1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ktrace.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/sysproto.h> 47 #include <sys/capsicum.h> 48 #include <sys/eventhandler.h> 49 #include <sys/kernel.h> 50 #include <sys/ktr.h> 51 #include <sys/malloc.h> 52 #include <sys/lock.h> 53 #include <sys/mutex.h> 54 #include <sys/proc.h> 55 #include <sys/procdesc.h> 56 #include <sys/jail.h> 57 #include <sys/tty.h> 58 #include <sys/wait.h> 59 #include <sys/vmmeter.h> 60 #include <sys/vnode.h> 61 #include <sys/racct.h> 62 #include <sys/resourcevar.h> 63 #include <sys/sbuf.h> 64 #include <sys/signalvar.h> 65 #include <sys/sched.h> 66 #include <sys/sx.h> 67 #include <sys/syscallsubr.h> 68 #include <sys/syslog.h> 69 #include <sys/ptrace.h> 70 #include <sys/acct.h> /* for acct_process() function prototype */ 71 #include <sys/filedesc.h> 72 #include <sys/sdt.h> 73 #include <sys/shm.h> 74 #include <sys/sem.h> 75 #include <sys/umtx.h> 76 #ifdef KTRACE 77 #include <sys/ktrace.h> 78 #endif 79 80 #include <security/audit/audit.h> 81 #include <security/mac/mac_framework.h> 82 83 #include <vm/vm.h> 84 #include <vm/vm_extern.h> 85 #include <vm/vm_param.h> 86 #include <vm/pmap.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_page.h> 89 #include <vm/uma.h> 90 91 #ifdef KDTRACE_HOOKS 92 #include <sys/dtrace_bsd.h> 93 dtrace_execexit_func_t dtrace_fasttrap_exit; 94 #endif 95 96 SDT_PROVIDER_DECLARE(proc); 97 SDT_PROBE_DEFINE1(proc, , , exit, "int"); 98 99 struct proc * 100 proc_realparent(struct proc *child) 101 { 102 struct proc *p, *parent; 103 104 sx_assert(&proctree_lock, SX_LOCKED); 105 if ((child->p_treeflag & P_TREE_ORPHANED) == 0) 106 return (child->p_pptr->p_pid == child->p_oppid ? 107 child->p_pptr : child->p_reaper); 108 for (p = child; (p->p_treeflag & P_TREE_FIRST_ORPHAN) == 0;) { 109 /* Cannot use LIST_PREV(), since the list head is not known. */ 110 p = __containerof(p->p_orphan.le_prev, struct proc, 111 p_orphan.le_next); 112 KASSERT((p->p_treeflag & P_TREE_ORPHANED) != 0, 113 ("missing P_ORPHAN %p", p)); 114 } 115 parent = __containerof(p->p_orphan.le_prev, struct proc, 116 p_orphans.lh_first); 117 return (parent); 118 } 119 120 void 121 reaper_abandon_children(struct proc *p, bool exiting) 122 { 123 struct proc *p1, *p2, *ptmp; 124 125 sx_assert(&proctree_lock, SX_LOCKED); 126 KASSERT(p != initproc, ("reaper_abandon_children for initproc")); 127 if ((p->p_treeflag & P_TREE_REAPER) == 0) 128 return; 129 p1 = p->p_reaper; 130 LIST_FOREACH_SAFE(p2, &p->p_reaplist, p_reapsibling, ptmp) { 131 LIST_REMOVE(p2, p_reapsibling); 132 p2->p_reaper = p1; 133 p2->p_reapsubtree = p->p_reapsubtree; 134 LIST_INSERT_HEAD(&p1->p_reaplist, p2, p_reapsibling); 135 if (exiting && p2->p_pptr == p) { 136 PROC_LOCK(p2); 137 proc_reparent(p2, p1, true); 138 PROC_UNLOCK(p2); 139 } 140 } 141 KASSERT(LIST_EMPTY(&p->p_reaplist), ("p_reaplist not empty")); 142 p->p_treeflag &= ~P_TREE_REAPER; 143 } 144 145 static void 146 reaper_clear(struct proc *p) 147 { 148 struct proc *p1; 149 bool clear; 150 151 sx_assert(&proctree_lock, SX_LOCKED); 152 LIST_REMOVE(p, p_reapsibling); 153 if (p->p_reapsubtree == 1) 154 return; 155 clear = true; 156 LIST_FOREACH(p1, &p->p_reaper->p_reaplist, p_reapsibling) { 157 if (p1->p_reapsubtree == p->p_reapsubtree) { 158 clear = false; 159 break; 160 } 161 } 162 if (clear) 163 proc_id_clear(PROC_ID_REAP, p->p_reapsubtree); 164 } 165 166 void 167 proc_clear_orphan(struct proc *p) 168 { 169 struct proc *p1; 170 171 sx_assert(&proctree_lock, SA_XLOCKED); 172 if ((p->p_treeflag & P_TREE_ORPHANED) == 0) 173 return; 174 if ((p->p_treeflag & P_TREE_FIRST_ORPHAN) != 0) { 175 p1 = LIST_NEXT(p, p_orphan); 176 if (p1 != NULL) 177 p1->p_treeflag |= P_TREE_FIRST_ORPHAN; 178 p->p_treeflag &= ~P_TREE_FIRST_ORPHAN; 179 } 180 LIST_REMOVE(p, p_orphan); 181 p->p_treeflag &= ~P_TREE_ORPHANED; 182 } 183 184 /* 185 * exit -- death of process. 