xref: /freebsd/sys/kern/kern_exit.c (revision f0d4c2afd65f821b8983152848f4005239ff975a)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * (c) UNIX System Laboratories, Inc.
7  * All or some portions of this file are derived from material licensed
8  * to the University of California by American Telephone and Telegraph
9  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10  * the permission of UNIX System Laboratories, Inc.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
37  */
38 
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41 
42 #include "opt_ddb.h"
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/capsicum.h>
49 #include <sys/eventhandler.h>
50 #include <sys/kernel.h>
51 #include <sys/ktr.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/mutex.h>
55 #include <sys/proc.h>
56 #include <sys/procdesc.h>
57 #include <sys/jail.h>
58 #include <sys/tty.h>
59 #include <sys/wait.h>
60 #include <sys/vmmeter.h>
61 #include <sys/vnode.h>
62 #include <sys/racct.h>
63 #include <sys/resourcevar.h>
64 #include <sys/sbuf.h>
65 #include <sys/signalvar.h>
66 #include <sys/sched.h>
67 #include <sys/sx.h>
68 #include <sys/syscallsubr.h>
69 #include <sys/sysctl.h>
70 #include <sys/syslog.h>
71 #include <sys/ptrace.h>
72 #include <sys/acct.h>		/* for acct_process() function prototype */
73 #include <sys/filedesc.h>
74 #include <sys/sdt.h>
75 #include <sys/shm.h>
76 #include <sys/sem.h>
77 #include <sys/sysent.h>
78 #include <sys/timers.h>
79 #include <sys/umtxvar.h>
80 #ifdef KTRACE
81 #include <sys/ktrace.h>
82 #endif
83 
84 #include <security/audit/audit.h>
85 #include <security/mac/mac_framework.h>
86 
87 #include <vm/vm.h>
88 #include <vm/vm_extern.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/uma.h>
94 
95 #ifdef KDTRACE_HOOKS
96 #include <sys/dtrace_bsd.h>
97 dtrace_execexit_func_t	dtrace_fasttrap_exit;
98 #endif
99 
100 SDT_PROVIDER_DECLARE(proc);
101 SDT_PROBE_DEFINE1(proc, , , exit, "int");
102 
103 static int kern_kill_on_dbg_exit = 1;
104 SYSCTL_INT(_kern, OID_AUTO, kill_on_debugger_exit, CTLFLAG_RWTUN,
105     &kern_kill_on_dbg_exit, 0,
106     "Kill ptraced processes when debugger exits");
107 
108 static bool kern_wait_dequeue_sigchld = 1;
109 SYSCTL_BOOL(_kern, OID_AUTO, wait_dequeue_sigchld, CTLFLAG_RWTUN,
110     &kern_wait_dequeue_sigchld, 0,
111     "Dequeue SIGCHLD on wait(2) for live process");
112 
113 struct proc *
114 proc_realparent(struct proc *child)
115 {
116 	struct proc *p, *parent;
117 
118 	sx_assert(&proctree_lock, SX_LOCKED);
119 	if ((child->p_treeflag & P_TREE_ORPHANED) == 0)
120 		return (child->p_pptr->p_pid == child->p_oppid ?
121 		    child->p_pptr : child->p_reaper);
122 	for (p = child; (p->p_treeflag & P_TREE_FIRST_ORPHAN) == 0;) {
123 		/* Cannot use LIST_PREV(), since the list head is not known. */
124 		p = __containerof(p->p_orphan.le_prev, struct proc,
125 		    p_orphan.le_next);
126 		KASSERT((p->p_treeflag & P_TREE_ORPHANED) != 0,
127 		    ("missing P_ORPHAN %p", p));
128 	}
129 	parent = __containerof(p->p_orphan.le_prev, struct proc,
130 	    p_orphans.lh_first);
131 	return (parent);
132 }
133 
134 void
135 reaper_abandon_children(struct proc *p, bool exiting)
136 {
137 	struct proc *p1, *p2, *ptmp;
138 
139 	sx_assert(&proctree_lock, SX_XLOCKED);
140 	KASSERT(p != initproc, ("reaper_abandon_children for initproc"));
141 	if ((p->p_treeflag & P_TREE_REAPER) == 0)
142 		return;
143 	p1 = p->p_reaper;
144 	LIST_FOREACH_SAFE(p2, &p->p_reaplist, p_reapsibling, ptmp) {
145 		LIST_REMOVE(p2, p_reapsibling);
146 		p2->p_reaper = p1;
147 		p2->p_reapsubtree = p->p_reapsubtree;
148 		LIST_INSERT_HEAD(&p1->p_reaplist, p2, p_reapsibling);
149 		if (exiting && p2->p_pptr == p) {
150 			PROC_LOCK(p2);
151 			proc_reparent(p2, p1, true);
152 			PROC_UNLOCK(p2);
153 		}
154 	}
155 	KASSERT(LIST_EMPTY(&p->p_reaplist), ("p_reaplist not empty"));
156 	p->p_treeflag &= ~P_TREE_REAPER;
157 }
158 
159 static void
160 reaper_clear(struct proc *p)
161 {
162 	struct proc *p1;
163 	bool clear;
164 
165 	sx_assert(&proctree_lock, SX_LOCKED);
166 	LIST_REMOVE(p, p_reapsibling);
167 	if (p->p_reapsubtree == 1)
168 		return;
169 	clear = true;
170 	LIST_FOREACH(p1, &p->p_reaper->p_reaplist, p_reapsibling) {
171 		if (p1->p_reapsubtree == p->p_reapsubtree) {
172 			clear = false;
173 			break;
174 		}
175 	}
176 	if (clear)
177 		proc_id_clear(PROC_ID_REAP, p->p_reapsubtree);
178 }
179 
180 void
181 proc_clear_orphan(struct proc *p)
182 {
183 	struct proc *p1;
184 
185 	sx_assert(&proctree_lock, SA_XLOCKED);
186 	if ((p->p_treeflag & P_TREE_ORPHANED) == 0)
187 		return;
188 	if ((p->p_treeflag & P_TREE_FIRST_ORPHAN) != 0) {
189 		p1 = LIST_NEXT(p, p_orphan);
190 		if (p1 != NULL)
191 			p1->p_treeflag |= P_TREE_FIRST_ORPHAN;
192 		p->p_treeflag &= ~P_TREE_FIRST_ORPHAN;
193 	}
194 	LIST_REMOVE(p, p_orphan);
195 	p->p_treeflag &= ~P_TREE_ORPHANED;
196 }
197 
198 void
199 exit_onexit(struct proc *p)
200 {
201 	MPASS(p->p_numthreads == 1);
202 	umtx_thread_exit(FIRST_THREAD_IN_PROC(p));
203 }
204 
205 /*
206  * exit -- death of process.
