xref: /freebsd/sys/kern/kern_ffclock.c (revision ff0ba87247820afbdfdc1b307c803f7923d0e4d3)
1 /*-
2  * Copyright (c) 2011 The University of Melbourne
3  * All rights reserved.
4  *
5  * This software was developed by Julien Ridoux at the University of Melbourne
6  * under sponsorship from the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_ffclock.h"
34 
35 #include <sys/param.h>
36 #include <sys/bus.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/module.h>
40 #include <sys/mutex.h>
41 #include <sys/priv.h>
42 #include <sys/proc.h>
43 #include <sys/sbuf.h>
44 #include <sys/sysent.h>
45 #include <sys/sysproto.h>
46 #include <sys/sysctl.h>
47 #include <sys/systm.h>
48 #include <sys/timeffc.h>
49 
50 #ifdef FFCLOCK
51 
52 FEATURE(ffclock, "Feed-forward clock support");
53 
54 extern struct ffclock_estimate ffclock_estimate;
55 extern struct bintime ffclock_boottime;
56 extern int8_t ffclock_updated;
57 extern struct mtx ffclock_mtx;
58 
59 /*
60  * Feed-forward clock absolute time. This should be the preferred way to read
61  * the feed-forward clock for "wall-clock" type time. The flags allow to compose
62  * various flavours of absolute time (e.g. with or without leap seconds taken
63  * into account). If valid pointers are provided, the ffcounter value and an
64  * upper bound on clock error associated with the bintime are provided.
65  * NOTE: use ffclock_convert_abs() to differ the conversion of a ffcounter value
66  * read earlier.
67  */
68 void
69 ffclock_abstime(ffcounter *ffcount, struct bintime *bt,
70     struct bintime *error_bound, uint32_t flags)
71 {
72 	struct ffclock_estimate cest;
73 	ffcounter ffc;
74 	ffcounter update_ffcount;
75 	ffcounter ffdelta_error;
76 
77 	/* Get counter and corresponding time. */
78 	if ((flags & FFCLOCK_FAST) == FFCLOCK_FAST)
79 		ffclock_last_tick(&ffc, bt, flags);
80 	else {
81 		ffclock_read_counter(&ffc);
82 		ffclock_convert_abs(ffc, bt, flags);
83 	}
84 
85 	/* Current ffclock estimate, use update_ffcount as generation number. */
86 	do {
87 		update_ffcount = ffclock_estimate.update_ffcount;
88 		bcopy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate));
89 	} while (update_ffcount != ffclock_estimate.update_ffcount);
90 
91 	/*
92 	 * Leap second adjustment. Total as seen by synchronisation algorithm
93 	 * since it started. cest.leapsec_next is the ffcounter prediction of
94 	 * when the next leapsecond occurs.
95 	 */
96 	if ((flags & FFCLOCK_LEAPSEC) == FFCLOCK_LEAPSEC) {
97 		bt->sec -= cest.leapsec_total;
98 		if (ffc > cest.leapsec_next)
99 			bt->sec -= cest.leapsec;
100 	}
101 
102 	/* Boot time adjustment, for uptime/monotonic clocks. */
103 	if ((flags & FFCLOCK_UPTIME) == FFCLOCK_UPTIME) {
104 		bintime_sub(bt, &ffclock_boottime);
105 	}
106 
107 	/* Compute error bound if a valid pointer has been passed. */
108 	if (error_bound) {
109 		ffdelta_error = ffc - cest.update_ffcount;
110 		ffclock_convert_diff(ffdelta_error, error_bound);
111 		/* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s] */
112 		bintime_mul(error_bound, cest.errb_rate *
113 		    (uint64_t)18446744073709LL);
114 		/* 18446744073 = int(2^64 / 1e9), since err_abs in [ns] */
115 		bintime_addx(error_bound, cest.errb_abs *
116 		    (uint64_t)18446744073LL);
117 	}
118 
119 	if (ffcount)
120 		*ffcount = ffc;
121 }
122 
123 /*
124  * Feed-forward difference clock. This should be the preferred way to convert a
125  * time interval in ffcounter values into a time interval in seconds. If a valid
126  * pointer is passed, an upper bound on the error in computing the time interval
127  * in seconds is provided.