186 */ 187 void 188 sys_sys_exit(struct thread *td, struct sys_exit_args *uap) 189 { 190 191 exit1(td, uap->rval, 0); 192 /* NOTREACHED */ 193 } 194 195 /* 196 * Exit: deallocate address space and other resources, change proc state to 197 * zombie, and unlink proc from allproc and parent's lists. Save exit status 198 * and rusage for wait(). Check for child processes and orphan them. 199 */ 200 void 201 exit1(struct thread *td, int rval, int signo) 202 { 203 struct proc *p, *nq, *q, *t; 204 struct thread *tdt; 205 ksiginfo_t *ksi, *ksi1; 206 int signal_parent; 207 208 mtx_assert(&Giant, MA_NOTOWNED); 209 KASSERT(rval == 0 || signo == 0, ("exit1 rv %d sig %d", rval, signo)); 210 211 p = td->td_proc; 212 /* 213 * XXX in case we're rebooting we just let init die in order to 214 * work around an unsolved stack overflow seen very late during 215 * shutdown on sparc64 when the gmirror worker process exists. 216 * XXX what to do now that sparc64 is gone... remove if? 217 */ 218 if (p == initproc && rebooting == 0) { 219 printf("init died (signal %d, exit %d)\n", signo, rval); 220 panic("Going nowhere without my init!"); 221 } 222 223 /* 224 * Deref SU mp, since the thread does not return to userspace. 225 */ 226 td_softdep_cleanup(td); 227 228 /* 229 * MUST abort all other threads before proceeding past here. 230 */ 231 PROC_LOCK(p); 232 /* 233 * First check if some other thread or external request got 234 * here before us. If so, act appropriately: exit or suspend. 235 * We must ensure that stop requests are handled before we set 236 * P_WEXIT. 237 */ 238 thread_suspend_check(0); 239 while (p->p_flag & P_HADTHREADS) { 240 /* 241 * Kill off the other threads. This requires 242 * some co-operation from other parts of the kernel 243 * so it may not be instantaneous. With this state set 244 * any thread entering the kernel from userspace will 245 * thread_exit() in trap(). Any thread attempting to 246 * sleep will return immediately with EINTR or EWOULDBLOCK 247 * which will hopefully force them to back out to userland 248 * freeing resources as they go. Any thread attempting 249 * to return to userland will thread_exit() from userret(). 250 * thread_exit() will unsuspend us when the last of the 251 * other threads exits. 252 * If there is already a thread singler after resumption, 253 * calling thread_single will fail; in that case, we just 254 * re-check all suspension request, the thread should 255 * either be suspended there or exit. 256 */ 257 if (!thread_single(p, SINGLE_EXIT)) 258 /* 259 * All other activity in this process is now 260 * stopped. Threading support has been turned 261 * off. 262 */ 263 break; 264 /* 265 * Recheck for new stop or suspend requests which 266 * might appear while process lock was dropped in 267 * thread_single(). 268 */ 269 thread_suspend_check(0); 270 } 271 KASSERT(p->p_numthreads == 1, 272 ("exit1: proc %p exiting with %d threads", p, p->p_numthreads)); 273 racct_sub(p, RACCT_NTHR, 1); 274 275 /* Let event handler change exit status */ 276 p->p_xexit = rval; 277 p->p_xsig = signo; 278 279 /* 280 * Ignore any pending request to stop due to a stop signal. 281 * Once P_WEXIT is set, future requests will be ignored as 282 * well. 283 */ 284 p->p_flag &= ~P_STOPPED_SIG; 285 KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped")); 286 287 /* Note that we are exiting. */ 288 p->p_flag |= P_WEXIT; 289 290 /* 291 * Wait for any processes that have a hold on our vmspace to 292 * release their reference. 293 */ 294 while (p->p_lock > 0) 295 msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0); 296 297 PROC_UNLOCK(p); 298 /* Drain the limit callout while we don't have the proc locked */ 299 callout_drain(&p->p_limco); 300 301 #ifdef AUDIT 302 /* 303 * The Sun BSM exit token contains two components: an exit status as 304 * passed to exit(), and a return value to indicate what sort of exit 305 * it was. The exit status is WEXITSTATUS(rv), but it's not clear 306 * what the return value is. 307 */ 308 AUDIT_ARG_EXIT(rval, 0); 309 AUDIT_SYSCALL_EXIT(0, td); 310 #endif 311 312 /* Are we a task leader with peers? */ 313 if (p->p_peers != NULL && p == p->p_leader) { 314 mtx_lock(&ppeers_lock); 315 q = p->p_peers; 316 while (q != NULL) { 317 PROC_LOCK(q); 318 kern_psignal(q, SIGKILL); 319 PROC_UNLOCK(q); 320 q = q->p_peers; 321 } 322 while (p->p_peers != NULL) 323 msleep(p, &ppeers_lock, PWAIT, "exit1", 0); 324 mtx_unlock(&ppeers_lock); 325 } 326 327 /* 328 * Check if any loadable modules need anything done at process exit. 329 * E.g. SYSV IPC stuff. 