207  */
208 int
209 sys_exit(struct thread *td, struct exit_args *uap)
210 {
211 
212 	exit1(td, uap->rval, 0);
213 	__unreachable();
214 }
215 
216 void
217 proc_set_p2_wexit(struct proc *p)
218 {
219 	PROC_LOCK_ASSERT(p, MA_OWNED);
220 	p->p_flag2 |= P2_WEXIT;
221 }
222 
223 /*
224  * Exit: deallocate address space and other resources, change proc state to
225  * zombie, and unlink proc from allproc and parent's lists.  Save exit status
226  * and rusage for wait().  Check for child processes and orphan them.
227  */
228 void
229 exit1(struct thread *td, int rval, int signo)
230 {
231 	struct proc *p, *nq, *q, *t;
232 	struct thread *tdt;
233 	ksiginfo_t *ksi, *ksi1;
234 	int signal_parent;
235 
236 	mtx_assert(&Giant, MA_NOTOWNED);
237 	KASSERT(rval == 0 || signo == 0, ("exit1 rv %d sig %d", rval, signo));
238 	TSPROCEXIT(td->td_proc->p_pid);
239 
240 	p = td->td_proc;
241 	/*
242 	 * XXX in case we're rebooting we just let init die in order to
243 	 * work around an unsolved stack overflow seen very late during
244 	 * shutdown on sparc64 when the gmirror worker process exists.
245 	 * XXX what to do now that sparc64 is gone... remove if?
246 	 */
247 	if (p == initproc && rebooting == 0) {
248 		printf("init died (signal %d, exit %d)\n", signo, rval);
249 		panic("Going nowhere without my init!");
250 	}
251 
252 	/*
253 	 * Process deferred operations, designated with ASTF_KCLEAR.
254 	 * For instance, we need to deref SU mp, since the thread does
255 	 * not return to userspace, and wait for geom to stabilize.
256 	 */
257 	ast_kclear(td);
258 
259 	/*
260 	 * MUST abort all other threads before proceeding past here.
261 	 */
262 	PROC_LOCK(p);
263 	proc_set_p2_wexit(p);
264 
265 	/*
266 	 * First check if some other thread or external request got
267 	 * here before us.  If so, act appropriately: exit or suspend.
268 	 * We must ensure that stop requests are handled before we set
269 	 * P_WEXIT.
270 	 */
271 	thread_suspend_check(0);
272 	while (p->p_flag & P_HADTHREADS) {
273 		/*
274 		 * Kill off the other threads. This requires
275 		 * some co-operation from other parts of the kernel
276 		 * so it may not be instantaneous.  With this state set
277 		 * any thread attempting to interruptibly
278 		 * sleep will return immediately with EINTR or EWOULDBLOCK
279 		 * which will hopefully force them to back out to userland
280 		 * freeing resources as they go.  Any thread attempting
281 		 * to return to userland will thread_exit() from ast().
282 		 * thread_exit() will unsuspend us when the last of the
283 		 * other threads exits.
284 		 * If there is already a thread singler after resumption,
285 		 * calling thread_single() will fail; in that case, we just
286 		 * re-check all suspension request, the thread should
287 		 * either be suspended there or exit.
288 		 */
289 		if (!thread_single(p, SINGLE_EXIT))
290 			/*
291 			 * All other activity in this process is now
292 			 * stopped.  Threading support has been turned
293 			 * off.
294 			 */
295 			break;
296 		/*
297 		 * Recheck for new stop or suspend requests which
298 		 * might appear while process lock was dropped in
299 		 * thread_single().
300 		 */
301 		thread_suspend_check(0);
302 	}
303 	KASSERT(p->p_numthreads == 1,
304 	    ("exit1: proc %p exiting with %d threads", p, p->p_numthreads));
305 	racct_sub(p, RACCT_NTHR, 1);
306 
307 	/* Let event handler change exit status */
308 	p->p_xexit = rval;
309 	p->p_xsig = signo;
310 
311 	/*
312 	 * Ignore any pending request to stop due to a stop signal.
313 	 * Once P_WEXIT is set, future requests will be ignored as
314 	 * well.
315 	 */
316 	p->p_flag &= ~P_STOPPED_SIG;
317 	KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped"));
318 
319 	/* Note that we are exiting. */
320 	p->p_flag |= P_WEXIT;
321 
322 	/*
323 	 * Wait for any processes that have a hold on our vmspace to
324 	 * release their reference.
325 	 */
326 	while (p->p_lock > 0)
327 		msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0);
328 
329 	PROC_UNLOCK(p);
330 	/* Drain the limit callout while we don't have the proc locked */
331 	callout_drain(&p->p_limco);
332 
333 #ifdef AUDIT
334 	/*
335 	 * The Sun BSM exit token contains two components: an exit status as
336 	 * passed to exit(), and a return value to indicate what sort of exit
337 	 * it was.  The exit status is WEXITSTATUS(rv), but it's not clear
338 	 * what the return value is.
339 	 */
340 	AUDIT_ARG_EXIT(rval, 0);
341 	AUDIT_SYSCALL_EXIT(0, td);
342 #endif
343 
344 	/* Are we a task leader with peers? */
345 	if (p->p_peers != NULL && p == p->p_leader) {
346 		mtx_lock(&ppeers_lock);
347 		q = p->p_peers;
348 		while (q != NULL) {
349 			PROC_LOCK(q);
350 			kern_psignal(q, SIGKILL);
351 			PROC_UNLOCK(q);
352 			q = q->p_peers;
353 		}
354 		while (p->p_peers != NULL)
355 			msleep(p, &ppeers_lock, PWAIT, "exit1", 0);
356 		mtx_unlock(&ppeers_lock);
357 	}
358 
359 	itimers_exit(p);
360 
361 	/*
362 	 * Check if any loadable modules need anything done at process exit.
363 	 * E.g. SYSV IPC stuff.
364 	 * Event handler could change exit status.
365 	 * XXX what if one of these generates an error?
366 	 */
367 	EVENTHANDLER_DIRECT_INVOKE(process_exit, p);
368 
369 	/*
370 	 * If parent is waiting for us to exit or exec,
371 	 * P_PPWAIT is set; we will wakeup the parent below.
372 	 */
373 	PROC_LOCK(p);
374 	stopprofclock(p);
375 	p->p_ptevents = 0;
376 
377 	/*
378 	 * Stop the real interval timer.  If the handler is currently
379 	 * executing, prevent it from rearming itself and let it finish.