128  */
129 void
130 ffclock_difftime(ffcounter ffdelta, struct bintime *bt,
131     struct bintime *error_bound)
132 {
133 	ffcounter update_ffcount;
134 	uint32_t err_rate;
135 
136 	ffclock_convert_diff(ffdelta, bt);
137 
138 	if (error_bound) {
139 		do {
140 			update_ffcount = ffclock_estimate.update_ffcount;
141 			err_rate = ffclock_estimate.errb_rate;
142 		} while (update_ffcount != ffclock_estimate.update_ffcount);
143 
144 		ffclock_convert_diff(ffdelta, error_bound);
145 		/* 18446744073709 = int(2^64/1e12), err_bound_rate in [ps/s] */
146 		bintime_mul(error_bound, err_rate * (uint64_t)18446744073709LL);
147 	}
148 }
149 
150 /*
151  * Create a new kern.sysclock sysctl node, which will be home to some generic
152  * sysclock configuration variables. Feed-forward clock specific variables will
153  * live under the ffclock subnode.
154  */
155 
156 SYSCTL_NODE(_kern, OID_AUTO, sysclock, CTLFLAG_RW, 0,
157     "System clock related configuration");
158 SYSCTL_NODE(_kern_sysclock, OID_AUTO, ffclock, CTLFLAG_RW, 0,
159     "Feed-forward clock configuration");
160 
161 static char *sysclocks[] = {"feedback", "feed-forward"};
162 #define	MAX_SYSCLOCK_NAME_LEN 16
163 #define	NUM_SYSCLOCKS (sizeof(sysclocks) / sizeof(*sysclocks))
164 
165 static int ffclock_version = 2;
166 SYSCTL_INT(_kern_sysclock_ffclock, OID_AUTO, version, CTLFLAG_RD,
167     &ffclock_version, 0, "Feed-forward clock kernel version");
168 
169 /* List available sysclocks. */
170 static int
171 sysctl_kern_sysclock_available(SYSCTL_HANDLER_ARGS)
172 {
173 	struct sbuf *s;
174 	int clk, error;
175 
176 	s = sbuf_new_for_sysctl(NULL, NULL,
177 	    MAX_SYSCLOCK_NAME_LEN * NUM_SYSCLOCKS, req);
178 	if (s == NULL)
179 		return (ENOMEM);
180 
181 	for (clk = 0; clk < NUM_SYSCLOCKS; clk++) {
182 		sbuf_cat(s, sysclocks[clk]);
183 		if (clk + 1 < NUM_SYSCLOCKS)
184 			sbuf_cat(s, " ");
185 	}
186 	error = sbuf_finish(s);
187 	sbuf_delete(s);
188 
189 	return (error);
190 }
191 
192 SYSCTL_PROC(_kern_sysclock, OID_AUTO, available, CTLTYPE_STRING | CTLFLAG_RD,
193     0, 0, sysctl_kern_sysclock_available, "A",
194     "List of available system clocks");
195 
196 /*
197  * Return the name of the active system clock if read, or attempt to change
198  * the active system clock to the user specified one if written to. The active
199  * system clock is read when calling any of the [get]{bin,nano,micro}[up]time()
200  * functions.
201  */
202 static int
203 sysctl_kern_sysclock_active(SYSCTL_HANDLER_ARGS)
204 {
205 	char newclock[MAX_SYSCLOCK_NAME_LEN];
206 	int error;
207 	int clk;
208 
209 	/* Return the name of the current active sysclock. */
210 	strlcpy(newclock, sysclocks[sysclock_active], sizeof(newclock));
211 	error = sysctl_handle_string(oidp, newclock, sizeof(newclock), req);
212 
213 	/* Check for error or no change */
214 	if (error != 0 || req->newptr == NULL)
215 		goto done;
216 
217 	/* Change the active sysclock to the user specified one: */
218 	error = EINVAL;
219 	for (clk = 0; clk < NUM_SYSCLOCKS; clk++) {
220 		if (strncmp(newclock, sysclocks[clk],
221 		    MAX_SYSCLOCK_NAME_LEN - 1)) {
222 			continue;
223 		}
224 		sysclock_active = clk;
225 		error = 0;
226 		break;
227 	}
228 done:
229 	return (error);
230 }
231 
232 SYSCTL_PROC(_kern_sysclock, OID_AUTO, active, CTLTYPE_STRING | CTLFLAG_RW,
233     0, 0, sysctl_kern_sysclock_active, "A",
234     "Name of the active system clock which is currently serving time");
235 
236 static int sysctl_kern_ffclock_ffcounter_bypass = 0;
237 SYSCTL_INT(_kern_sysclock_ffclock, OID_AUTO, ffcounter_bypass, CTLFLAG_RW,
238     &sysctl_kern_ffclock_ffcounter_bypass, 0,
239     "Use reliable hardware timecounter as the feed-forward counter");
240 
241 /*
242  * High level functions to access the Feed-Forward Clock.