330 * Event handler could change exit status. 331 * XXX what if one of these generates an error? 332 */ 333 EVENTHANDLER_DIRECT_INVOKE(process_exit, p); 334 335 /* 336 * If parent is waiting for us to exit or exec, 337 * P_PPWAIT is set; we will wakeup the parent below. 338 */ 339 PROC_LOCK(p); 340 stopprofclock(p); 341 p->p_ptevents = 0; 342 343 /* 344 * Stop the real interval timer. If the handler is currently 345 * executing, prevent it from rearming itself and let it finish. 346 */ 347 if (timevalisset(&p->p_realtimer.it_value) && 348 _callout_stop_safe(&p->p_itcallout, CS_EXECUTING, NULL) == 0) { 349 timevalclear(&p->p_realtimer.it_interval); 350 msleep(&p->p_itcallout, &p->p_mtx, PWAIT, "ritwait", 0); 351 KASSERT(!timevalisset(&p->p_realtimer.it_value), 352 ("realtime timer is still armed")); 353 } 354 355 PROC_UNLOCK(p); 356 357 umtx_thread_exit(td); 358 seltdfini(td); 359 360 /* 361 * Reset any sigio structures pointing to us as a result of 362 * F_SETOWN with our pid. The P_WEXIT flag interlocks with fsetown(). 363 */ 364 funsetownlst(&p->p_sigiolst); 365 366 /* 367 * Close open files and release open-file table. 368 * This may block! 369 */ 370 pdescfree(td); 371 fdescfree(td); 372 373 /* 374 * If this thread tickled GEOM, we need to wait for the giggling to 375 * stop before we return to userland 376 */ 377 if (td->td_pflags & TDP_GEOM) 378 g_waitidle(); 379 380 /* 381 * Remove ourself from our leader's peer list and wake our leader. 382 */ 383 if (p->p_leader->p_peers != NULL) { 384 mtx_lock(&ppeers_lock); 385 if (p->p_leader->p_peers != NULL) { 386 q = p->p_leader; 387 while (q->p_peers != p) 388 q = q->p_peers; 389 q->p_peers = p->p_peers; 390 wakeup(p->p_leader); 391 } 392 mtx_unlock(&ppeers_lock); 393 } 394 395 vmspace_exit(td); 396 (void)acct_process(td); 397 398 #ifdef KTRACE 399 ktrprocexit(td); 400 #endif 401 /* 402 * Release reference to text vnode 403 */ 404 if (p->p_textvp != NULL) { 405 vrele(p->p_textvp); 406 p->p_textvp = NULL; 407 } 408 409 /* 410 * Release our limits structure. 411 */ 412 lim_free(p->p_limit); 413 p->p_limit = NULL; 414 415 tidhash_remove(td); 416 417 /* 418 * Call machine-dependent code to release any 419 * machine-dependent resources other than the address space. 420 * The address space is released by "vmspace_exitfree(p)" in 421 * vm_waitproc(). 422 */ 423 cpu_exit(td); 424 425 WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid); 426 427 /* 428 * Remove from allproc. It still sits in the hash. 429 */ 430 sx_xlock(&allproc_lock); 431 LIST_REMOVE(p, p_list); 432 sx_xunlock(&allproc_lock); 433 434 sx_xlock(&proctree_lock); 435 PROC_LOCK(p); 436 p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE); 437 PROC_UNLOCK(p); 438 439 /* 440 * killjobc() might drop and re-acquire proctree_lock to 441 * revoke control tty if exiting process was a session leader. 442 */ 443 killjobc(); 444 445 /* 446 * Reparent all children processes: 447 * - traced ones to the original parent (or init if we are that parent) 448 * - the rest to init 449 */ 450 q = LIST_FIRST(&p->p_children); 451 if (q != NULL) /* only need this if any child is S_ZOMB */ 452 wakeup(q->p_reaper); 453 for (; q != NULL; q = nq) { 454 nq = LIST_NEXT(q, p_sibling); 455 ksi = ksiginfo_alloc(TRUE); 456 PROC_LOCK(q); 457 q->p_sigparent = SIGCHLD; 458 459 if ((q->p_flag & P_TRACED) == 0) { 460 proc_reparent(q, q->p_reaper, true); 461 if (q->p_state == PRS_ZOMBIE) { 462 /* 463 * Inform reaper about the reparented 464 * zombie, since wait(2) has something 465 * new to report. Guarantee queueing 466 * of the SIGCHLD signal, similar to 467 * the _exit() behaviour, by providing 468 * our ksiginfo. Ksi is freed by the 469 * signal delivery. 