROC_UNLOCK(p2); 558 559 /* Bump references to the text vnode (for procfs). */ 560 if (p2->p_textvp) 561 vrefact(p2->p_textvp); 562 563 /* 564 * Set up linkage for kernel based threading. 565 */ 566 if ((fr->fr_flags & RFTHREAD) != 0) { 567 mtx_lock(&ppeers_lock); 568 p2->p_peers = p1->p_peers; 569 p1->p_peers = p2; 570 p2->p_leader = p1->p_leader; 571 mtx_unlock(&ppeers_lock); 572 PROC_LOCK(p1->p_leader); 573 if ((p1->p_leader->p_flag & P_WEXIT) != 0) { 574 PROC_UNLOCK(p1->p_leader); 575 /* 576 * The task leader is exiting, so process p1 is 577 * going to be killed shortly. Since p1 obviously 578 * isn't dead yet, we know that the leader is either 579 * sending SIGKILL's to all the processes in this 580 * task or is sleeping waiting for all the peers to 581 * exit. We let p1 complete the fork, but we need 582 * to go ahead and kill the new process p2 since 583 * the task leader may not get a chance to send 584 * SIGKILL to it. We leave it on the list so that 585 * the task leader will wait for this new process 586 * to commit suicide. 587 */ 588 PROC_LOCK(p2); 589 kern_psignal(p2, SIGKILL); 590 PROC_UNLOCK(p2); 591 } else 592 PROC_UNLOCK(p1->p_leader); 593 } else { 594 p2->p_peers = NULL; 595 p2->p_leader = p2; 596 } 597 598 sx_xlock(&proctree_lock); 599 PGRP_LOCK(p1->p_pgrp); 600 PROC_LOCK(p2); 601 PROC_LOCK(p1); 602 603 /* 604 * Preserve some more flags in subprocess. P_PROFIL has already 605 * been preserved. 606 */ 607 p2->p_flag |= p1->p_flag & P_SUGID; 608 td2->td_pflags |= (td->td_pflags & TDP_ALTSTACK) | TDP_FORKING; 609 SESS_LOCK(p1->p_session); 610 if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT) 611 p2->p_flag |= P_CONTROLT; 612 SESS_UNLOCK(p1->p_session); 613 if (fr->fr_flags & RFPPWAIT) 614 p2->p_flag |= P_PPWAIT; 615 616 p2->p_pgrp = p1->p_pgrp; 617 LIST_INSERT_AFTER(p1, p2, p_pglist); 618 PGRP_UNLOCK(p1->p_pgrp); 619 LIST_INIT(&p2->p_children); 620 LIST_INIT(&p2->p_orphans); 621 622 callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0); 623 624 /* 625 * If PF_FORK is set, the child process inherits the 626 * procfs ioctl flags from its parent. 627 */ 628 if (p1->p_pfsflags & PF_FORK) { 629 p2->p_stops = p1->p_stops; 630 p2->p_pfsflags = p1->p_pfsflags; 631 } 632 633 /* 634 * This begins the section where we must prevent the parent 635 * from being swapped. 636 */ 637 _PHOLD(p1); 638 PROC_UNLOCK(p1); 639 640 /* 641 * Attach the new process to its parent. 642 * 643 * If RFNOWAIT is set, the newly created process becomes a child 644 * of init. This effectively disassociates the child from the 645 * parent. 646 */ 647 if ((fr->fr_flags & RFNOWAIT) != 0) { 648 pptr = p1->p_reaper; 649 p2->p_reaper = pptr; 650 } else { 651 p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ? 652 p1 : p1->p_reaper; 653 pptr = p1; 654 } 655 p2->p_pptr = pptr; 656 p2->p_oppid = pptr->p_pid; 657 LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling); 658 LIST_INIT(&p2->p_reaplist); 659 LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling); 660 if (p2->p_reaper == p1) 661 p2->p_reapsubtree = p2->p_pid; 662 sx_xunlock(&proctree_lock); 663 664 /* Inform accounting that we have forked. */ 665 p2->p_acflag = AFORK; 666 PROC_UNLOCK(p2); 667 668 #ifdef KTRACE 669 ktrprocfork(p1, p2); 670 #endif 671 672 /* 