380 	 */
381 	if (timevalisset(&p->p_realtimer.it_value) &&
382 	    callout_stop(&p->p_itcallout) == 0) {
383 		timevalclear(&p->p_realtimer.it_interval);
384 		PROC_UNLOCK(p);
385 		callout_drain(&p->p_itcallout);
386 	} else {
387 		PROC_UNLOCK(p);
388 	}
389 
390 	if (p->p_sysent->sv_onexit != NULL)
391 		p->p_sysent->sv_onexit(p);
392 	seltdfini(td);
393 
394 	/*
395 	 * Reset any sigio structures pointing to us as a result of
396 	 * F_SETOWN with our pid.  The P_WEXIT flag interlocks with fsetown().
397 	 */
398 	funsetownlst(&p->p_sigiolst);
399 
400 	/*
401 	 * Close open files and release open-file table.
402 	 * This may block!
403 	 */
404 	pdescfree(td);
405 	fdescfree(td);
406 
407 	/*
408 	 * Remove ourself from our leader's peer list and wake our leader.
409 	 */
410 	if (p->p_leader->p_peers != NULL) {
411 		mtx_lock(&ppeers_lock);
412 		if (p->p_leader->p_peers != NULL) {
413 			q = p->p_leader;
414 			while (q->p_peers != p)
415 				q = q->p_peers;
416 			q->p_peers = p->p_peers;
417 			wakeup(p->p_leader);
418 		}
419 		mtx_unlock(&ppeers_lock);
420 	}
421 
422 	exec_free_abi_mappings(p);
423 	vmspace_exit(td);
424 	(void)acct_process(td);
425 
426 #ifdef KTRACE
427 	ktrprocexit(td);
428 #endif
429 	/*
430 	 * Release reference to text vnode etc
431 	 */
432 	if (p->p_textvp != NULL) {
433 		vrele(p->p_textvp);
434 		p->p_textvp = NULL;
435 	}
436 	if (p->p_textdvp != NULL) {
437 		vrele(p->p_textdvp);
438 		p->p_textdvp = NULL;
439 	}
440 	if (p->p_binname != NULL) {
441 		free(p->p_binname, M_PARGS);
442 		p->p_binname = NULL;
443 	}
444 
445 	/*
446 	 * Release our limits structure.
447 	 */
448 	lim_free(p->p_limit);
449 	p->p_limit = NULL;
450 
451 	tidhash_remove(td);
452 
453 	/*
454 	 * Call machine-dependent code to release any
455 	 * machine-dependent resources other than the address space.
456 	 * The address space is released by "vmspace_exitfree(p)" in
457 	 * vm_waitproc().
458 	 */
459 	cpu_exit(td);
460 
461 	WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid);
462 
463 	/*
464 	 * Remove from allproc. It still sits in the hash.
465 	 */
466 	sx_xlock(&allproc_lock);
467 	LIST_REMOVE(p, p_list);
468 
469 #ifdef DDB
470 	/*
471 	 * Used by ddb's 'ps' command to find this process via the
472 	 * pidhash.
473 	 */
474 	p->p_list.le_prev = NULL;
475 #endif
476 	sx_xunlock(&allproc_lock);
477 
478 	sx_xlock(&proctree_lock);
479 	PROC_LOCK(p);
480 	p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE);
481 	PROC_UNLOCK(p);
482 
483 	/*
484 	 * killjobc() might drop and re-acquire proctree_lock to
485 	 * revoke control tty if exiting process was a session leader.
486 	 */
487 	killjobc();
488 
489 	/*
490 	 * Reparent all children processes:
491 	 * - traced ones to the original parent (or init if we are that parent)
492 	 * - the rest to init
493 	 */
494 	q = LIST_FIRST(&p->p_children);
495 	if (q != NULL)		/* only need this if any child is S_ZOMB */
496 		wakeup(q->p_reaper);
497 	for (; q != NULL; q = nq) {
498 		nq = LIST_NEXT(q, p_sibling);
499 		ksi = ksiginfo_alloc(M_WAITOK);
500 		PROC_LOCK(q);
501 		q->p_sigparent = SIGCHLD;
502 
503 		if ((q->p_flag & P_TRACED) == 0) {
504 			proc_reparent(q, q->p_reaper, true);
505 			if (q->p_state == PRS_ZOMBIE) {
506 				/*
507 				 * Inform reaper about the reparented
508 				 * zombie, since wait(2) has something
509 				 * new to report.  Guarantee queueing
510 				 * of the SIGCHLD signal, similar to
511 				 * the _exit() behaviour, by providing
512 				 * our ksiginfo.  Ksi is freed by the
513 				 * signal delivery.
514 				 */
515 				if (q->p_ksi == NULL) {
516 					ksi1 = NULL;
517 				} else {
518 					ksiginfo_copy(q->p_ksi, ksi);
519 					ksi->ksi_flags |= KSI_INS;
520 					ksi1 = ksi;
521 					ksi = NULL;
522 				}
523 				PROC_LOCK(q->p_reaper);
524 				pksignal(q->p_reaper, SIGCHLD, ksi1);
525 				PROC_UNLOCK(q->p_reaper);
526 			} else if (q->p_pdeathsig > 0) {
527 				/*
528 				 * The child asked to received a signal
529 				 * when we exit.
530 				 */
531 				kern_psignal(q, q->p_pdeathsig);
532 			}
533 		} else {
534 			/*
535 			 * Traced processes are killed by default
536 			 * since their existence means someone is
537 			 * screwing up.
538 			 */
539 			t = proc_realparent(q);
540 			if (t == p) {
541 				proc_reparent(q, q->p_reaper, true);
542 			} else {
543 				PROC_LOCK(t);
544 				proc_reparent(q, t, true);
545 				PROC_UNLOCK(t);
546 			}
547 			/*
548 			 * Since q was found on our children list, the
549 			 * proc_reparent() call moved q to the orphan
550 			 * list due to present P_TRACED flag. Clear
551 			 * orphan link for q now while q is locked.
552 			 */
553 			proc_clear_orphan(q);
554 			q->p_flag &= ~P_TRACED;
555 			q->p_flag2 &= ~P2_PTRACE_FSTP;
556 			q->p_ptevents = 0;
557 			p->p_xthread = NULL;
558 			FOREACH_THREAD_IN_PROC(q, tdt) {
559 				tdt->td_dbgflags &= ~(TDB_SUSPEND | TDB_XSIG |
560 				    TDB_FSTP);
561 				tdt->td_xsig = 0;
562 			}
563 			if (kern_kill_on_dbg_exit) {
564 				q->p_flag &= ~P_STOPPED_TRACE;
565 				kern_psignal(q, SIGKILL);
566 			} else if ((q->p_flag & (P_STOPPED_TRACE |
567 			    P_STOPPED_SIG)) != 0) {
568 				sigqueue_delete_proc(q, SIGTRAP);
569 				ptrace_unsuspend(q);
570 			}
571 		}
572 		PROC_UNLOCK(q);
573 		if (ksi != NULL)
574 			ksiginfo_free(ksi);
575 	}
576 
577 	/*
578 	 * Also get rid of our orphans.