470 */ 471 if (q->p_ksi == NULL) { 472 ksi1 = NULL; 473 } else { 474 ksiginfo_copy(q->p_ksi, ksi); 475 ksi->ksi_flags |= KSI_INS; 476 ksi1 = ksi; 477 ksi = NULL; 478 } 479 PROC_LOCK(q->p_reaper); 480 pksignal(q->p_reaper, SIGCHLD, ksi1); 481 PROC_UNLOCK(q->p_reaper); 482 } else if (q->p_pdeathsig > 0) { 483 /* 484 * The child asked to received a signal 485 * when we exit. 486 */ 487 kern_psignal(q, q->p_pdeathsig); 488 } 489 } else { 490 /* 491 * Traced processes are killed since their existence 492 * means someone is screwing up. 493 */ 494 t = proc_realparent(q); 495 if (t == p) { 496 proc_reparent(q, q->p_reaper, true); 497 } else { 498 PROC_LOCK(t); 499 proc_reparent(q, t, true); 500 PROC_UNLOCK(t); 501 } 502 /* 503 * Since q was found on our children list, the 504 * proc_reparent() call moved q to the orphan 505 * list due to present P_TRACED flag. Clear 506 * orphan link for q now while q is locked. 507 */ 508 proc_clear_orphan(q); 509 q->p_flag &= ~(P_TRACED | P_STOPPED_TRACE); 510 q->p_flag2 &= ~P2_PTRACE_FSTP; 511 q->p_ptevents = 0; 512 FOREACH_THREAD_IN_PROC(q, tdt) { 513 tdt->td_dbgflags &= ~(TDB_SUSPEND | TDB_XSIG | 514 TDB_FSTP); 515 } 516 kern_psignal(q, SIGKILL); 517 } 518 PROC_UNLOCK(q); 519 if (ksi != NULL) 520 ksiginfo_free(ksi); 521 } 522 523 /* 524 * Also get rid of our orphans. 525 */ 526 while ((q = LIST_FIRST(&p->p_orphans)) != NULL) { 527 PROC_LOCK(q); 528 KASSERT(q->p_oppid == p->p_pid, 529 ("orphan %p of %p has unexpected oppid %d", q, p, 530 q->p_oppid)); 531 q->p_oppid = q->p_reaper->p_pid; 532 533 /* 534 * If we are the real parent of this process 535 * but it has been reparented to a debugger, then 536 * check if it asked for a signal when we exit. 537 */ 538 if (q->p_pdeathsig > 0) 539 kern_psignal(q, q->p_pdeathsig); 540 CTR2(KTR_PTRACE, "exit: pid %d, clearing orphan %d", p->p_pid, 541 q->p_pid); 542 proc_clear_orphan(q); 543 PROC_UNLOCK(q); 544 } 545 546 #ifdef KDTRACE_HOOKS 547 if (SDT_PROBES_ENABLED()) { 548 int reason = CLD_EXITED; 549 if (WCOREDUMP(signo)) 550 reason = CLD_DUMPED; 551 else if (WIFSIGNALED(signo)) 552 reason = CLD_KILLED; 553 SDT_PROBE1(proc, , , exit, reason); 554 } 555 #endif 556 557 /* Save exit status. */ 558 PROC_LOCK(p); 559 p->p_xthread = td; 560 561 #ifdef KDTRACE_HOOKS 562 /* 563 * Tell the DTrace fasttrap provider about the exit if it 564 * has declared an interest. 565 */ 566 if (dtrace_fasttrap_exit) 567 dtrace_fasttrap_exit(p); 568 #endif 569 570 /* 571 * Notify interested parties of our demise. 572 */ 573 KNOTE_LOCKED(p->p_klist, NOTE_EXIT); 574 575 /* 576 * If this is a process with a descriptor, we may not need to deliver 577 * a signal to the parent. proctree_lock is held over 578 * procdesc_exit() to serialize concurrent calls to close() and 579 * exit(). 580 */ 581 signal_parent = 0; 582 if (p->p_procdesc == NULL || procdesc_exit(p)) { 583 /* 584 * Notify parent that we're gone. If parent has the 585 * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN, 586 * notify process 1 instead (and hope it will handle this 587 * situation). 588 */ 589 PROC_LOCK(p->p_pptr); 590 mtx_lock(&p->p_pptr->p_sigacts->ps_mtx); 591 if (p->p_pptr->p_sigacts->ps_flag & 592 (PS_NOCLDWAIT | PS_CLDSIGIGN)) { 593 struct proc *pp; 594 595 mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); 596 pp = p->p_pptr; 597 PROC_UNLOCK(pp); 598 proc_reparent(p, p->p_reaper, true); 599 p->p_sigparent = SIGCHLD; 600 PROC_LOCK(p->p_pptr); 601 602 /* 603 * Notify parent, so in case he was wait(2)ing or 604 * executing waitpid(2) with our pid, he will 605 * continue. 