1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ktrace.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/sysproto.h> 47 #include <sys/capsicum.h> 48 #include <sys/eventhandler.h> 49 #include <sys/kernel.h> 50 #include <sys/ktr.h> 51 #include <sys/malloc.h> 52 #include <sys/lock.h> 53 #include <sys/mutex.h> 54 #include <sys/proc.h> 55 #include <sys/procdesc.h> 56 #include <sys/jail.h> 57 #include <sys/tty.h> 58 #include <sys/wait.h> 59 #include <sys/vmmeter.h> 60 #include <sys/vnode.h> 61 #include <sys/racct.h> 62 #include <sys/resourcevar.h> 63 #include <sys/sbuf.h> 64 #include <sys/signalvar.h> 65 #include <sys/sched.h> 66 #include <sys/sx.h> 67 #include <sys/syscallsubr.h> 68 #include <sys/syslog.h> 69 #include <sys/ptrace.h> 70 #include <sys/acct.h> /* for acct_process() function prototype */ 71 #include <sys/filedesc.h> 72 #include <sys/sdt.h> 73 #include <sys/shm.h> 74 #include <sys/sem.h> 75 #include <sys/umtx.h> 76 #ifdef KTRACE 77 #include <sys/ktrace.h> 78 #endif 79 80 #include <security/audit/audit.h> 81 #include <security/mac/mac_framework.h> 82 83 #include <vm/vm.h> 84 #include <vm/vm_extern.h> 85 #include <vm/vm_param.h> 86 #include <vm/pmap.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_page.h> 89 #include <vm/uma.h> 90 91 #ifdef KDTRACE_HOOKS 92 #include <sys/dtrace_bsd.h> 93 dtrace_execexit_func_t dtrace_fasttrap_exit; 94 #endif 95 96 SDT_PROVIDER_DECLARE(proc); 97 SDT_PROBE_DEFINE1(proc, , , exit, "int"); 98 99 /* Hook for NFS teardown procedure. */ 100 void (*nlminfo_release_p)(struct proc *p); 101 102 struct proc * 103 proc_realparent(struct proc *child) 104 { 105 struct proc *p, *parent; 106 107 sx_assert(&proctree_lock, SX_LOCKED); 108 if ((child->p_treeflag & P_TREE_ORPHANED) == 0) 109 return (child->p_pptr->p_pid == child->p_oppid ? 110 child->p_pptr : initproc); 111 for (p = child; (p->p_treeflag & P_TREE_FIRST_ORPHAN) == 0;) { 112 /* Cannot use LIST_PREV(), since the list head is not known. */ 113 p = __containerof(p->p_orphan.le_prev, struct proc, 114 p_orphan.le_next); 115 KASSERT((p->p_treeflag & P_TREE_ORPHANED) != 0, 116 ("missing P_ORPHAN %p", p)); 117 } 118 parent = __containerof(p->p_orphan.le_prev, struct proc, 119 p_orphans.lh_first); 120 return (parent); 121 } 122 123 void 124 reaper_abandon_children(struct proc *p, bool exiting) 125 { 126 struct proc *p1, *p2, *ptmp; 127 128 sx_assert(&proctree_lock, SX_LOCKED); 129 KASSERT(p != initproc, ("reaper_abandon_children for initproc")); 130 if ((p->p_treeflag & P_TREE_REAPER) == 0) 131 return; 132 p1 = p->p_reaper; 133 LIST_FOREACH_SAFE(p2, &p->p_reaplist, p_reapsibling, ptmp) { 134 LIST_REMOVE(p2, p_reapsibling); 135 p2->p_reaper = p1; 136 p2->p_reapsubtree = p->p_reapsubtree; 137 LIST_INSERT_HEAD(&p1->p_reaplist, p2, p_reapsibling); 138 if (exiting && p2->p_pptr == p) { 139 PROC_LOCK(p2); 140 proc_reparent(p2, p1, true); 141 PROC_UNLOCK(p2); 142 } 143 } 144 KASSERT(LIST_EMPTY(&p->p_reaplist), ("p_reaplist not empty")); 145 p->p_treeflag &= ~P_TREE_REAPER; 146 } 147 148 static void 149 reaper_clear(struct proc *p) 150 { 151 struct proc *p1; 152 bool clear; 153 154 sx_assert(&proctree_lock, SX_LOCKED); 155 LIST_REMOVE(p, p_reapsibling); 156 if (p->p_reapsubtree == 1) 157 return; 158 clear = true; 159 LIST_FOREACH(p1, &p->p_reaper->p_reaplist, p_reapsibling) { 160 if (p1->p_reapsubtree == p->p_reapsubtree) { 161 clear = false; 162 break; 163 } 164 } 165 if (clear) 166 proc_id_clear(PROC_ID_REAP, p->p_reapsubtree); 167 } 168 169 void 170 proc_clear_orphan(struct proc *p) 171 { 172 struct proc *p1; 173 174 sx_assert(&proctree_lock, SA_XLOCKED); 175 if ((p->p_treeflag & P_TREE_ORPHANED) == 0) 176 return; 177 if ((p->p_treeflag & P_TREE_FIRST_ORPHAN) != 0) { 178 p1 = LIST_NEXT(p, p_orphan); 179 if (p1 != NULL) 180 p1->p_treeflag |= P_TREE_FIRST_ORPHAN; 181 p->p_treeflag &= ~P_TREE_FIRST_ORPHAN; 182 } 183 LIST_REMOVE(p, p_orphan); 184 p->p_treeflag &= ~P_TREE_ORPHANED; 185 } 186 187 /* 188 * exit -- death of process. 189 */ 190 void 191 sys_sys_exit(struct thread *td, struct sys_exit_args *uap) 192 { 193 194 exit1(td, uap->rval, 0); 195 /* NOTREACHED */ 196 } 197 198 /* 199 * Exit: deallocate address space and other resources, change proc state to 200 * zombie, and unlink proc from allproc and parent's lists. Save exit status 201 * and rusage for wait(). Check for child processes and orphan them. 202 */ 203 void 204 exit1(struct thread *td, int rval, int signo) 205 { 206 struct proc *p, *nq, *q, *t; 207 struct thread *tdt; 208 ksiginfo_t *ksi, *ksi1; 209 int signal_parent; 210 211 mtx_assert(&Giant, MA_NOTOWNED); 212 KASSERT(rval == 0 || signo == 0, ("exit1 rv %d sig %d", rval, signo)); 213 214 p = td->td_proc; 215 /* 216 * XXX in case we're rebooting we just let init die in order to 217 * work around an unsolved stack overflow seen very late during 218 * shutdown on sparc64 when the gmirror worker process exists. 