579 	 */
580 	while ((q = LIST_FIRST(&p->p_orphans)) != NULL) {
581 		PROC_LOCK(q);
582 		KASSERT(q->p_oppid == p->p_pid,
583 		    ("orphan %p of %p has unexpected oppid %d", q, p,
584 		    q->p_oppid));
585 		q->p_oppid = q->p_reaper->p_pid;
586 
587 		/*
588 		 * If we are the real parent of this process
589 		 * but it has been reparented to a debugger, then
590 		 * check if it asked for a signal when we exit.
591 		 */
592 		if (q->p_pdeathsig > 0)
593 			kern_psignal(q, q->p_pdeathsig);
594 		CTR2(KTR_PTRACE, "exit: pid %d, clearing orphan %d", p->p_pid,
595 		    q->p_pid);
596 		proc_clear_orphan(q);
597 		PROC_UNLOCK(q);
598 	}
599 
600 #ifdef KDTRACE_HOOKS
601 	if (SDT_PROBES_ENABLED()) {
602 		int reason = CLD_EXITED;
603 		if (WCOREDUMP(signo))
604 			reason = CLD_DUMPED;
605 		else if (WIFSIGNALED(signo))
606 			reason = CLD_KILLED;
607 		SDT_PROBE1(proc, , , exit, reason);
608 	}
609 #endif
610 
611 	/* Save exit status. */
612 	PROC_LOCK(p);
613 	p->p_xthread = td;
614 
615 	if (p->p_sysent->sv_ontdexit != NULL)
616 		p->p_sysent->sv_ontdexit(td);
617 
618 #ifdef KDTRACE_HOOKS
619 	/*
620 	 * Tell the DTrace fasttrap provider about the exit if it
621 	 * has declared an interest.
622 	 */
623 	if (dtrace_fasttrap_exit)
624 		dtrace_fasttrap_exit(p);
625 #endif
626 
627 	/*
628 	 * Notify interested parties of our demise.
629 	 */
630 	KNOTE_LOCKED(p->p_klist, NOTE_EXIT);
631 
632 	/*
633 	 * If this is a process with a descriptor, we may not need to deliver
634 	 * a signal to the parent.  proctree_lock is held over
635 	 * procdesc_exit() to serialize concurrent calls to close() and
636 	 * exit().
637 	 */
638 	signal_parent = 0;
639 	if (p->p_procdesc == NULL || procdesc_exit(p)) {
640 		/*
641 		 * Notify parent that we're gone.  If parent has the
642 		 * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN,
643 		 * notify process 1 instead (and hope it will handle this
644 		 * situation).
645 		 */
646 		PROC_LOCK(p->p_pptr);
647 		mtx_lock(&p->p_pptr->p_sigacts->ps_mtx);
648 		if (p->p_pptr->p_sigacts->ps_flag &
649 		    (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
650 			struct proc *pp;
651 
652 			mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
653 			pp = p->p_pptr;
654 			PROC_UNLOCK(pp);
655 			proc_reparent(p, p->p_reaper, true);
656 			p->p_sigparent = SIGCHLD;
657 			PROC_LOCK(p->p_pptr);
658 
659 			/*
660 			 * Notify parent, so in case he was wait(2)ing or
661 			 * executing waitpid(2) with our pid, he will
662 			 * continue.
663 			 */
664 			wakeup(pp);
665 		} else
666 			mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
667 
668 		if (p->p_pptr == p->p_reaper || p->p_pptr == initproc) {
669 			signal_parent = 1;
670 		} else if (p->p_sigparent != 0) {
671 			if (p->p_sigparent == SIGCHLD) {
672 				signal_parent = 1;
673 			} else { /* LINUX thread */
674 				signal_parent = 2;
675 			}
676 		}
677 	} else
678 		PROC_LOCK(p->p_pptr);
679 	sx_xunlock(&proctree_lock);
680 
681 	if (signal_parent == 1) {
682 		childproc_exited(p);
683 	} else if (signal_parent == 2) {
684 		kern_psignal(p->p_pptr, p->p_sigparent);
685 	}
686 
687 	/* Tell the prison that we are gone. */
688 	prison_proc_free(p->p_ucred->cr_prison);
689 
690 	/*
691 	 * The state PRS_ZOMBIE prevents other proesses from sending
692 	 * signal to the process, to avoid memory leak, we free memory
693 	 * for signal queue at the time when the state is set.
694 	 */
695 	sigqueue_flush(&p->p_sigqueue);
696 	sigqueue_flush(&td->td_sigqueue);
697 
698 	/*
699 	 * We have to wait until after acquiring all locks before
700 	 * changing p_state.  We need to avoid all possible context
701 	 * switches (including ones from blocking on a mutex) while
702 	 * marked as a zombie.  We also have to set the zombie state
703 	 * before we release the parent process' proc lock to avoid
704 	 * a lost wakeup.  So, we first call wakeup, then we grab the
705 	 * sched lock, update the state, and release the parent process'
706 	 * proc lock.
707 	 */
708 	wakeup(p->p_pptr);
709 	cv_broadcast(&p->p_pwait);
710 	sched_exit(p->p_pptr, td);
711 	PROC_SLOCK(p);
712 	p->p_state = PRS_ZOMBIE;
713 	PROC_UNLOCK(p->p_pptr);
714 
715 	/*
716 	 * Save our children's rusage information in our exit rusage.
717 	 */
718 	PROC_STATLOCK(p);
719 	ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux);
720 	PROC_STATUNLOCK(p);
721 
722 	/*
723 	 * Make sure the scheduler takes this thread out of its tables etc.
724 	 * This will also release this thread's reference to the ucred.
725 	 * Other thread parts to release include pcb bits and such.
726 	 */
727 	thread_exit();
728 }
729 
730 #ifndef _SYS_SYSPROTO_H_
731 struct abort2_args {
732 	char *why;
733 	int nargs;
734 	void **args;
735 };
736 #endif
737 
738 int
739 sys_abort2(struct thread *td, struct abort2_args *uap)
740 {
741 	void *uargs[16];
742 	void **uargsp;
743 	int error, nargs;
744 
745 	nargs = uap->nargs;
746 	if (nargs < 0 || nargs > nitems(uargs))
747 		nargs = -1;
748 	uargsp = NULL;
749 	if (nargs > 0) {
750 		if (uap->args != NULL) {
751 			error = copyin(uap->args, uargs,
752 			    nargs * sizeof(void *));
753 			if (error != 0)
754 				nargs = -1;
755 			else
756 				uargsp = uargs;
757 		} else
758 			nargs = -1;
759 	}
760 	return (kern_abort2(td, uap->why, nargs, uargsp));
761 }
762 
763 /*
764  * kern_abort2()
765  * Arguments:
766  *  why - user pointer to why
767  *  nargs - number of arguments copied or -1 if an error occured in copying
768  *  args - pointer to an array of pointers in kernel format
769  */
770 int
771 kern_abort2(struct thread *td, const char *why, int nargs, void **uargs)
772 {
773 	struct proc *p = td->td_proc;
774 	struct sbuf *sb;
775 	int error, i, sig;
776 
777 	/*
778 	 * Do it right now so we can log either proper call of abort2(), or
779 	 * note, that invalid argument was passed. 512 is big enough to
780 	 * handle 16 arguments' descriptions with additional comments.