606 */ 607 wakeup(pp); 608 } else 609 mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); 610 611 if (p->p_pptr == p->p_reaper || p->p_pptr == initproc) { 612 signal_parent = 1; 613 } else if (p->p_sigparent != 0) { 614 if (p->p_sigparent == SIGCHLD) { 615 signal_parent = 1; 616 } else { /* LINUX thread */ 617 signal_parent = 2; 618 } 619 } 620 } else 621 PROC_LOCK(p->p_pptr); 622 sx_xunlock(&proctree_lock); 623 624 if (signal_parent == 1) { 625 childproc_exited(p); 626 } else if (signal_parent == 2) { 627 kern_psignal(p->p_pptr, p->p_sigparent); 628 } 629 630 /* Tell the prison that we are gone. */ 631 prison_proc_free(p->p_ucred->cr_prison); 632 633 /* 634 * The state PRS_ZOMBIE prevents other proesses from sending 635 * signal to the process, to avoid memory leak, we free memory 636 * for signal queue at the time when the state is set. 637 */ 638 sigqueue_flush(&p->p_sigqueue); 639 sigqueue_flush(&td->td_sigqueue); 640 641 /* 642 * We have to wait until after acquiring all locks before 643 * changing p_state. We need to avoid all possible context 644 * switches (including ones from blocking on a mutex) while 645 * marked as a zombie. We also have to set the zombie state 646 * before we release the parent process' proc lock to avoid 647 * a lost wakeup. So, we first call wakeup, then we grab the 648 * sched lock, update the state, and release the parent process' 649 * proc lock. 650 */ 651 wakeup(p->p_pptr); 652 cv_broadcast(&p->p_pwait); 653 sched_exit(p->p_pptr, td); 654 PROC_SLOCK(p); 655 p->p_state = PRS_ZOMBIE; 656 PROC_UNLOCK(p->p_pptr); 657 658 /* 659 * Save our children's rusage information in our exit rusage. 660 */ 661 PROC_STATLOCK(p); 662 ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux); 663 PROC_STATUNLOCK(p); 664 665 /* 666 * Make sure the scheduler takes this thread out of its tables etc. 667 * This will also release this thread's reference to the ucred. 668 * Other thread parts to release include pcb bits and such. 669 */ 670 thread_exit(); 671 } 672 673 #ifndef _SYS_SYSPROTO_H_ 674 struct abort2_args { 675 char *why; 676 int nargs; 677 void **args; 678 }; 679 #endif 680 681 int 682 sys_abort2(struct thread *td, struct abort2_args *uap) 683 { 684 struct proc *p = td->td_proc; 685 struct sbuf *sb; 686 void *uargs[16]; 687 int error, i, sig; 688 689 /* 690 * Do it right now so we can log either proper call of abort2(), or 691 * note, that invalid argument was passed. 512 is big enough to 692 * handle 16 arguments' descriptions with additional comments. 693 */ 694 sb = sbuf_new(NULL, NULL, 512, SBUF_FIXEDLEN); 695 sbuf_clear(sb); 696 sbuf_printf(sb, "%s(pid %d uid %d) aborted: ", 697 p->p_comm, p->p_pid, td->td_ucred->cr_uid); 698 /* 699 * Since we can't return from abort2(), send SIGKILL in cases, where 700 * abort2() was called improperly 701 */ 702 sig = SIGKILL; 703 /* Prevent from DoSes from user-space. */ 704 if (uap->nargs < 0 || uap->nargs > 16) 705 goto out; 706 if (uap->nargs > 0) { 707 if (uap->args == NULL) 708 goto out; 709 error = copyin(uap->args, uargs, uap->nargs * sizeof(void *)); 710 if (error != 0) 711 goto out; 712 } 713 /* 714 * Limit size of 'reason' string to 128. Will fit even when 715 * maximal number of arguments was chosen to be logged. 716 */ 717 if (uap->why != NULL) { 718 error = sbuf_copyin(sb, uap->why, 128); 719 if (error < 0) 720 goto out; 721 } else { 722 sbuf_printf(sb, "(null)"); 723 } 724 if (uap->nargs > 0) { 725 sbuf_printf(sb, "("); 726 for (i = 0;i < uap->nargs; i++) 727 sbuf_printf(sb, "%s%p", i == 0 ? "" : ", ", uargs[i]); 728 sbuf_printf(sb, ")"); 729 } 730 /* 731 * Final stage: arguments were proper, string has been 732 * successfully copied from userspace, and copying pointers 733 * from user-space succeed. 734 */ 735 sig = SIGABRT; 736 out: 737 if (sig == SIGKILL) { 738 sbuf_trim(sb); 739 sbuf_printf(sb, " (Reason text inaccessible)"); 740 } 741 sbuf_cat(sb, "\n"); 742 sbuf_finish(sb); 743 log(LOG_INFO, "%s", sbuf_data(sb)); 744 sbuf_delete(sb); 745 exit1(td, 0, sig); 746 return (0); 747 } 748 749 #ifdef COMPAT_43 750 /* 751 * The dirty work is handled by kern_wait(). 752 */ 753 int 754 owait(struct thread *td, struct owait_args *uap __unused) 755 { 756 int error, status; 757 758 error = kern_wait(td, WAIT_ANY, &status, 0, NULL); 759 if (error == 0) 760 td->td_retval[1] = status; 761 return (error); 762 } 763 #endif /* COMPAT_43 */ 764 765 /* 766 * The dirty work is handled by kern_wait(). 