219 * XXX what to do now that sparc64 is gone... remove if? 220 */ 221 if (p == initproc && rebooting == 0) { 222 printf("init died (signal %d, exit %d)\n", signo, rval); 223 panic("Going nowhere without my init!"); 224 } 225 226 /* 227 * Deref SU mp, since the thread does not return to userspace. 228 */ 229 td_softdep_cleanup(td); 230 231 /* 232 * MUST abort all other threads before proceeding past here. 233 */ 234 PROC_LOCK(p); 235 /* 236 * First check if some other thread or external request got 237 * here before us. If so, act appropriately: exit or suspend. 238 * We must ensure that stop requests are handled before we set 239 * P_WEXIT. 240 */ 241 thread_suspend_check(0); 242 while (p->p_flag & P_HADTHREADS) { 243 /* 244 * Kill off the other threads. This requires 245 * some co-operation from other parts of the kernel 246 * so it may not be instantaneous. With this state set 247 * any thread entering the kernel from userspace will 248 * thread_exit() in trap(). Any thread attempting to 249 * sleep will return immediately with EINTR or EWOULDBLOCK 250 * which will hopefully force them to back out to userland 251 * freeing resources as they go. Any thread attempting 252 * to return to userland will thread_exit() from userret(). 253 * thread_exit() will unsuspend us when the last of the 254 * other threads exits. 255 * If there is already a thread singler after resumption, 256 * calling thread_single will fail; in that case, we just 257 * re-check all suspension request, the thread should 258 * either be suspended there or exit. 259 */ 260 if (!thread_single(p, SINGLE_EXIT)) 261 /* 262 * All other activity in this process is now 263 * stopped. Threading support has been turned 264 * off. 265 */ 266 break; 267 /* 268 * Recheck for new stop or suspend requests which 269 * might appear while process lock was dropped in 270 * thread_single(). 271 */ 272 thread_suspend_check(0); 273 } 274 KASSERT(p->p_numthreads == 1, 275 ("exit1: proc %p exiting with %d threads", p, p->p_numthreads)); 276 racct_sub(p, RACCT_NTHR, 1); 277 278 /* Let event handler change exit status */ 279 p->p_xexit = rval; 280 p->p_xsig = signo; 281 282 /* 283 * Ignore any pending request to stop due to a stop signal. 284 * Once P_WEXIT is set, future requests will be ignored as 285 * well. 286 */ 287 p->p_flag &= ~P_STOPPED_SIG; 288 KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped")); 289 290 /* Note that we are exiting. */ 291 p->p_flag |= P_WEXIT; 292 293 /* 294 * Wait for any processes that have a hold on our vmspace to 295 * release their reference. 296 */ 297 while (p->p_lock > 0) 298 msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0); 299 300 PROC_UNLOCK(p); 301 /* Drain the limit callout while we don't have the proc locked */ 302 callout_drain(&p->p_limco); 303 304 #ifdef AUDIT 305 /* 306 * The Sun BSM exit token contains two components: an exit status as 307 * passed to exit(), and a return value to indicate what sort of exit 308 * it was. The exit status is WEXITSTATUS(rv), but it's not clear 309 * what the return value is. 310 */ 311 AUDIT_ARG_EXIT(rval, 0); 312 AUDIT_SYSCALL_EXIT(0, td); 313 #endif 314 315 /* Are we a task leader with peers? */ 316 if (p->p_peers != NULL && p == p->p_leader) { 317 mtx_lock(&ppeers_lock); 318 q = p->p_peers; 319 while (q != NULL) { 320 PROC_LOCK(q); 321 kern_psignal(q, SIGKILL); 322 PROC_UNLOCK(q); 323 q = q->p_peers; 324 } 325 while (p->p_peers != NULL) 326 msleep(p, &ppeers_lock, PWAIT, "exit1", 0); 327 mtx_unlock(&ppeers_lock); 328 } 329 330 /* 331 * Check if any loadable modules need anything done at process exit. 332 * E.g. SYSV IPC stuff. 333 * Event handler could change exit status. 334 * XXX what if one of these generates an error? 335 */ 336 EVENTHANDLER_DIRECT_INVOKE(process_exit, p); 337 338 /* 339 * If parent is waiting for us to exit or exec, 340 * P_PPWAIT is set; we will wakeup the parent below. 341 */ 342 PROC_LOCK(p); 343 stopprofclock(p); 344 p->p_ptevents = 0; 345 346 /* 347 * Stop the real interval timer. If the handler is currently 348 * executing, prevent it from rearming itself and let it finish. 