243  */
244 void
245 ffclock_bintime(struct bintime *bt)
246 {
247 
248 	ffclock_abstime(NULL, bt, NULL, FFCLOCK_LERP | FFCLOCK_LEAPSEC);
249 }
250 
251 void
252 ffclock_nanotime(struct timespec *tsp)
253 {
254 	struct bintime bt;
255 
256 	ffclock_abstime(NULL, &bt, NULL, FFCLOCK_LERP | FFCLOCK_LEAPSEC);
257 	bintime2timespec(&bt, tsp);
258 }
259 
260 void
261 ffclock_microtime(struct timeval *tvp)
262 {
263 	struct bintime bt;
264 
265 	ffclock_abstime(NULL, &bt, NULL, FFCLOCK_LERP | FFCLOCK_LEAPSEC);
266 	bintime2timeval(&bt, tvp);
267 }
268 
269 void
270 ffclock_getbintime(struct bintime *bt)
271 {
272 
273 	ffclock_abstime(NULL, bt, NULL,
274 	    FFCLOCK_LERP | FFCLOCK_LEAPSEC | FFCLOCK_FAST);
275 }
276 
277 void
278 ffclock_getnanotime(struct timespec *tsp)
279 {
280 	struct bintime bt;
281 
282 	ffclock_abstime(NULL, &bt, NULL,
283 	    FFCLOCK_LERP | FFCLOCK_LEAPSEC | FFCLOCK_FAST);
284 	bintime2timespec(&bt, tsp);
285 }
286 
287 void
288 ffclock_getmicrotime(struct timeval *tvp)
289 {
290 	struct bintime bt;
291 
292 	ffclock_abstime(NULL, &bt, NULL,
293 	    FFCLOCK_LERP | FFCLOCK_LEAPSEC | FFCLOCK_FAST);
294 	bintime2timeval(&bt, tvp);
295 }
296 
297 void
298 ffclock_binuptime(struct bintime *bt)
299 {
300 
301 	ffclock_abstime(NULL, bt, NULL, FFCLOCK_LERP | FFCLOCK_UPTIME);
302 }
303 
304 void
305 ffclock_nanouptime(struct timespec *tsp)
306 {
307 	struct bintime bt;
308 
309 	ffclock_abstime(NULL, &bt, NULL, FFCLOCK_LERP | FFCLOCK_UPTIME);
310 	bintime2timespec(&bt, tsp);
311 }
312 
313 void
314 ffclock_microuptime(struct timeval *tvp)
315 {
316 	struct bintime bt;
317 
318 	ffclock_abstime(NULL, &bt, NULL, FFCLOCK_LERP | FFCLOCK_UPTIME);
319 	bintime2timeval(&bt, tvp);
320 }
321 
322 void
323 ffclock_getbinuptime(struct bintime *bt)
324 {
325 
326 	ffclock_abstime(NULL, bt, NULL,
327 	    FFCLOCK_LERP | FFCLOCK_UPTIME | FFCLOCK_FAST);
328 }
329 
330 void
331 ffclock_getnanouptime(struct timespec *tsp)
332 {
333 	struct bintime bt;
334 
335 	ffclock_abstime(NULL, &bt, NULL,
336 	    FFCLOCK_LERP | FFCLOCK_UPTIME | FFCLOCK_FAST);
337 	bintime2timespec(&bt, tsp);
338 }
339 
340 void
341 ffclock_getmicrouptime(struct timeval *tvp)
342 {
343 	struct bintime bt;
344 
345 	ffclock_abstime(NULL, &bt, NULL,
346 	    FFCLOCK_LERP | FFCLOCK_UPTIME | FFCLOCK_FAST);
347 	bintime2timeval(&bt, tvp);
348 }
349 
350 void
351 ffclock_bindifftime(ffcounter ffdelta, struct bintime *bt)
352 {
353 
354 	ffclock_difftime(ffdelta, bt, NULL);
355 }
356 
357 void
358 ffclock_nanodifftime(ffcounter ffdelta, struct timespec *tsp)
359 {
360 	struct bintime bt;
361 
362 	ffclock_difftime(ffdelta, &bt, NULL);
363 	bintime2timespec(&bt, tsp);
364 }
365 
366 void
367 ffclock_microdifftime(ffcounter ffdelta, struct timeval *tvp)
368 {
369 	struct bintime bt;
370 
371 	ffclock_difftime(ffdelta, &bt, NULL);
372 	bintime2timeval(&bt, tvp);
373 }
374 
375 /*
376  * System call allowing userland applications to retrieve the current value of
377  * the Feed-Forward Clock counter.