767 */ 768 int 769 sys_wait4(struct thread *td, struct wait4_args *uap) 770 { 771 struct rusage ru, *rup; 772 int error, status; 773 774 if (uap->rusage != NULL) 775 rup = &ru; 776 else 777 rup = NULL; 778 error = kern_wait(td, uap->pid, &status, uap->options, rup); 779 if (uap->status != NULL && error == 0 && td->td_retval[0] != 0) 780 error = copyout(&status, uap->status, sizeof(status)); 781 if (uap->rusage != NULL && error == 0 && td->td_retval[0] != 0) 782 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 783 return (error); 784 } 785 786 int 787 sys_wait6(struct thread *td, struct wait6_args *uap) 788 { 789 struct __wrusage wru, *wrup; 790 siginfo_t si, *sip; 791 idtype_t idtype; 792 id_t id; 793 int error, status; 794 795 idtype = uap->idtype; 796 id = uap->id; 797 798 if (uap->wrusage != NULL) 799 wrup = &wru; 800 else 801 wrup = NULL; 802 803 if (uap->info != NULL) { 804 sip = &si; 805 bzero(sip, sizeof(*sip)); 806 } else 807 sip = NULL; 808 809 /* 810 * We expect all callers of wait6() to know about WEXITED and 811 * WTRAPPED. 812 */ 813 error = kern_wait6(td, idtype, id, &status, uap->options, wrup, sip); 814 815 if (uap->status != NULL && error == 0 && td->td_retval[0] != 0) 816 error = copyout(&status, uap->status, sizeof(status)); 817 if (uap->wrusage != NULL && error == 0 && td->td_retval[0] != 0) 818 error = copyout(&wru, uap->wrusage, sizeof(wru)); 819 if (uap->info != NULL && error == 0) 820 error = copyout(&si, uap->info, sizeof(si)); 821 return (error); 822 } 823 824 /* 825 * Reap the remains of a zombie process and optionally return status and 826 * rusage. Asserts and will release both the proctree_lock and the process 827 * lock as part of its work. 828 */ 829 void 830 proc_reap(struct thread *td, struct proc *p, int *status, int options) 831 { 832 struct proc *q, *t; 833 834 sx_assert(&proctree_lock, SA_XLOCKED); 835 PROC_LOCK_ASSERT(p, MA_OWNED); 836 KASSERT(p->p_state == PRS_ZOMBIE, ("proc_reap: !PRS_ZOMBIE")); 837 838 mtx_spin_wait_unlocked(&p->p_slock); 839 840 q = td->td_proc; 841 842 if (status) 843 *status = KW_EXITCODE(p->p_xexit, p->p_xsig); 844 if (options & WNOWAIT) { 845 /* 846 * Only poll, returning the status. Caller does not wish to 847 * release the proc struct just yet. 848 */ 849 PROC_UNLOCK(p); 850 sx_xunlock(&proctree_lock); 851 return; 852 } 853 854 PROC_LOCK(q); 855 sigqueue_take(p->p_ksi); 856 PROC_UNLOCK(q); 857 858 /* 859 * If we got the child via a ptrace 'attach', we need to give it back 860 * to the old parent. 861 */ 862 if (p->p_oppid != p->p_pptr->p_pid) { 863 PROC_UNLOCK(p); 864 t = proc_realparent(p); 865 PROC_LOCK(t); 866 PROC_LOCK(p); 867 CTR2(KTR_PTRACE, 868 "wait: traced child %d moved back to parent %d", p->p_pid, 869 t->p_pid); 870 proc_reparent(p, t, false); 871 PROC_UNLOCK(p); 872 pksignal(t, SIGCHLD, p->p_ksi); 873 wakeup(t); 874 cv_broadcast(&p->p_pwait); 875 PROC_UNLOCK(t); 876 sx_xunlock(&proctree_lock); 877 return; 878 } 879 PROC_UNLOCK(p); 880 881 /* 882 * Remove other references to this process to ensure we have an 883 * exclusive reference. 884 */ 885 sx_xlock(PIDHASHLOCK(p->p_pid)); 886 LIST_REMOVE(p, p_hash); 887 sx_xunlock(PIDHASHLOCK(p->p_pid)); 888 LIST_REMOVE(p, p_sibling); 889 reaper_abandon_children(p, true); 890 reaper_clear(p); 891 PROC_LOCK(p); 892 proc_clear_orphan(p); 893 PROC_UNLOCK(p); 894 leavepgrp(p); 895 if (p->p_procdesc != NULL) 896 procdesc_reap(p); 897 sx_xunlock(&proctree_lock); 898 899 proc_id_clear(PROC_ID_PID, p->p_pid); 900 901 PROC_LOCK(p); 902 knlist_detach(p->p_klist); 903 p->p_klist = NULL; 904 PROC_UNLOCK(p); 905 906 /* 907 * Removal from allproc list and process group list paired with 908 * PROC_LOCK which was executed during that time should guarantee 909 * nothing can reach this process anymore. As such further locking 910 * is unnecessary. 