349 */ 350 if (timevalisset(&p->p_realtimer.it_value) && 351 _callout_stop_safe(&p->p_itcallout, CS_EXECUTING, NULL) == 0) { 352 timevalclear(&p->p_realtimer.it_interval); 353 msleep(&p->p_itcallout, &p->p_mtx, PWAIT, "ritwait", 0); 354 KASSERT(!timevalisset(&p->p_realtimer.it_value), 355 ("realtime timer is still armed")); 356 } 357 358 PROC_UNLOCK(p); 359 360 umtx_thread_exit(td); 361 362 /* 363 * Reset any sigio structures pointing to us as a result of 364 * F_SETOWN with our pid. 365 */ 366 funsetownlst(&p->p_sigiolst); 367 368 /* 369 * If this process has an nlminfo data area (for lockd), release it 370 */ 371 if (nlminfo_release_p != NULL && p->p_nlminfo != NULL) 372 (*nlminfo_release_p)(p); 373 374 /* 375 * Close open files and release open-file table. 376 * This may block! 377 */ 378 fdescfree(td); 379 380 /* 381 * If this thread tickled GEOM, we need to wait for the giggling to 382 * stop before we return to userland 383 */ 384 if (td->td_pflags & TDP_GEOM) 385 g_waitidle(); 386 387 /* 388 * Remove ourself from our leader's peer list and wake our leader. 389 */ 390 if (p->p_leader->p_peers != NULL) { 391 mtx_lock(&ppeers_lock); 392 if (p->p_leader->p_peers != NULL) { 393 q = p->p_leader; 394 while (q->p_peers != p) 395 q = q->p_peers; 396 q->p_peers = p->p_peers; 397 wakeup(p->p_leader); 398 } 399 mtx_unlock(&ppeers_lock); 400 } 401 402 vmspace_exit(td); 403 killjobc(); 404 (void)acct_process(td); 405 406 #ifdef KTRACE 407 ktrprocexit(td); 408 #endif 409 /* 410 * Release reference to text vnode 411 */ 412 if (p->p_textvp != NULL) { 413 vrele(p->p_textvp); 414 p->p_textvp = NULL; 415 } 416 417 /* 418 * Release our limits structure. 419 */ 420 lim_free(p->p_limit); 421 p->p_limit = NULL; 422 423 tidhash_remove(td); 424 425 /* 426 * Call machine-dependent code to release any 427 * machine-dependent resources other than the address space. 428 * The address space is released by "vmspace_exitfree(p)" in 429 * vm_waitproc(). 430 */ 431 cpu_exit(td); 432 433 WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid); 434 435 /* 436 * Remove from allproc. It still sits in the hash. 437 */ 438 sx_xlock(&allproc_lock); 439 LIST_REMOVE(p, p_list); 440 sx_xunlock(&allproc_lock); 441 442 sx_xlock(&proctree_lock); 443 PROC_LOCK(p); 444 p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE); 445 PROC_UNLOCK(p); 446 447 /* 448 * Reparent all children processes: 449 * - traced ones to the original parent (or init if we are that parent) 450 * - the rest to init 451 */ 452 q = LIST_FIRST(&p->p_children); 453 if (q != NULL) /* only need this if any child is S_ZOMB */ 454 wakeup(q->p_reaper); 455 for (; q != NULL; q = nq) { 456 nq = LIST_NEXT(q, p_sibling); 457 ksi = ksiginfo_alloc(TRUE); 458 PROC_LOCK(q); 459 q->p_sigparent = SIGCHLD; 460 461 if ((q->p_flag & P_TRACED) == 0) { 462 proc_reparent(q, q->p_reaper, true); 463 if (q->p_state == PRS_ZOMBIE) { 464 /* 465 * Inform reaper about the reparented 466 * zombie, since wait(2) has something 467 * new to report. Guarantee queueing 468 * of the SIGCHLD signal, similar to 469 * the _exit() behaviour, by providing 470 * our ksiginfo. Ksi is freed by the 471 * signal delivery. 472 */ 473 if (q->p_ksi == NULL) { 474 ksi1 = NULL; 475 } else { 476 ksiginfo_copy(q->p_ksi, ksi); 477 ksi->ksi_flags |= KSI_INS; 478 ksi1 = ksi; 479 ksi = NULL; 480 } 481 PROC_LOCK(q->p_reaper); 482 pksignal(q->p_reaper, SIGCHLD, ksi1); 483 PROC_UNLOCK(q->p_reaper); 484 } else if (q->p_pdeathsig > 0) { 485 /* 486 * The child asked to received a signal 487 * when we exit. 488 */ 489 kern_psignal(q, q->p_pdeathsig); 490 } 491 } else { 492 /* 493 * Traced processes are killed since their existence 494 * means someone is screwing up. 495 */ 496 t = proc_realparent(q); 497 if (t == p) { 498 proc_reparent(q, q->p_reaper, true); 499 } else { 500 PROC_LOCK(t); 501 proc_reparent(q, t, true); 502 PROC_UNLOCK(t); 503 } 504 /* 505 * Since q was found on our children list, the 506 * proc_reparent() call moved q to the orphan 507 * list due to present P_TRACED flag. Clear 508 * orphan link for q now while q is locked. 509 */ 510 proc_clear_orphan(q); 511 q->p_flag &= ~(P_TRACED | P_STOPPED_TRACE); 512 q->p_flag2 &= ~P2_PTRACE_FSTP; 513 q->p_ptevents = 0; 514 FOREACH_THREAD_IN_PROC(q, tdt) { 515 tdt->td_dbgflags &= ~(TDB_SUSPEND | TDB_XSIG | 516 TDB_FSTP); 517 } 518 kern_psignal(q, SIGKILL); 519 } 520 PROC_UNLOCK(q); 521 if (ksi != NULL) 522 ksiginfo_free(ksi); 523 } 524 525 /* 526 * Also get rid of our orphans. 