781 	 */
782 	sb = sbuf_new(NULL, NULL, 512, SBUF_FIXEDLEN);
783 	sbuf_clear(sb);
784 	sbuf_printf(sb, "%s(pid %d uid %d) aborted: ",
785 	    p->p_comm, p->p_pid, td->td_ucred->cr_uid);
786 	/*
787 	 * Since we can't return from abort2(), send SIGKILL in cases, where
788 	 * abort2() was called improperly
789 	 */
790 	sig = SIGKILL;
791 	/* Prevent from DoSes from user-space. */
792 	if (nargs == -1)
793 		goto out;
794 	KASSERT(nargs >= 0 && nargs <= 16, ("called with too many args (%d)",
795 	    nargs));
796 	/*
797 	 * Limit size of 'reason' string to 128. Will fit even when
798 	 * maximal number of arguments was chosen to be logged.
799 	 */
800 	if (why != NULL) {
801 		error = sbuf_copyin(sb, why, 128);
802 		if (error < 0)
803 			goto out;
804 	} else {
805 		sbuf_printf(sb, "(null)");
806 	}
807 	if (nargs > 0) {
808 		sbuf_printf(sb, "(");
809 		for (i = 0;i < nargs; i++)
810 			sbuf_printf(sb, "%s%p", i == 0 ? "" : ", ", uargs[i]);
811 		sbuf_printf(sb, ")");
812 	}
813 	/*
814 	 * Final stage: arguments were proper, string has been
815 	 * successfully copied from userspace, and copying pointers
816 	 * from user-space succeed.
817 	 */
818 	sig = SIGABRT;
819 out:
820 	if (sig == SIGKILL) {
821 		sbuf_trim(sb);
822 		sbuf_printf(sb, " (Reason text inaccessible)");
823 	}
824 	sbuf_cat(sb, "\n");
825 	sbuf_finish(sb);
826 	log(LOG_INFO, "%s", sbuf_data(sb));
827 	sbuf_delete(sb);
828 	exit1(td, 0, sig);
829 	return (0);
830 }
831 
832 #ifdef COMPAT_43
833 /*
834  * The dirty work is handled by kern_wait().
835  */
836 int
837 owait(struct thread *td, struct owait_args *uap __unused)
838 {
839 	int error, status;
840 
841 	error = kern_wait(td, WAIT_ANY, &status, 0, NULL);
842 	if (error == 0)
843 		td->td_retval[1] = status;
844 	return (error);
845 }
846 #endif /* COMPAT_43 */
847 
848 /*
849  * The dirty work is handled by kern_wait().
850  */
851 int
852 sys_wait4(struct thread *td, struct wait4_args *uap)
853 {
854 	struct rusage ru, *rup;
855 	int error, status;
856 
857 	if (uap->rusage != NULL)
858 		rup = &ru;
859 	else
860 		rup = NULL;
861 	error = kern_wait(td, uap->pid, &status, uap->options, rup);
862 	if (uap->status != NULL && error == 0 && td->td_retval[0] != 0)
863 		error = copyout(&status, uap->status, sizeof(status));
864 	if (uap->rusage != NULL && error == 0 && td->td_retval[0] != 0)
865 		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
866 	return (error);
867 }
868 
869 int
870 sys_wait6(struct thread *td, struct wait6_args *uap)
871 {
872 	struct __wrusage wru, *wrup;
873 	siginfo_t si, *sip;
874 	idtype_t idtype;
875 	id_t id;
876 	int error, status;
877 
878 	idtype = uap->idtype;
879 	id = uap->id;
880 
881 	if (uap->wrusage != NULL)
882 		wrup = &wru;
883 	else
884 		wrup = NULL;
885 
886 	if (uap->info != NULL) {
887 		sip = &si;
888 		bzero(sip, sizeof(*sip));
889 	} else
890 		sip = NULL;
891 
892 	/*
893 	 *  We expect all callers of wait6() to know about WEXITED and
894 	 *  WTRAPPED.
895 	 */
896 	error = kern_wait6(td, idtype, id, &status, uap->options, wrup, sip);
897 
898 	if (uap->status != NULL && error == 0 && td->td_retval[0] != 0)
899 		error = copyout(&status, uap->status, sizeof(status));
900 	if (uap->wrusage != NULL && error == 0 && td->td_retval[0] != 0)
901 		error = copyout(&wru, uap->wrusage, sizeof(wru));
902 	if (uap->info != NULL && error == 0)
903 		error = copyout(&si, uap->info, sizeof(si));
904 	return (error);
905 }
906 
907 /*
908  * Reap the remains of a zombie process and optionally return status and
909  * rusage.  Asserts and will release both the proctree_lock and the process
910  * lock as part of its work.
911  */
912 void
913 proc_reap(struct thread *td, struct proc *p, int *status, int options)
914 {
915 	struct proc *q, *t;
916 
917 	sx_assert(&proctree_lock, SA_XLOCKED);
918 	PROC_LOCK_ASSERT(p, MA_OWNED);
919 	KASSERT(p->p_state == PRS_ZOMBIE, ("proc_reap: !PRS_ZOMBIE"));
920 
921 	mtx_spin_wait_unlocked(&p->p_slock);
922 
923 	q = td->td_proc;
924 
925 	if (status)
926 		*status = KW_EXITCODE(p->p_xexit, p->p_xsig);
927 	if (options & WNOWAIT) {
928 		/*
929 		 *  Only poll, returning the status.  Caller does not wish to
930 		 * release the proc struct just yet.
931 		 */
932 		PROC_UNLOCK(p);
933 		sx_xunlock(&proctree_lock);
934 		return;
935 	}
936 
937 	PROC_LOCK(q);
938 	sigqueue_take(p->p_ksi);
939 	PROC_UNLOCK(q);
940 
941 	/*
942 	 * If we got the child via a ptrace 'attach', we need to give it back
943 	 * to the old parent.