911 */ 912 p->p_xexit = p->p_xsig = 0; /* XXX: why? */ 913 914 PROC_LOCK(q); 915 ruadd(&q->p_stats->p_cru, &q->p_crux, &p->p_ru, &p->p_rux); 916 PROC_UNLOCK(q); 917 918 /* 919 * Decrement the count of procs running with this uid. 920 */ 921 (void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0); 922 923 /* 924 * Destroy resource accounting information associated with the process. 925 */ 926 #ifdef RACCT 927 if (racct_enable) { 928 PROC_LOCK(p); 929 racct_sub(p, RACCT_NPROC, 1); 930 PROC_UNLOCK(p); 931 } 932 #endif 933 racct_proc_exit(p); 934 935 /* 936 * Free credentials, arguments, and sigacts. 937 */ 938 proc_unset_cred(p); 939 pargs_drop(p->p_args); 940 p->p_args = NULL; 941 sigacts_free(p->p_sigacts); 942 p->p_sigacts = NULL; 943 944 /* 945 * Do any thread-system specific cleanups. 946 */ 947 thread_wait(p); 948 949 /* 950 * Give vm and machine-dependent layer a chance to free anything that 951 * cpu_exit couldn't release while still running in process context. 952 */ 953 vm_waitproc(p); 954 #ifdef MAC 955 mac_proc_destroy(p); 956 #endif 957 958 KASSERT(FIRST_THREAD_IN_PROC(p), 959 ("proc_reap: no residual thread!")); 960 uma_zfree(proc_zone, p); 961 atomic_add_int(&nprocs, -1); 962 } 963 964 static int 965 proc_to_reap(struct thread *td, struct proc *p, idtype_t idtype, id_t id, 966 int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo, 967 int check_only) 968 { 969 struct rusage *rup; 970 971 sx_assert(&proctree_lock, SA_XLOCKED); 972 973 PROC_LOCK(p); 974 975 switch (idtype) { 976 case P_ALL: 977 if (p->p_procdesc == NULL || 978 (p->p_pptr == td->td_proc && 979 (p->p_flag & P_TRACED) != 0)) { 980 break; 981 } 982 983 PROC_UNLOCK(p); 984 return (0); 985 case P_PID: 986 if (p->p_pid != (pid_t)id) { 987 PROC_UNLOCK(p); 988 return (0); 989 } 990 break; 991 case P_PGID: 992 if (p->p_pgid != (pid_t)id) { 993 PROC_UNLOCK(p); 994 return (0); 995 } 996 break; 997 case P_SID: 998 if (p->p_session->s_sid != (pid_t)id) { 999 PROC_UNLOCK(p); 1000 return (0); 1001 } 1002 break; 1003 case P_UID: 1004 if (p->p_ucred->cr_uid != (uid_t)id) { 1005 PROC_UNLOCK(p); 1006 return (0); 1007 } 1008 break; 1009 case P_GID: 1010 if (p->p_ucred->cr_gid != (gid_t)id) { 1011 PROC_UNLOCK(p); 1012 return (0); 1013 } 1014 break; 1015 case P_JAILID: 1016 if (p->p_ucred->cr_prison->pr_id != (int)id) { 1017 PROC_UNLOCK(p); 1018 return (0); 1019 } 1020 break; 1021 /* 1022 * It seems that the thread structures get zeroed out 1023 * at process exit. This makes it impossible to 1024 * support P_SETID, P_CID or P_CPUID. 1025 */ 1026 default: 1027 PROC_UNLOCK(p); 1028 return (0); 1029 } 1030 1031 if (p_canwait(td, p)) { 1032 PROC_UNLOCK(p); 1033 return (0); 1034 } 1035 1036 if (((options & WEXITED) == 0) && (p->p_state == PRS_ZOMBIE)) { 1037 PROC_UNLOCK(p); 1038 return (0); 1039 } 1040 1041 /* 1042 * This special case handles a kthread spawned by linux_clone 1043 * (see linux_misc.c). The linux_wait4 and linux_waitpid 1044 * functions need to be able to distinguish between waiting 1045 * on a process and waiting on a thread. It is a thread if 1046 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option 1047 * signifies we want to wait for threads and not processes. 1048 */ 1049 if ((p->p_sigparent != SIGCHLD) ^ 1050 ((options & WLINUXCLONE) != 0)) { 1051 PROC_UNLOCK(p); 1052 return (0); 1053 } 1054 1055 if (siginfo != NULL) { 1056 bzero(siginfo, sizeof(*siginfo)); 1057 siginfo->si_errno = 0; 1058 1059 /* 1060 * SUSv4 requires that the si_signo value is always 1061 * SIGCHLD. Obey it despite the rfork(2) interface 1062 * allows to request other signal for child exit 1063 * notification. 1064 */ 1065 siginfo->si_signo = SIGCHLD; 1066 1067 /* 1068 * This is still a rough estimate. We will fix the 1069 * cases TRAPPED, STOPPED, and CONTINUED later. 