527 */ 528 while ((q = LIST_FIRST(&p->p_orphans)) != NULL) { 529 PROC_LOCK(q); 530 KASSERT(q->p_oppid == p->p_pid, 531 ("orphan %p of %p has unexpected oppid %d", q, p, 532 q->p_oppid)); 533 q->p_oppid = q->p_reaper->p_pid; 534 535 /* 536 * If we are the real parent of this process 537 * but it has been reparented to a debugger, then 538 * check if it asked for a signal when we exit. 539 */ 540 if (q->p_pdeathsig > 0) 541 kern_psignal(q, q->p_pdeathsig); 542 CTR2(KTR_PTRACE, "exit: pid %d, clearing orphan %d", p->p_pid, 543 q->p_pid); 544 proc_clear_orphan(q); 545 PROC_UNLOCK(q); 546 } 547 548 #ifdef KDTRACE_HOOKS 549 if (SDT_PROBES_ENABLED()) { 550 int reason = CLD_EXITED; 551 if (WCOREDUMP(signo)) 552 reason = CLD_DUMPED; 553 else if (WIFSIGNALED(signo)) 554 reason = CLD_KILLED; 555 SDT_PROBE1(proc, , , exit, reason); 556 } 557 #endif 558 559 /* Save exit status. */ 560 PROC_LOCK(p); 561 p->p_xthread = td; 562 563 #ifdef KDTRACE_HOOKS 564 /* 565 * Tell the DTrace fasttrap provider about the exit if it 566 * has declared an interest. 567 */ 568 if (dtrace_fasttrap_exit) 569 dtrace_fasttrap_exit(p); 570 #endif 571 572 /* 573 * Notify interested parties of our demise. 574 */ 575 KNOTE_LOCKED(p->p_klist, NOTE_EXIT); 576 577 /* 578 * If this is a process with a descriptor, we may not need to deliver 579 * a signal to the parent. proctree_lock is held over 580 * procdesc_exit() to serialize concurrent calls to close() and 581 * exit(). 582 */ 583 signal_parent = 0; 584 if (p->p_procdesc == NULL || procdesc_exit(p)) { 585 /* 586 * Notify parent that we're gone. If parent has the 587 * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN, 588 * notify process 1 instead (and hope it will handle this 589 * situation). 590 */ 591 PROC_LOCK(p->p_pptr); 592 mtx_lock(&p->p_pptr->p_sigacts->ps_mtx); 593 if (p->p_pptr->p_sigacts->ps_flag & 594 (PS_NOCLDWAIT | PS_CLDSIGIGN)) { 595 struct proc *pp; 596 597 mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); 598 pp = p->p_pptr; 599 PROC_UNLOCK(pp); 600 proc_reparent(p, p->p_reaper, true); 601 p->p_sigparent = SIGCHLD; 602 PROC_LOCK(p->p_pptr); 603 604 /* 605 * Notify parent, so in case he was wait(2)ing or 606 * executing waitpid(2) with our pid, he will 607 * continue. 608 */ 609 wakeup(pp); 610 } else 611 mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); 612 613 if (p->p_pptr == p->p_reaper || p->p_pptr == initproc) { 614 signal_parent = 1; 615 } else if (p->p_sigparent != 0) { 616 if (p->p_sigparent == SIGCHLD) { 617 signal_parent = 1; 618 } else { /* LINUX thread */ 619 signal_parent = 2; 620 } 621 } 622 } else 623 PROC_LOCK(p->p_pptr); 624 sx_xunlock(&proctree_lock); 625 626 if (signal_parent == 1) { 627 childproc_exited(p); 628 } else if (signal_parent == 2) { 629 kern_psignal(p->p_pptr, p->p_sigparent); 630 } 631 632 /* Tell the prison that we are gone. */ 633 prison_proc_free(p->p_ucred->cr_prison); 634 635 /* 636 * The state PRS_ZOMBIE prevents other proesses from sending 637 * signal to the process, to avoid memory leak, we free memory 638 * for signal queue at the time when the state is set. 639 */ 640 sigqueue_flush(&p->p_sigqueue); 641 sigqueue_flush(&td->td_sigqueue); 642 643 /* 644 * We have to wait until after acquiring all locks before 645 * changing p_state. We need to avoid all possible context 646 * switches (including ones from blocking on a mutex) while 647 * marked as a zombie. We also have to set the zombie state 648 * before we release the parent process' proc lock to avoid 649 * a lost wakeup. So, we first call wakeup, then we grab the 650 * sched lock, update the state, and release the parent process' 651 * proc lock. 652 */ 653 wakeup(p->p_pptr); 654 cv_broadcast(&p->p_pwait); 655 sched_exit(p->p_pptr, td); 656 PROC_SLOCK(p); 657 p->p_state = PRS_ZOMBIE; 658 PROC_UNLOCK(p->p_pptr); 659 660 /* 661 * Save our children's rusage information in our exit rusage. 662 */ 663 PROC_STATLOCK(p); 664 ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux); 665 PROC_STATUNLOCK(p); 666 667 /* 668 * Make sure the scheduler takes this thread out of its tables etc. 669 * This will also release this thread's reference to the ucred. 670 * Other thread parts to release include pcb bits and such. 671 */ 672 thread_exit(); 673 } 674 675 #ifndef _SYS_SYSPROTO_H_ 676 struct abort2_args { 677 char *why; 678 int nargs; 679 void **args; 680 }; 681 #endif 682 683 int 684 sys_abort2(struct thread *td, struct abort2_args *uap) 685 { 686 struct proc *p = td->td_proc; 687 struct sbuf *sb; 688 void *uargs[16]; 689 int error, i, sig; 690 691 /* 692 * Do it right now so we can log either proper call of abort2(), or 693 * note, that invalid argument was passed. 512 is big enough to 694 * handle 16 arguments' descriptions with additional comments. 