673 * Finish creating the child process. It will return via a different 674 * execution path later. (ie: directly into user mode) 675 */ 676 vm_forkproc(td, p2, td2, vm2, fr->fr_flags); 677 678 if (fr->fr_flags == (RFFDG | RFPROC)) { 679 VM_CNT_INC(v_forks); 680 VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize + 681 p2->p_vmspace->vm_ssize); 682 } else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) { 683 VM_CNT_INC(v_vforks); 684 VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize + 685 p2->p_vmspace->vm_ssize); 686 } else if (p1 == &proc0) { 687 VM_CNT_INC(v_kthreads); 688 VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize + 689 p2->p_vmspace->vm_ssize); 690 } else { 691 VM_CNT_INC(v_rforks); 692 VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize + 693 p2->p_vmspace->vm_ssize); 694 } 695 696 /* 697 * Associate the process descriptor with the process before anything 698 * can happen that might cause that process to need the descriptor. 699 * However, don't do this until after fork(2) can no longer fail. 700 */ 701 if (fr->fr_flags & RFPROCDESC) 702 procdesc_new(p2, fr->fr_pd_flags); 703 704 /* 705 * Both processes are set up, now check if any loadable modules want 706 * to adjust anything. 707 */ 708 EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags); 709 710 /* 711 * Set the child start time and mark the process as being complete. 712 */ 713 PROC_LOCK(p2); 714 PROC_LOCK(p1); 715 microuptime(&p2->p_stats->p_start); 716 PROC_SLOCK(p2); 717 p2->p_state = PRS_NORMAL; 718 PROC_SUNLOCK(p2); 719 720 #ifdef KDTRACE_HOOKS 721 /* 722 * Tell the DTrace fasttrap provider about the new process so that any 723 * tracepoints inherited from the parent can be removed. We have to do 724 * this only after p_state is PRS_NORMAL since the fasttrap module will 725 * use pfind() later on. 726 */ 727 if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork) 728 dtrace_fasttrap_fork(p1, p2); 729 #endif 730 if (fr->fr_flags & RFPPWAIT) { 731 td->td_pflags |= TDP_RFPPWAIT; 732 td->td_rfppwait_p = p2; 733 td->td_dbgflags |= TDB_VFORK; 734 } 735 PROC_UNLOCK(p2); 736 737 /* 738 * Now can be swapped. 739 */ 740 _PRELE(p1); 741 PROC_UNLOCK(p1); 742 743 /* 744 * Tell any interested parties about the new process. 745 */ 746 knote_fork(p1->p_klist, p2->p_pid); 747 SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags); 748 749 if (fr->fr_flags & RFPROCDESC) { 750 procdesc_finit(p2->p_procdesc, fp_procdesc); 751 fdrop(fp_procdesc, td); 752 } 753 754 /* 755 * Speculative check for PTRACE_FORK. PTRACE_FORK is not 756 * synced with forks in progress so it is OK if we miss it 757 * if being set atm. 758 */ 759 if ((p1->p_ptevents & PTRACE_FORK) != 0) { 760 sx_xlock(&proctree_lock); 761 PROC_LOCK(p2); 762 763 /* 764 * p1->p_ptevents & p1->p_pptr are protected by both 765 * process and proctree locks for modifications, 766 * so owning proctree_lock allows the race-free read. 767 */ 768 if ((p1->p_ptevents & PTRACE_FORK) != 0) { 769 /* 770 * Arrange for debugger to receive the fork event. 771 * 772 * We can report PL_FLAG_FORKED regardless of 773 * P_FOLLOWFORK settings, but it does not make a sense 774 * for runaway child. 