944 	 */
945 	if (p->p_oppid != p->p_pptr->p_pid) {
946 		PROC_UNLOCK(p);
947 		t = proc_realparent(p);
948 		PROC_LOCK(t);
949 		PROC_LOCK(p);
950 		CTR2(KTR_PTRACE,
951 		    "wait: traced child %d moved back to parent %d", p->p_pid,
952 		    t->p_pid);
953 		proc_reparent(p, t, false);
954 		PROC_UNLOCK(p);
955 		pksignal(t, SIGCHLD, p->p_ksi);
956 		wakeup(t);
957 		cv_broadcast(&p->p_pwait);
958 		PROC_UNLOCK(t);
959 		sx_xunlock(&proctree_lock);
960 		return;
961 	}
962 	PROC_UNLOCK(p);
963 
964 	/*
965 	 * Remove other references to this process to ensure we have an
966 	 * exclusive reference.
967 	 */
968 	sx_xlock(PIDHASHLOCK(p->p_pid));
969 	LIST_REMOVE(p, p_hash);
970 	sx_xunlock(PIDHASHLOCK(p->p_pid));
971 	LIST_REMOVE(p, p_sibling);
972 	reaper_abandon_children(p, true);
973 	reaper_clear(p);
974 	PROC_LOCK(p);
975 	proc_clear_orphan(p);
976 	PROC_UNLOCK(p);
977 	leavepgrp(p);
978 	if (p->p_procdesc != NULL)
979 		procdesc_reap(p);
980 	sx_xunlock(&proctree_lock);
981 
982 	proc_id_clear(PROC_ID_PID, p->p_pid);
983 
984 	PROC_LOCK(p);
985 	knlist_detach(p->p_klist);
986 	p->p_klist = NULL;
987 	PROC_UNLOCK(p);
988 
989 	/*
990 	 * Removal from allproc list and process group list paired with
991 	 * PROC_LOCK which was executed during that time should guarantee
992 	 * nothing can reach this process anymore. As such further locking
993 	 * is unnecessary.
994 	 */
995 	p->p_xexit = p->p_xsig = 0;		/* XXX: why? */
996 
997 	PROC_LOCK(q);
998 	ruadd(&q->p_stats->p_cru, &q->p_crux, &p->p_ru, &p->p_rux);
999 	PROC_UNLOCK(q);
1000 
1001 	/*
1002 	 * Decrement the count of procs running with this uid.
1003 	 */
1004 	(void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
1005 
1006 	/*
1007 	 * Destroy resource accounting information associated with the process.
1008 	 */
1009 #ifdef RACCT
1010 	if (racct_enable) {
1011 		PROC_LOCK(p);
1012 		racct_sub(p, RACCT_NPROC, 1);
1013 		PROC_UNLOCK(p);
1014 	}
1015 #endif
1016 	racct_proc_exit(p);
1017 
1018 	/*
1019 	 * Free credentials, arguments, and sigacts.
1020 	 */
1021 	proc_unset_cred(p);
1022 	pargs_drop(p->p_args);
1023 	p->p_args = NULL;
1024 	sigacts_free(p->p_sigacts);
1025 	p->p_sigacts = NULL;
1026 
1027 	/*
1028 	 * Do any thread-system specific cleanups.
1029 	 */
1030 	thread_wait(p);
1031 
1032 	/*
1033 	 * Give vm and machine-dependent layer a chance to free anything that
1034 	 * cpu_exit couldn't release while still running in process context.
1035 	 */
1036 	vm_waitproc(p);
1037 #ifdef MAC
1038 	mac_proc_destroy(p);
1039 #endif
1040 
1041 	KASSERT(FIRST_THREAD_IN_PROC(p),
1042 	    ("proc_reap: no residual thread!"));
1043 	uma_zfree(proc_zone, p);
1044 	atomic_add_int(&nprocs, -1);
1045 }
1046 
1047 static int
1048 proc_to_reap(struct thread *td, struct proc *p, idtype_t idtype, id_t id,
1049     int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo,
1050     int check_only)
1051 {
1052 	struct rusage *rup;
1053 
1054 	sx_assert(&proctree_lock, SA_XLOCKED);
1055 
1056 	PROC_LOCK(p);
1057 
1058 	switch (idtype) {
1059 	case P_ALL:
1060 		if (p->p_procdesc == NULL ||
1061 		   (p->p_pptr == td->td_proc &&
1062 		   (p->p_flag & P_TRACED) != 0)) {
1063 			break;
1064 		}
1065 
1066 		PROC_UNLOCK(p);
1067 		return (0);
1068 	case P_PID:
1069 		if (p->p_pid != (pid_t)id) {
1070 			PROC_UNLOCK(p);
1071 			return (0);
1072 		}
1073 		break;
1074 	case P_PGID:
1075 		if (p->p_pgid != (pid_t)id) {
1076 			PROC_UNLOCK(p);
1077 			return (0);
1078 		}
1079 		break;
1080 	case P_SID:
1081 		if (p->p_session->s_sid != (pid_t)id) {
1082 			PROC_UNLOCK(p);
1083 			return (0);
1084 		}
1085 		break;
1086 	case P_UID:
1087 		if (p->p_ucred->cr_uid != (uid_t)id) {
1088 			PROC_UNLOCK(p);
1089 			return (0);
1090 		}
1091 		break;
1092 	case P_GID:
1093 		if (p->p_ucred->cr_gid != (gid_t)id) {
1094 			PROC_UNLOCK(p);
1095 			return (0);
1096 		}
1097 		break;
1098 	case P_JAILID:
1099 		if (p->p_ucred->cr_prison->pr_id != (int)id) {
1100 			PROC_UNLOCK(p);
1101 			return (0);
1102 		}
1103 		break;
1104 	/*
1105 	 * It seems that the thread structures get zeroed out
1106 	 * at process exit.  This makes it impossible to
1107 	 * support P_SETID, P_CID or P_CPUID.
1108 	 */
1109 	default:
1110 		PROC_UNLOCK(p);
1111 		return (0);
1112 	}
1113 
1114 	if (p_canwait(td, p)) {
1115 		PROC_UNLOCK(p);
1116 		return (0);
1117 	}
1118 
1119 	if (((options & WEXITED) == 0) && (p->p_state == PRS_ZOMBIE)) {
1120 		PROC_UNLOCK(p);
1121 		return (0);
1122 	}
1123 
1124 	/*
1125 	 * This special case handles a kthread spawned by linux_clone
1126 	 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
1127 	 * functions need to be able to distinguish between waiting
1128 	 * on a process and waiting on a thread.  It is a thread if
1129 	 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
1130 	 * signifies we want to wait for threads and not processes.
1131 	 */
1132 	if ((p->p_sigparent != SIGCHLD) ^
1133 	    ((options & WLINUXCLONE) != 0)) {
1134 		PROC_UNLOCK(p);
1135 		return (0);
1136 	}
1137 
1138 	if (siginfo != NULL) {
1139 		bzero(siginfo, sizeof(*siginfo));
1140 		siginfo->si_errno = 0;
1141 
1142 		/*
1143 		 * SUSv4 requires that the si_signo value is always
1144 		 * SIGCHLD. Obey it despite the rfork(2) interface
1145 		 * allows to request other signal for child exit
1146 		 * notification.