695 */ 696 sb = sbuf_new(NULL, NULL, 512, SBUF_FIXEDLEN); 697 sbuf_clear(sb); 698 sbuf_printf(sb, "%s(pid %d uid %d) aborted: ", 699 p->p_comm, p->p_pid, td->td_ucred->cr_uid); 700 /* 701 * Since we can't return from abort2(), send SIGKILL in cases, where 702 * abort2() was called improperly 703 */ 704 sig = SIGKILL; 705 /* Prevent from DoSes from user-space. */ 706 if (uap->nargs < 0 || uap->nargs > 16) 707 goto out; 708 if (uap->nargs > 0) { 709 if (uap->args == NULL) 710 goto out; 711 error = copyin(uap->args, uargs, uap->nargs * sizeof(void *)); 712 if (error != 0) 713 goto out; 714 } 715 /* 716 * Limit size of 'reason' string to 128. Will fit even when 717 * maximal number of arguments was chosen to be logged. 718 */ 719 if (uap->why != NULL) { 720 error = sbuf_copyin(sb, uap->why, 128); 721 if (error < 0) 722 goto out; 723 } else { 724 sbuf_printf(sb, "(null)"); 725 } 726 if (uap->nargs > 0) { 727 sbuf_printf(sb, "("); 728 for (i = 0;i < uap->nargs; i++) 729 sbuf_printf(sb, "%s%p", i == 0 ? "" : ", ", uargs[i]); 730 sbuf_printf(sb, ")"); 731 } 732 /* 733 * Final stage: arguments were proper, string has been 734 * successfully copied from userspace, and copying pointers 735 * from user-space succeed. 736 */ 737 sig = SIGABRT; 738 out: 739 if (sig == SIGKILL) { 740 sbuf_trim(sb); 741 sbuf_printf(sb, " (Reason text inaccessible)"); 742 } 743 sbuf_cat(sb, "\n"); 744 sbuf_finish(sb); 745 log(LOG_INFO, "%s", sbuf_data(sb)); 746 sbuf_delete(sb); 747 exit1(td, 0, sig); 748 return (0); 749 } 750 751 #ifdef COMPAT_43 752 /* 753 * The dirty work is handled by kern_wait(). 754 */ 755 int 756 owait(struct thread *td, struct owait_args *uap __unused) 757 { 758 int error, status; 759 760 error = kern_wait(td, WAIT_ANY, &status, 0, NULL); 761 if (error == 0) 762 td->td_retval[1] = status; 763 return (error); 764 } 765 #endif /* COMPAT_43 */ 766 767 /* 768 * The dirty work is handled by kern_wait(). 769 */ 770 int 771 sys_wait4(struct thread *td, struct wait4_args *uap) 772 { 773 struct rusage ru, *rup; 774 int error, status; 775 776 if (uap->rusage != NULL) 777 rup = &ru; 778 else 779 rup = NULL; 780 error = kern_wait(td, uap->pid, &status, uap->options, rup); 781 if (uap->status != NULL && error == 0 && td->td_retval[0] != 0) 782 error = copyout(&status, uap->status, sizeof(status)); 783 if (uap->rusage != NULL && error == 0 && td->td_retval[0] != 0) 784 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 785 return (error); 786 } 787 788 int 789 sys_wait6(struct thread *td, struct wait6_args *uap) 790 { 791 struct __wrusage wru, *wrup; 792 siginfo_t si, *sip; 793 idtype_t idtype; 794 id_t id; 795 int error, status; 796 797 idtype = uap->idtype; 798 id = uap->id; 799 800 if (uap->wrusage != NULL) 801 wrup = &wru; 802 else 803 wrup = NULL; 804 805 if (uap->info != NULL) { 806 sip = &si; 807 bzero(sip, sizeof(*sip)); 808 } else 809 sip = NULL; 810 811 /* 812 * We expect all callers of wait6() to know about WEXITED and 813 * WTRAPPED. 814 */ 815 error = kern_wait6(td, idtype, id, &status, uap->options, wrup, sip); 816 817 if (uap->status != NULL && error == 0 && td->td_retval[0] != 0) 818 error = copyout(&status, uap->status, sizeof(status)); 819 if (uap->wrusage != NULL && error == 0 && td->td_retval[0] != 0) 820 error = copyout(&wru, uap->wrusage, sizeof(wru)); 821 if (uap->info != NULL && error == 0) 822 error = copyout(&si, uap->info, sizeof(si)); 823 return (error); 824 } 825 826 /* 827 * Reap the remains of a zombie process and optionally return status and 828 * rusage. Asserts and will release both the proctree_lock and the process 829 * lock as part of its work. 830 */ 831 void 832 proc_reap(struct thread *td, struct proc *p, int *status, int options) 833 { 834 struct proc *q, *t; 835 836 sx_assert(&proctree_lock, SA_XLOCKED); 837 PROC_LOCK_ASSERT(p, MA_OWNED); 838 KASSERT(p->p_state == PRS_ZOMBIE, ("proc_reap: !PRS_ZOMBIE")); 839 840 mtx_spin_wait_unlocked(&p->p_slock); 841 842 q = td->td_proc; 843 844 if (status) 845 *status = KW_EXITCODE(p->p_xexit, p->p_xsig); 846 if (options & WNOWAIT) { 847 /* 848 * Only poll, returning the status. Caller does not wish to 849 * release the proc struct just yet. 850 */ 851 PROC_UNLOCK(p); 852 sx_xunlock(&proctree_lock); 853 return; 854 } 855 856 PROC_LOCK(q); 857 sigqueue_take(p->p_ksi); 858 PROC_UNLOCK(q); 859 860 /* 861 * If we got the child via a ptrace 'attach', we need to give it back 862 * to the old parent. 