775 */ 776 td->td_dbgflags |= TDB_FORK; 777 td->td_dbg_forked = p2->p_pid; 778 td2->td_dbgflags |= TDB_STOPATFORK; 779 proc_set_traced(p2, true); 780 CTR2(KTR_PTRACE, 781 "do_fork: attaching to new child pid %d: oppid %d", 782 p2->p_pid, p2->p_oppid); 783 proc_reparent(p2, p1->p_pptr, false); 784 } 785 PROC_UNLOCK(p2); 786 sx_xunlock(&proctree_lock); 787 } 788 789 racct_proc_fork_done(p2); 790 791 if ((fr->fr_flags & RFSTOPPED) == 0) { 792 if (fr->fr_pidp != NULL) 793 *fr->fr_pidp = p2->p_pid; 794 /* 795 * If RFSTOPPED not requested, make child runnable and 796 * add to run queue. 797 */ 798 thread_lock(td2); 799 TD_SET_CAN_RUN(td2); 800 sched_add(td2, SRQ_BORING); 801 thread_unlock(td2); 802 } else { 803 *fr->fr_procp = p2; 804 } 805 } 806 807 int 808 fork1(struct thread *td, struct fork_req *fr) 809 { 810 struct proc *p1, *newproc; 811 struct thread *td2; 812 struct vmspace *vm2; 813 struct file *fp_procdesc; 814 vm_ooffset_t mem_charged; 815 int error, nprocs_new, ok; 816 static int curfail; 817 static struct timeval lastfail; 818 int flags, pages; 819 820 flags = fr->fr_flags; 821 pages = fr->fr_pages; 822 823 if ((flags & RFSTOPPED) != 0) 824 MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL); 825 else 826 MPASS(fr->fr_procp == NULL); 827 828 /* Check for the undefined or unimplemented flags. */ 829 if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0) 830 return (EINVAL); 831 832 /* Signal value requires RFTSIGZMB. */ 833 if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0) 834 return (EINVAL); 835 836 /* Can't copy and clear. */ 837 if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG)) 838 return (EINVAL); 839 840 /* Check the validity of the signal number. */ 841 if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG) 842 return (EINVAL); 843 844 if ((flags & RFPROCDESC) != 0) { 845 /* Can't not create a process yet get a process descriptor. */ 846 if ((flags & RFPROC) == 0) 847 return (EINVAL); 848 849 /* Must provide a place to put a procdesc if creating one. */ 850 if (fr->fr_pd_fd == NULL) 851 return (EINVAL); 852 853 /* Check if we are using supported flags. */ 854 if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0) 855 return (EINVAL); 856 } 857 858 p1 = td->td_proc; 859 860 /* 861 * Here we don't create a new process, but we divorce 862 * certain parts of a process from itself. 863 */ 864 if ((flags & RFPROC) == 0) { 865 if (fr->fr_procp != NULL) 866 *fr->fr_procp = NULL; 867 else if (fr->fr_pidp != NULL) 868 *fr->fr_pidp = 0; 869 return (fork_norfproc(td, flags)); 870 } 871 872 fp_procdesc = NULL; 873 newproc = NULL; 874 vm2 = NULL; 875 876 /* 877 * Increment the nprocs resource before allocations occur. 878 * Although process entries are dynamically created, we still 879 * keep a global limit on the maximum number we will 880 * create. There are hard-limits as to the number of processes 881 * that can run, established by the KVA and memory usage for 882 * the process data. 883 * 884 * Don't allow a nonprivileged user to use the last ten 885 * processes; don't let root exceed the limit. 