1147 		 */
1148 		siginfo->si_signo = SIGCHLD;
1149 
1150 		/*
1151 		 *  This is still a rough estimate.  We will fix the
1152 		 *  cases TRAPPED, STOPPED, and CONTINUED later.
1153 		 */
1154 		if (WCOREDUMP(p->p_xsig)) {
1155 			siginfo->si_code = CLD_DUMPED;
1156 			siginfo->si_status = WTERMSIG(p->p_xsig);
1157 		} else if (WIFSIGNALED(p->p_xsig)) {
1158 			siginfo->si_code = CLD_KILLED;
1159 			siginfo->si_status = WTERMSIG(p->p_xsig);
1160 		} else {
1161 			siginfo->si_code = CLD_EXITED;
1162 			siginfo->si_status = p->p_xexit;
1163 		}
1164 
1165 		siginfo->si_pid = p->p_pid;
1166 		siginfo->si_uid = p->p_ucred->cr_uid;
1167 
1168 		/*
1169 		 * The si_addr field would be useful additional
1170 		 * detail, but apparently the PC value may be lost
1171 		 * when we reach this point.  bzero() above sets
1172 		 * siginfo->si_addr to NULL.
1173 		 */
1174 	}
1175 
1176 	/*
1177 	 * There should be no reason to limit resources usage info to
1178 	 * exited processes only.  A snapshot about any resources used
1179 	 * by a stopped process may be exactly what is needed.
1180 	 */
1181 	if (wrusage != NULL) {
1182 		rup = &wrusage->wru_self;
1183 		*rup = p->p_ru;
1184 		PROC_STATLOCK(p);
1185 		calcru(p, &rup->ru_utime, &rup->ru_stime);
1186 		PROC_STATUNLOCK(p);
1187 
1188 		rup = &wrusage->wru_children;
1189 		*rup = p->p_stats->p_cru;
1190 		calccru(p, &rup->ru_utime, &rup->ru_stime);
1191 	}
1192 
1193 	if (p->p_state == PRS_ZOMBIE && !check_only) {
1194 		proc_reap(td, p, status, options);
1195 		return (-1);
1196 	}
1197 	return (1);
1198 }
1199 
1200 int
1201 kern_wait(struct thread *td, pid_t pid, int *status, int options,
1202     struct rusage *rusage)
1203 {
1204 	struct __wrusage wru, *wrup;
1205 	idtype_t idtype;
1206 	id_t id;
1207 	int ret;
1208 
1209 	/*
1210 	 * Translate the special pid values into the (idtype, pid)
1211 	 * pair for kern_wait6.  The WAIT_MYPGRP case is handled by
1212 	 * kern_wait6() on its own.
1213 	 */
1214 	if (pid == WAIT_ANY) {
1215 		idtype = P_ALL;
1216 		id = 0;
1217 	} else if (pid < 0) {
1218 		idtype = P_PGID;
1219 		id = (id_t)-pid;
1220 	} else {
1221 		idtype = P_PID;
1222 		id = (id_t)pid;
1223 	}
1224 
1225 	if (rusage != NULL)
1226 		wrup = &wru;
1227 	else
1228 		wrup = NULL;
1229 
1230 	/*
1231 	 * For backward compatibility we implicitly add flags WEXITED
1232 	 * and WTRAPPED here.
1233 	 */
1234 	options |= WEXITED | WTRAPPED;
1235 	ret = kern_wait6(td, idtype, id, status, options, wrup, NULL);
1236 	if (rusage != NULL)
1237 		*rusage = wru.wru_self;
1238 	return (ret);
1239 }
1240 
1241 static void
1242 report_alive_proc(struct thread *td, struct proc *p, siginfo_t *siginfo,
1243     int *status, int options, int si_code)
1244 {
1245 	bool cont;
1246 
1247 	PROC_LOCK_ASSERT(p, MA_OWNED);
1248 	sx_assert(&proctree_lock, SA_XLOCKED);
1249 	MPASS(si_code == CLD_TRAPPED || si_code == CLD_STOPPED ||
1250 	    si_code == CLD_CONTINUED);
1251 
1252 	cont = si_code == CLD_CONTINUED;
1253 	if ((options & WNOWAIT) == 0) {
1254 		if (cont)
1255 			p->p_flag &= ~P_CONTINUED;
1256 		else
1257 			p->p_flag |= P_WAITED;
1258 		if (kern_wait_dequeue_sigchld &&
1259 		    (td->td_proc->p_sysent->sv_flags & SV_SIG_WAITNDQ) == 0) {
1260 			PROC_LOCK(td->td_proc);
1261 			sigqueue_take(p->p_ksi);
1262 			PROC_UNLOCK(td->td_proc);
1263 		}
1264 	}
1265 	sx_xunlock(&proctree_lock);
1266 	if (siginfo != NULL) {
1267 		siginfo->si_code = si_code;
1268 		siginfo->si_status = cont ? SIGCONT : p->p_xsig;
1269 	}
1270 	if (status != NULL)
1271 		*status = cont ? SIGCONT : W_STOPCODE(p->p_xsig);
1272 	td->td_retval[0] = p->p_pid;
1273 	PROC_UNLOCK(p);
1274 }
1275 
1276 int
1277 kern_wait6(struct thread *td, idtype_t idtype, id_t id, int *status,
1278     int options, struct __wrusage *wrusage, siginfo_t *siginfo)
1279 {
1280 	struct proc *p, *q;
1281 	pid_t pid;
1282 	int error, nfound, ret;
1283 	bool report;
1284 
1285 	AUDIT_ARG_VALUE((int)idtype);	/* XXX - This is likely wrong! */
1286 	AUDIT_ARG_PID((pid_t)id);	/* XXX - This may be wrong! */
1287 	AUDIT_ARG_VALUE(options);
1288 
1289 	q = td->td_proc;
1290 
1291 	if ((pid_t)id == WAIT_MYPGRP && (idtype == P_PID || idtype == P_PGID)) {
1292 		PROC_LOCK(q);
1293 		id = (id_t)q->p_pgid;
1294 		PROC_UNLOCK(q);
1295 		idtype = P_PGID;
1296 	}
1297 
1298 	/* If we don't know the option, just return. */
1299 	if ((options & ~(WUNTRACED | WNOHANG | WCONTINUED | WNOWAIT |
1300 	    WEXITED | WTRAPPED | WLINUXCLONE)) != 0)
1301 		return (EINVAL);
1302 	if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) {
1303 		/*
1304 		 * We will be unable to find any matching processes,
1305 		 * because there are no known events to look for.