863 */ 864 if (p->p_oppid != p->p_pptr->p_pid) { 865 PROC_UNLOCK(p); 866 t = proc_realparent(p); 867 PROC_LOCK(t); 868 PROC_LOCK(p); 869 CTR2(KTR_PTRACE, 870 "wait: traced child %d moved back to parent %d", p->p_pid, 871 t->p_pid); 872 proc_reparent(p, t, false); 873 PROC_UNLOCK(p); 874 pksignal(t, SIGCHLD, p->p_ksi); 875 wakeup(t); 876 cv_broadcast(&p->p_pwait); 877 PROC_UNLOCK(t); 878 sx_xunlock(&proctree_lock); 879 return; 880 } 881 PROC_UNLOCK(p); 882 883 /* 884 * Remove other references to this process to ensure we have an 885 * exclusive reference. 886 */ 887 sx_xlock(PIDHASHLOCK(p->p_pid)); 888 LIST_REMOVE(p, p_hash); 889 sx_xunlock(PIDHASHLOCK(p->p_pid)); 890 LIST_REMOVE(p, p_sibling); 891 reaper_abandon_children(p, true); 892 reaper_clear(p); 893 PROC_LOCK(p); 894 proc_clear_orphan(p); 895 PROC_UNLOCK(p); 896 leavepgrp(p); 897 if (p->p_procdesc != NULL) 898 procdesc_reap(p); 899 sx_xunlock(&proctree_lock); 900 901 proc_id_clear(PROC_ID_PID, p->p_pid); 902 903 PROC_LOCK(p); 904 knlist_detach(p->p_klist); 905 p->p_klist = NULL; 906 PROC_UNLOCK(p); 907 908 /* 909 * Removal from allproc list and process group list paired with 910 * PROC_LOCK which was executed during that time should guarantee 911 * nothing can reach this process anymore. As such further locking 912 * is unnecessary. 913 */ 914 p->p_xexit = p->p_xsig = 0; /* XXX: why? */ 915 916 PROC_LOCK(q); 917 ruadd(&q->p_stats->p_cru, &q->p_crux, &p->p_ru, &p->p_rux); 918 PROC_UNLOCK(q); 919 920 /* 921 * Decrement the count of procs running with this uid. 922 */ 923 (void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0); 924 925 /* 926 * Destroy resource accounting information associated with the process. 927 */ 928 #ifdef RACCT 929 if (racct_enable) { 930 PROC_LOCK(p); 931 racct_sub(p, RACCT_NPROC, 1); 932 PROC_UNLOCK(p); 933 } 934 #endif 935 racct_proc_exit(p); 936 937 /* 938 * Free credentials, arguments, and sigacts. 939 */ 940 crfree(p->p_ucred); 941 proc_set_cred(p, NULL); 942 pargs_drop(p->p_args); 943 p->p_args = NULL; 944 sigacts_free(p->p_sigacts); 945 p->p_sigacts = NULL; 946 947 /* 948 * Do any thread-system specific cleanups. 949 */ 950 thread_wait(p); 951 952 /* 953 * Give vm and machine-dependent layer a chance to free anything that 954 * cpu_exit couldn't release while still running in process context. 955 */ 956 vm_waitproc(p); 957 #ifdef MAC 958 mac_proc_destroy(p); 959 #endif 960 961 KASSERT(FIRST_THREAD_IN_PROC(p), 962 ("proc_reap: no residual thread!")); 963 uma_zfree(proc_zone, p); 964 atomic_add_int(&nprocs, -1); 965 } 966 967 static int 968 proc_to_reap(struct thread *td, struct proc *p, idtype_t idtype, id_t id, 969 int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo, 970 int check_only) 971 { 972 struct rusage *rup; 973 974 sx_assert(&proctree_lock, SA_XLOCKED); 975 976 PROC_LOCK(p); 977 978 switch (idtype) { 979 case P_ALL: 980 if (p->p_procdesc == NULL || 981 (p->p_pptr == td->td_proc && 982 (p->p_flag & P_TRACED) != 0)) { 983 break; 984 } 985 986 PROC_UNLOCK(p); 987 return (0); 988 case P_PID: 989 if (p->p_pid != (pid_t)id) { 990 PROC_UNLOCK(p); 991 return (0); 992 } 993 break; 994 case P_PGID: 995 if (p->p_pgid != (pid_t)id) { 996 PROC_UNLOCK(p); 997 return (0); 998 } 999 break; 1000 case P_SID: 1001 if (p->p_session->s_sid != (pid_t)id) { 1002 PROC_UNLOCK(p); 1003 return (0); 1004 } 1005 break; 1006 case P_UID: 1007 if (p->p_ucred->cr_uid != (uid_t)id) { 1008 PROC_UNLOCK(p); 1009 return (0); 1010 } 1011 break; 1012 case P_GID: 1013 if (p->p_ucred->cr_gid != (gid_t)id) { 1014 PROC_UNLOCK(p); 1015 return (0); 1016 } 1017 break; 1018 case P_JAILID: 1019 if (p->p_ucred->cr_prison->pr_id != (int)id) { 1020 PROC_UNLOCK(p); 1021 return (0); 1022 } 1023 break; 1024 /* 1025 * It seems that the thread structures get zeroed out 1026 * at process exit. This makes it impossible to 1027 * support P_SETID, P_CID or P_CPUID. 1028 */ 1029 default: 1030 PROC_UNLOCK(p); 1031 return (0); 1032 } 1033 1034 if (p_canwait(td, p)) { 1035 PROC_UNLOCK(p); 1036 return (0); 1037 } 1038 1039 if (((options & WEXITED) == 0) && (p->p_state == PRS_ZOMBIE)) { 1040 PROC_UNLOCK(p); 1041 return (0); 1042 } 1043 1044 /* 1045 * This special case handles a kthread spawned by linux_clone 1046 * (see linux_misc.c). The linux_wait4 and linux_waitpid 1047 * functions need to be able to distinguish between waiting 1048 * on a process and waiting on a thread. It is a thread if 1049 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option 1050 * signifies we want to wait for threads and not processes. 