886 */ 887 nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1; 888 if ((nprocs_new >= maxproc - 10 && priv_check_cred(td->td_ucred, 889 PRIV_MAXPROC, 0) != 0) || nprocs_new >= maxproc) { 890 error = EAGAIN; 891 sx_xlock(&allproc_lock); 892 if (ppsratecheck(&lastfail, &curfail, 1)) { 893 printf("maxproc limit exceeded by uid %u (pid %d); " 894 "see tuning(7) and login.conf(5)\n", 895 td->td_ucred->cr_ruid, p1->p_pid); 896 } 897 sx_xunlock(&allproc_lock); 898 goto fail2; 899 } 900 901 /* 902 * If required, create a process descriptor in the parent first; we 903 * will abandon it if something goes wrong. We don't finit() until 904 * later. 905 */ 906 if (flags & RFPROCDESC) { 907 error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd, 908 fr->fr_pd_flags, fr->fr_pd_fcaps); 909 if (error != 0) 910 goto fail2; 911 } 912 913 mem_charged = 0; 914 if (pages == 0) 915 pages = kstack_pages; 916 /* Allocate new proc. */ 917 newproc = uma_zalloc(proc_zone, M_WAITOK); 918 td2 = FIRST_THREAD_IN_PROC(newproc); 919 if (td2 == NULL) { 920 td2 = thread_alloc(pages); 921 if (td2 == NULL) { 922 error = ENOMEM; 923 goto fail2; 924 } 925 proc_linkup(newproc, td2); 926 } else { 927 if (td2->td_kstack == 0 || td2->td_kstack_pages != pages) { 928 if (td2->td_kstack != 0) 929 vm_thread_dispose(td2); 930 if (!thread_alloc_stack(td2, pages)) { 931 error = ENOMEM; 932 goto fail2; 933 } 934 } 935 } 936 937 if ((flags & RFMEM) == 0) { 938 vm2 = vmspace_fork(p1->p_vmspace, &mem_charged); 939 if (vm2 == NULL) { 940 error = ENOMEM; 941 goto fail2; 942 } 943 if (!swap_reserve(mem_charged)) { 944 /* 945 * The swap reservation failed. The accounting 946 * from the entries of the copied vm2 will be 947 * subtracted in vmspace_free(), so force the 948 * reservation there. 949 */ 950 swap_reserve_force(mem_charged); 951 error = ENOMEM; 952 goto fail2; 953 } 954 } else 955 vm2 = NULL; 956 957 /* 958 * XXX: This is ugly; when we copy resource usage, we need to bump 959 * per-cred resource counters. 960 */ 961 proc_set_cred_init(newproc, crhold(td->td_ucred)); 962 963 /* 964 * Initialize resource accounting for the child process. 965 */ 966 error = racct_proc_fork(p1, newproc); 967 if (error != 0) { 968 error = EAGAIN; 969 goto fail1; 970 } 971 972 #ifdef MAC 973 mac_proc_init(newproc); 974 #endif 975 newproc->p_klist = knlist_alloc(&newproc->p_mtx); 976 STAILQ_INIT(&newproc->p_ktr); 977 978 /* We have to lock the process tree while we look for a pid. */ 979 sx_xlock(&proctree_lock); 980 sx_xlock(&allproc_lock); 981 982 /* 983 * Increment the count of procs running with this uid. Don't allow 984 * a nonprivileged user to exceed their current limit. 985 * 986 * XXXRW: Can we avoid privilege here if it's not needed? 987 */ 988 error = priv_check_cred(td->td_ucred, PRIV_PROC_LIMIT, 0); 989 if (error == 0) 990 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 0); 991 else { 992 ok = chgproccnt(td->td_ucred->cr_ruidinfo, 1, 993 lim_cur(td, RLIMIT_NPROC)); 994 } 995 if (ok) { 996 do_fork(td, fr, newproc, td2, vm2, fp_procdesc); 997 return (0); 998 } 999 1000 error = EAGAIN; 1001 sx_xunlock(&allproc_lock); 1002 sx_xunlock(&proctree_lock); 1003 #ifdef MAC 1004 mac_proc_destroy(newproc); 1005 #endif 1006 racct_proc_exit(newproc); 1007 fail1: 1008 crfree(newproc->p_ucred); 1009 newproc->p_ucred = NULL; 1010 fail2: 1011 if (vm2 != NULL) 1012 vmspace_free(vm2); 1013 uma_zfree(proc_zone, newproc); 1014 if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) { 1015 fdclose(td, fp_procdesc, *fr->fr_pd_fd); 1016 fdrop(fp_procdesc, td); 1017 } 1018 atomic_add_int(&nprocs, -1); 1019 pause("fork", hz / 2); 1020 return (error); 1021 } 1022 1023 /* 1024 * Handle the return of a child process from fork1(). This function 1025 * is called from the MD fork_trampoline() entry point. 