378  */
379 #ifndef _SYS_SYSPROTO_H_
380 struct ffclock_getcounter_args {
381 	ffcounter *ffcount;
382 };
383 #endif
384 /* ARGSUSED */
385 int
386 sys_ffclock_getcounter(struct thread *td, struct ffclock_getcounter_args *uap)
387 {
388 	ffcounter ffcount;
389 	int error;
390 
391 	ffcount = 0;
392 	ffclock_read_counter(&ffcount);
393 	if (ffcount == 0)
394 		return (EAGAIN);
395 	error = copyout(&ffcount, uap->ffcount, sizeof(ffcounter));
396 
397 	return (error);
398 }
399 
400 /*
401  * System call allowing the synchronisation daemon to push new feed-foward clock
402  * estimates to the kernel. Acquire ffclock_mtx to prevent concurrent updates
403  * and ensure data consistency.
404  * NOTE: ffclock_updated signals the fftimehands that new estimates are
405  * available. The updated estimates are picked up by the fftimehands on next
406  * tick, which could take as long as 1/hz seconds (if ticks are not missed).
407  */
408 #ifndef _SYS_SYSPROTO_H_
409 struct ffclock_setestimate_args {
410 	struct ffclock_estimate *cest;
411 };
412 #endif
413 /* ARGSUSED */
414 int
415 sys_ffclock_setestimate(struct thread *td, struct ffclock_setestimate_args *uap)
416 {
417 	struct ffclock_estimate cest;
418 	int error;
419 
420 	/* Reuse of PRIV_CLOCK_SETTIME. */
421 	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
422 		return (error);
423 
424 	if ((error = copyin(uap->cest, &cest, sizeof(struct ffclock_estimate)))
425 	    != 0)
426 		return (error);
427 
428 	mtx_lock(&ffclock_mtx);
429 	memcpy(&ffclock_estimate, &cest, sizeof(struct ffclock_estimate));
430 	ffclock_updated++;
431 	mtx_unlock(&ffclock_mtx);
432 	return (error);
433 }
434 
435 /*
436  * System call allowing userland applications to retrieve the clock estimates
437  * stored within the kernel. It is useful to kickstart the synchronisation
438  * daemon with the kernel's knowledge of hardware timecounter.
439  */
440 #ifndef _SYS_SYSPROTO_H_
441 struct ffclock_getestimate_args {
442 	struct ffclock_estimate *cest;
443 };
444 #endif
445 /* ARGSUSED */
446 int
447 sys_ffclock_getestimate(struct thread *td, struct ffclock_getestimate_args *uap)
448 {
449 	struct ffclock_estimate cest;
450 	int error;
451 
452 	mtx_lock(&ffclock_mtx);
453 	memcpy(&cest, &ffclock_estimate, sizeof(struct ffclock_estimate));
454 	mtx_unlock(&ffclock_mtx);
455 	error = copyout(&cest, uap->cest, sizeof(struct ffclock_estimate));
456 	return (error);
457 }
458 
459 #else /* !FFCLOCK */
460 
461 int
462 sys_ffclock_getcounter(struct thread *td, struct ffclock_getcounter_args *uap)
463 {
464 
465 	return (ENOSYS);
466 }
467 
468 int
469 sys_ffclock_setestimate(struct thread *td, struct ffclock_setestimate_args *uap)
470 {
471 
472 	return (ENOSYS);
473 }
474 
475 int
476 sys_ffclock_getestimate(struct thread *td, struct ffclock_getestimate_args *uap)
477 {
478 
479 	return (ENOSYS);
480 }
481 
482 #endif /* FFCLOCK */
483