1051 */ 1052 if ((p->p_sigparent != SIGCHLD) ^ 1053 ((options & WLINUXCLONE) != 0)) { 1054 PROC_UNLOCK(p); 1055 return (0); 1056 } 1057 1058 if (siginfo != NULL) { 1059 bzero(siginfo, sizeof(*siginfo)); 1060 siginfo->si_errno = 0; 1061 1062 /* 1063 * SUSv4 requires that the si_signo value is always 1064 * SIGCHLD. Obey it despite the rfork(2) interface 1065 * allows to request other signal for child exit 1066 * notification. 1067 */ 1068 siginfo->si_signo = SIGCHLD; 1069 1070 /* 1071 * This is still a rough estimate. We will fix the 1072 * cases TRAPPED, STOPPED, and CONTINUED later. 1073 */ 1074 if (WCOREDUMP(p->p_xsig)) { 1075 siginfo->si_code = CLD_DUMPED; 1076 siginfo->si_status = WTERMSIG(p->p_xsig); 1077 } else if (WIFSIGNALED(p->p_xsig)) { 1078 siginfo->si_code = CLD_KILLED; 1079 siginfo->si_status = WTERMSIG(p->p_xsig); 1080 } else { 1081 siginfo->si_code = CLD_EXITED; 1082 siginfo->si_status = p->p_xexit; 1083 } 1084 1085 siginfo->si_pid = p->p_pid; 1086 siginfo->si_uid = p->p_ucred->cr_uid; 1087 1088 /* 1089 * The si_addr field would be useful additional 1090 * detail, but apparently the PC value may be lost 1091 * when we reach this point. bzero() above sets 1092 * siginfo->si_addr to NULL. 1093 */ 1094 } 1095 1096 /* 1097 * There should be no reason to limit resources usage info to 1098 * exited processes only. A snapshot about any resources used 1099 * by a stopped process may be exactly what is needed. 1100 */ 1101 if (wrusage != NULL) { 1102 rup = &wrusage->wru_self; 1103 *rup = p->p_ru; 1104 PROC_STATLOCK(p); 1105 calcru(p, &rup->ru_utime, &rup->ru_stime); 1106 PROC_STATUNLOCK(p); 1107 1108 rup = &wrusage->wru_children; 1109 *rup = p->p_stats->p_cru; 1110 calccru(p, &rup->ru_utime, &rup->ru_stime); 1111 } 1112 1113 if (p->p_state == PRS_ZOMBIE && !check_only) { 1114 proc_reap(td, p, status, options); 1115 return (-1); 1116 } 1117 return (1); 1118 } 1119 1120 int 1121 kern_wait(struct thread *td, pid_t pid, int *status, int options, 1122 struct rusage *rusage) 1123 { 1124 struct __wrusage wru, *wrup; 1125 idtype_t idtype; 1126 id_t id; 1127 int ret; 1128 1129 /* 1130 * Translate the special pid values into the (idtype, pid) 1131 * pair for kern_wait6. The WAIT_MYPGRP case is handled by 1132 * kern_wait6() on its own. 1133 */ 1134 if (pid == WAIT_ANY) { 1135 idtype = P_ALL; 1136 id = 0; 1137 } else if (pid < 0) { 1138 idtype = P_PGID; 1139 id = (id_t)-pid; 1140 } else { 1141 idtype = P_PID; 1142 id = (id_t)pid; 1143 } 1144 1145 if (rusage != NULL) 1146 wrup = &wru; 1147 else 1148 wrup = NULL; 1149 1150 /* 1151 * For backward compatibility we implicitly add flags WEXITED 1152 * and WTRAPPED here. 1153 */ 1154 options |= WEXITED | WTRAPPED; 1155 ret = kern_wait6(td, idtype, id, status, options, wrup, NULL); 1156 if (rusage != NULL) 1157 *rusage = wru.wru_self; 1158 return (ret); 1159 } 1160 1161 static void 1162 report_alive_proc(struct thread *td, struct proc *p, siginfo_t *siginfo, 1163 int *status, int options, int si_code) 1164 { 1165 bool cont; 1166 1167 PROC_LOCK_ASSERT(p, MA_OWNED); 1168 sx_assert(&proctree_lock, SA_XLOCKED); 1169 MPASS(si_code == CLD_TRAPPED || si_code == CLD_STOPPED || 1170 si_code == CLD_CONTINUED); 1171 1172 cont = si_code == CLD_CONTINUED; 1173 if ((options & WNOWAIT) == 0) { 1174 if (cont) 1175 p->p_flag &= ~P_CONTINUED; 1176 else 1177 p->p_flag |= P_WAITED; 1178 PROC_LOCK(td->td_proc); 1179 sigqueue_take(p->p_ksi); 1180 PROC_UNLOCK(td->td_proc); 1181 } 1182 sx_xunlock(&proctree_lock); 1183 if (siginfo != NULL) { 1184 siginfo->si_code = si_code; 1185 siginfo->si_status = cont ? SIGCONT : p->p_xsig; 1186 } 1187 if (status != NULL) 1188 *status = cont ? SIGCONT : W_STOPCODE(p->p_xsig); 1189 PROC_UNLOCK(p); 1190 td->td_retval[0] = p->p_pid; 1191 } 1192 1193 int 1194 kern_wait6(struct thread *td, idtype_t idtype, id_t id, int *status, 1195 int options, struct __wrusage *wrusage, siginfo_t *siginfo) 1196 { 1197 struct proc *p, *q; 1198 pid_t pid; 1199 int error, nfound, ret; 1200 bool report; 1201 1202 AUDIT_ARG_VALUE((int)idtype); /* XXX - This is likely wrong! */ 1203 AUDIT_ARG_PID((pid_t)id); /* XXX - This may be wrong! */ 1204 AUDIT_ARG_VALUE(options); 1205 1206 q = td->td_proc; 1207 1208 if ((pid_t)id == WAIT_MYPGRP && (idtype == P_PID || idtype == P_PGID)) { 1209 PROC_LOCK(q); 1210 id = (id_t)q->p_pgid; 1211 PROC_UNLOCK(q); 1212 idtype = P_PGID; 1213 } 1214 1215 /* If we don't know the option, just return. */ 1216 if ((options & ~(WUNTRACED | WNOHANG | WCONTINUED | WNOWAIT | 1217 WEXITED | WTRAPPED | WLINUXCLONE)) != 0) 1218 return (EINVAL); 1219 if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) { 1220 /* 1221 * We will be unable to find any matching processes, 1222 * because there are no known events to look for. 1223 * Prefer to return error instead of blocking 1224 * indefinitely. 