1026 */ 1027 void 1028 fork_exit(void (*callout)(void *, struct trapframe *), void *arg, 1029 struct trapframe *frame) 1030 { 1031 struct proc *p; 1032 struct thread *td; 1033 struct thread *dtd; 1034 1035 td = curthread; 1036 p = td->td_proc; 1037 KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new")); 1038 1039 CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)", 1040 td, td_get_sched(td), p->p_pid, td->td_name); 1041 1042 sched_fork_exit(td); 1043 /* 1044 * Processes normally resume in mi_switch() after being 1045 * cpu_switch()'ed to, but when children start up they arrive here 1046 * instead, so we must do much the same things as mi_switch() would. 1047 */ 1048 if ((dtd = PCPU_GET(deadthread))) { 1049 PCPU_SET(deadthread, NULL); 1050 thread_stash(dtd); 1051 } 1052 thread_unlock(td); 1053 1054 /* 1055 * cpu_fork_kthread_handler intercepts this function call to 1056 * have this call a non-return function to stay in kernel mode. 1057 * initproc has its own fork handler, but it does return. 1058 */ 1059 KASSERT(callout != NULL, ("NULL callout in fork_exit")); 1060 callout(arg, frame); 1061 1062 /* 1063 * Check if a kernel thread misbehaved and returned from its main 1064 * function. 1065 */ 1066 if (p->p_flag & P_KPROC) { 1067 printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n", 1068 td->td_name, p->p_pid); 1069 kthread_exit(); 1070 } 1071 mtx_assert(&Giant, MA_NOTOWNED); 1072 1073 if (p->p_sysent->sv_schedtail != NULL) 1074 (p->p_sysent->sv_schedtail)(td); 1075 td->td_pflags &= ~TDP_FORKING; 1076 } 1077 1078 /* 1079 * Simplified back end of syscall(), used when returning from fork() 1080 * directly into user mode. This function is passed in to fork_exit() 1081 * as the first parameter and is called when returning to a new 1082 * userland process. 1083 */ 1084 void 1085 fork_return(struct thread *td, struct trapframe *frame) 1086 { 1087 struct proc *p; 1088 1089 p = td->td_proc; 1090 if (td->td_dbgflags & TDB_STOPATFORK) { 1091 PROC_LOCK(p); 1092 if ((p->p_flag & P_TRACED) != 0) { 1093 /* 1094 * Inform the debugger if one is still present. 1095 */ 1096 td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP; 1097 ptracestop(td, SIGSTOP, NULL); 1098 td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX); 1099 } else { 1100 /* 1101 * ... otherwise clear the request. 1102 */ 1103 td->td_dbgflags &= ~TDB_STOPATFORK; 1104 } 1105 PROC_UNLOCK(p); 1106 } else if (p->p_flag & P_TRACED || td->td_dbgflags & TDB_BORN) { 1107 /* 1108 * This is the start of a new thread in a traced 1109 * process. Report a system call exit event. 1110 */ 1111 PROC_LOCK(p); 1112 td->td_dbgflags |= TDB_SCX; 1113 _STOPEVENT(p, S_SCX, td->td_sa.code); 1114 if ((p->p_ptevents & PTRACE_SCX) != 0 || 1115 (td->td_dbgflags & TDB_BORN) != 0) 1116 ptracestop(td, SIGTRAP, NULL); 1117 td->td_dbgflags &= ~(TDB_SCX | TDB_BORN); 1118 PROC_UNLOCK(p); 1119 } 1120 1121 userret(td, frame); 1122 1123 #ifdef KTRACE 1124 if (KTRPOINT(td, KTR_SYSRET)) 1125 ktrsysret(SYS_fork, 0, 0); 1126 #endif 1127 } 1128