1306 		 * Prefer to return error instead of blocking
1307 		 * indefinitely.
1308 		 */
1309 		return (EINVAL);
1310 	}
1311 
1312 loop:
1313 	if (q->p_flag & P_STATCHILD) {
1314 		PROC_LOCK(q);
1315 		q->p_flag &= ~P_STATCHILD;
1316 		PROC_UNLOCK(q);
1317 	}
1318 	sx_xlock(&proctree_lock);
1319 loop_locked:
1320 	nfound = 0;
1321 	LIST_FOREACH(p, &q->p_children, p_sibling) {
1322 		pid = p->p_pid;
1323 		ret = proc_to_reap(td, p, idtype, id, status, options,
1324 		    wrusage, siginfo, 0);
1325 		if (ret == 0)
1326 			continue;
1327 		else if (ret != 1) {
1328 			td->td_retval[0] = pid;
1329 			return (0);
1330 		}
1331 
1332 		nfound++;
1333 		PROC_LOCK_ASSERT(p, MA_OWNED);
1334 
1335 		if ((options & WTRAPPED) != 0 &&
1336 		    (p->p_flag & P_TRACED) != 0) {
1337 			PROC_SLOCK(p);
1338 			report =
1339 			    ((p->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) &&
1340 			    p->p_suspcount == p->p_numthreads &&
1341 			    (p->p_flag & P_WAITED) == 0);
1342 			PROC_SUNLOCK(p);
1343 			if (report) {
1344 			CTR4(KTR_PTRACE,
1345 			    "wait: returning trapped pid %d status %#x "
1346 			    "(xstat %d) xthread %d",
1347 			    p->p_pid, W_STOPCODE(p->p_xsig), p->p_xsig,
1348 			    p->p_xthread != NULL ?
1349 			    p->p_xthread->td_tid : -1);
1350 				report_alive_proc(td, p, siginfo, status,
1351 				    options, CLD_TRAPPED);
1352 				return (0);
1353 			}
1354 		}
1355 		if ((options & WUNTRACED) != 0 &&
1356 		    (p->p_flag & P_STOPPED_SIG) != 0) {
1357 			PROC_SLOCK(p);
1358 			report = (p->p_suspcount == p->p_numthreads &&
1359 			    ((p->p_flag & P_WAITED) == 0));
1360 			PROC_SUNLOCK(p);
1361 			if (report) {
1362 				report_alive_proc(td, p, siginfo, status,
1363 				    options, CLD_STOPPED);
1364 				return (0);
1365 			}
1366 		}
1367 		if ((options & WCONTINUED) != 0 &&
1368 		    (p->p_flag & P_CONTINUED) != 0) {
1369 			report_alive_proc(td, p, siginfo, status, options,
1370 			    CLD_CONTINUED);
1371 			return (0);
1372 		}
1373 		PROC_UNLOCK(p);
1374 	}
1375 
1376 	/*
1377 	 * Look in the orphans list too, to allow the parent to
1378 	 * collect it's child exit status even if child is being
1379 	 * debugged.
1380 	 *
1381 	 * Debugger detaches from the parent upon successful
1382 	 * switch-over from parent to child.  At this point due to
1383 	 * re-parenting the parent loses the child to debugger and a
1384 	 * wait4(2) call would report that it has no children to wait
1385 	 * for.  By maintaining a list of orphans we allow the parent
1386 	 * to successfully wait until the child becomes a zombie.
1387 	 */
1388 	if (nfound == 0) {
1389 		LIST_FOREACH(p, &q->p_orphans, p_orphan) {
1390 			ret = proc_to_reap(td, p, idtype, id, NULL, options,
1391 			    NULL, NULL, 1);
1392 			if (ret != 0) {
1393 				KASSERT(ret != -1, ("reaped an orphan (pid %d)",
1394 				    (int)td->td_retval[0]));
1395 				PROC_UNLOCK(p);
1396 				nfound++;
1397 				break;
1398 			}
1399 		}
1400 	}
1401 	if (nfound == 0) {
1402 		sx_xunlock(&proctree_lock);
1403 		return (ECHILD);
1404 	}
1405 	if (options & WNOHANG) {
1406 		sx_xunlock(&proctree_lock);
1407 		td->td_retval[0] = 0;
1408 		return (0);
1409 	}
1410 	PROC_LOCK(q);
1411 	if (q->p_flag & P_STATCHILD) {
1412 		q->p_flag &= ~P_STATCHILD;
1413 		PROC_UNLOCK(q);
1414 		goto loop_locked;
1415 	}
1416 	sx_xunlock(&proctree_lock);
1417 	error = msleep(q, &q->p_mtx, PWAIT | PCATCH | PDROP, "wait", 0);
1418 	if (error)
1419 		return (error);
1420 	goto loop;
1421 }
1422 
1423 void
1424 proc_add_orphan(struct proc *child, struct proc *parent)
1425 {
1426 
1427 	sx_assert(&proctree_lock, SX_XLOCKED);
1428 	KASSERT((child->p_flag & P_TRACED) != 0,
1429 	    ("proc_add_orphan: not traced"));
1430 
1431 	if (LIST_EMPTY(&parent->p_orphans)) {
1432 		child->p_treeflag |= P_TREE_FIRST_ORPHAN;
1433 		LIST_INSERT_HEAD(&parent->p_orphans, child, p_orphan);
1434 	} else {
1435 		LIST_INSERT_AFTER(LIST_FIRST(&parent->p_orphans),
1436 		    child, p_orphan);
1437 	}
1438 	child->p_treeflag |= P_TREE_ORPHANED;
1439 }
1440 
1441 /*
1442  * Make process 'parent' the new parent of process 'child'.
1443  * Must be called with an exclusive hold of proctree lock.
1444  */
1445 void
1446 proc_reparent(struct proc *child, struct proc *parent, bool set_oppid)
1447 {
1448 
1449 	sx_assert(&proctree_lock, SX_XLOCKED);
1450 	PROC_LOCK_ASSERT(child, MA_OWNED);
1451 	if (child->p_pptr == parent)
1452 		return;
1453 
1454 	PROC_LOCK(child->p_pptr);
1455 	sigqueue_take(child->p_ksi);
1456 	PROC_UNLOCK(child->p_pptr);
1457 	LIST_REMOVE(child, p_sibling);
1458 	LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1459 
1460 	proc_clear_orphan(child);
1461 	if ((child->p_flag & P_TRACED) != 0) {
1462 		proc_add_orphan(child, child->p_pptr);
1463 	}
1464 
1465 	child->p_pptr = parent;
1466 	if (set_oppid)
1467 		child->p_oppid = parent->p_pid;
1468 }
1469