1225 */ 1226 return (EINVAL); 1227 } 1228 1229 loop: 1230 if (q->p_flag & P_STATCHILD) { 1231 PROC_LOCK(q); 1232 q->p_flag &= ~P_STATCHILD; 1233 PROC_UNLOCK(q); 1234 } 1235 sx_xlock(&proctree_lock); 1236 loop_locked: 1237 nfound = 0; 1238 LIST_FOREACH(p, &q->p_children, p_sibling) { 1239 pid = p->p_pid; 1240 ret = proc_to_reap(td, p, idtype, id, status, options, 1241 wrusage, siginfo, 0); 1242 if (ret == 0) 1243 continue; 1244 else if (ret != 1) { 1245 td->td_retval[0] = pid; 1246 return (0); 1247 } 1248 1249 nfound++; 1250 PROC_LOCK_ASSERT(p, MA_OWNED); 1251 1252 if ((options & WTRAPPED) != 0 && 1253 (p->p_flag & P_TRACED) != 0) { 1254 PROC_SLOCK(p); 1255 report = 1256 ((p->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) && 1257 p->p_suspcount == p->p_numthreads && 1258 (p->p_flag & P_WAITED) == 0); 1259 PROC_SUNLOCK(p); 1260 if (report) { 1261 CTR4(KTR_PTRACE, 1262 "wait: returning trapped pid %d status %#x " 1263 "(xstat %d) xthread %d", 1264 p->p_pid, W_STOPCODE(p->p_xsig), p->p_xsig, 1265 p->p_xthread != NULL ? 1266 p->p_xthread->td_tid : -1); 1267 report_alive_proc(td, p, siginfo, status, 1268 options, CLD_TRAPPED); 1269 return (0); 1270 } 1271 } 1272 if ((options & WUNTRACED) != 0 && 1273 (p->p_flag & P_STOPPED_SIG) != 0) { 1274 PROC_SLOCK(p); 1275 report = (p->p_suspcount == p->p_numthreads && 1276 ((p->p_flag & P_WAITED) == 0)); 1277 PROC_SUNLOCK(p); 1278 if (report) { 1279 report_alive_proc(td, p, siginfo, status, 1280 options, CLD_STOPPED); 1281 return (0); 1282 } 1283 } 1284 if ((options & WCONTINUED) != 0 && 1285 (p->p_flag & P_CONTINUED) != 0) { 1286 report_alive_proc(td, p, siginfo, status, options, 1287 CLD_CONTINUED); 1288 return (0); 1289 } 1290 PROC_UNLOCK(p); 1291 } 1292 1293 /* 1294 * Look in the orphans list too, to allow the parent to 1295 * collect it's child exit status even if child is being 1296 * debugged. 1297 * 1298 * Debugger detaches from the parent upon successful 1299 * switch-over from parent to child. At this point due to 1300 * re-parenting the parent loses the child to debugger and a 1301 * wait4(2) call would report that it has no children to wait 1302 * for. By maintaining a list of orphans we allow the parent 1303 * to successfully wait until the child becomes a zombie. 1304 */ 1305 if (nfound == 0) { 1306 LIST_FOREACH(p, &q->p_orphans, p_orphan) { 1307 ret = proc_to_reap(td, p, idtype, id, NULL, options, 1308 NULL, NULL, 1); 1309 if (ret != 0) { 1310 KASSERT(ret != -1, ("reaped an orphan (pid %d)", 1311 (int)td->td_retval[0])); 1312 PROC_UNLOCK(p); 1313 nfound++; 1314 break; 1315 } 1316 } 1317 } 1318 if (nfound == 0) { 1319 sx_xunlock(&proctree_lock); 1320 return (ECHILD); 1321 } 1322 if (options & WNOHANG) { 1323 sx_xunlock(&proctree_lock); 1324 td->td_retval[0] = 0; 1325 return (0); 1326 } 1327 PROC_LOCK(q); 1328 if (q->p_flag & P_STATCHILD) { 1329 q->p_flag &= ~P_STATCHILD; 1330 PROC_UNLOCK(q); 1331 goto loop_locked; 1332 } 1333 sx_xunlock(&proctree_lock); 1334 error = msleep(q, &q->p_mtx, PWAIT | PCATCH | PDROP, "wait", 0); 1335 if (error) 1336 return (error); 1337 goto loop; 1338 } 1339 1340 void 1341 proc_add_orphan(struct proc *child, struct proc *parent) 1342 { 1343 1344 sx_assert(&proctree_lock, SX_XLOCKED); 1345 KASSERT((child->p_flag & P_TRACED) != 0, 1346 ("proc_add_orphan: not traced")); 1347 1348 if (LIST_EMPTY(&parent->p_orphans)) { 1349 child->p_treeflag |= P_TREE_FIRST_ORPHAN; 1350 LIST_INSERT_HEAD(&parent->p_orphans, child, p_orphan); 1351 } else { 1352 LIST_INSERT_AFTER(LIST_FIRST(&parent->p_orphans), 1353 child, p_orphan); 1354 } 1355 child->p_treeflag |= P_TREE_ORPHANED; 1356 } 1357 1358 /* 1359 * Make process 'parent' the new parent of process 'child'. 1360 * Must be called with an exclusive hold of proctree lock. 1361 */ 1362 void 1363 proc_reparent(struct proc *child, struct proc *parent, bool set_oppid) 1364 { 1365 1366 sx_assert(&proctree_lock, SX_XLOCKED); 1367 PROC_LOCK_ASSERT(child, MA_OWNED); 1368 if (child->p_pptr == parent) 1369 return; 1370 1371 PROC_LOCK(child->p_pptr); 1372 sigqueue_take(child->p_ksi); 1373 PROC_UNLOCK(child->p_pptr); 1374 LIST_REMOVE(child, p_sibling); 1375 LIST_INSERT_HEAD(&parent->p_children, child, p_sibling); 1376 1377 proc_clear_orphan(child); 1378 if ((child->p_flag & P_TRACED) != 0) { 1379 proc_add_orphan(child, child->p_pptr); 1380 } 1381 1382 child->p_pptr = parent; 1383 if (set_oppid) 1384 child->p_oppid = parent->p_pid; 1385 } 1386