1070 */ 1071 if (WCOREDUMP(p->p_xsig)) { 1072 siginfo->si_code = CLD_DUMPED; 1073 siginfo->si_status = WTERMSIG(p->p_xsig); 1074 } else if (WIFSIGNALED(p->p_xsig)) { 1075 siginfo->si_code = CLD_KILLED; 1076 siginfo->si_status = WTERMSIG(p->p_xsig); 1077 } else { 1078 siginfo->si_code = CLD_EXITED; 1079 siginfo->si_status = p->p_xexit; 1080 } 1081 1082 siginfo->si_pid = p->p_pid; 1083 siginfo->si_uid = p->p_ucred->cr_uid; 1084 1085 /* 1086 * The si_addr field would be useful additional 1087 * detail, but apparently the PC value may be lost 1088 * when we reach this point. bzero() above sets 1089 * siginfo->si_addr to NULL. 1090 */ 1091 } 1092 1093 /* 1094 * There should be no reason to limit resources usage info to 1095 * exited processes only. A snapshot about any resources used 1096 * by a stopped process may be exactly what is needed. 1097 */ 1098 if (wrusage != NULL) { 1099 rup = &wrusage->wru_self; 1100 *rup = p->p_ru; 1101 PROC_STATLOCK(p); 1102 calcru(p, &rup->ru_utime, &rup->ru_stime); 1103 PROC_STATUNLOCK(p); 1104 1105 rup = &wrusage->wru_children; 1106 *rup = p->p_stats->p_cru; 1107 calccru(p, &rup->ru_utime, &rup->ru_stime); 1108 } 1109 1110 if (p->p_state == PRS_ZOMBIE && !check_only) { 1111 proc_reap(td, p, status, options); 1112 return (-1); 1113 } 1114 return (1); 1115 } 1116 1117 int 1118 kern_wait(struct thread *td, pid_t pid, int *status, int options, 1119 struct rusage *rusage) 1120 { 1121 struct __wrusage wru, *wrup; 1122 idtype_t idtype; 1123 id_t id; 1124 int ret; 1125 1126 /* 1127 * Translate the special pid values into the (idtype, pid) 1128 * pair for kern_wait6. The WAIT_MYPGRP case is handled by 1129 * kern_wait6() on its own. 1130 */ 1131 if (pid == WAIT_ANY) { 1132 idtype = P_ALL; 1133 id = 0; 1134 } else if (pid < 0) { 1135 idtype = P_PGID; 1136 id = (id_t)-pid; 1137 } else { 1138 idtype = P_PID; 1139 id = (id_t)pid; 1140 } 1141 1142 if (rusage != NULL) 1143 wrup = &wru; 1144 else 1145 wrup = NULL; 1146 1147 /* 1148 * For backward compatibility we implicitly add flags WEXITED 1149 * and WTRAPPED here. 1150 */ 1151 options |= WEXITED | WTRAPPED; 1152 ret = kern_wait6(td, idtype, id, status, options, wrup, NULL); 1153 if (rusage != NULL) 1154 *rusage = wru.wru_self; 1155 return (ret); 1156 } 1157 1158 static void 1159 report_alive_proc(struct thread *td, struct proc *p, siginfo_t *siginfo, 1160 int *status, int options, int si_code) 1161 { 1162 bool cont; 1163 1164 PROC_LOCK_ASSERT(p, MA_OWNED); 1165 sx_assert(&proctree_lock, SA_XLOCKED); 1166 MPASS(si_code == CLD_TRAPPED || si_code == CLD_STOPPED || 1167 si_code == CLD_CONTINUED); 1168 1169 cont = si_code == CLD_CONTINUED; 1170 if ((options & WNOWAIT) == 0) { 1171 if (cont) 1172 p->p_flag &= ~P_CONTINUED; 1173 else 1174 p->p_flag |= P_WAITED; 1175 PROC_LOCK(td->td_proc); 1176 sigqueue_take(p->p_ksi); 1177 PROC_UNLOCK(td->td_proc); 1178 } 1179 sx_xunlock(&proctree_lock); 1180 if (siginfo != NULL) { 1181 siginfo->si_code = si_code; 1182 siginfo->si_status = cont ? SIGCONT : p->p_xsig; 1183 } 1184 if (status != NULL) 1185 *status = cont ? SIGCONT : W_STOPCODE(p->p_xsig); 1186 PROC_UNLOCK(p); 1187 td->td_retval[0] = p->p_pid; 1188 } 1189 1190 int 1191 kern_wait6(struct thread *td, idtype_t idtype, id_t id, int *status, 1192 int options, struct __wrusage *wrusage, siginfo_t *siginfo) 1193 { 1194 struct proc *p, *q; 1195 pid_t pid; 1196 int error, nfound, ret; 1197 bool report; 1198 1199 AUDIT_ARG_VALUE((int)idtype); /* XXX - This is likely wrong! */ 1200 AUDIT_ARG_PID((pid_t)id); /* XXX - This may be wrong! */ 1201 AUDIT_ARG_VALUE(options); 1202 1203 q = td->td_proc; 1204 1205 if ((pid_t)id == WAIT_MYPGRP && (idtype == P_PID || idtype == P_PGID)) { 1206 PROC_LOCK(q); 1207 id = (id_t)q->p_pgid; 1208 PROC_UNLOCK(q); 1209 idtype = P_PGID; 1210 } 1211 1212 /* If we don't know the option, just return. */ 1213 if ((options & ~(WUNTRACED | WNOHANG | WCONTINUED | WNOWAIT | 1214 WEXITED | WTRAPPED | WLINUXCLONE)) != 0) 1215 return (EINVAL); 1216 if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) { 1217 /* 1218 * We will be unable to find any matching processes, 1219 * because there are no known events to look for. 1220 * Prefer to return error instead of blocking 1221 * indefinitely. 1222 */ 1223 return (EINVAL); 1224 } 1225 1226 loop: 1227 if (q->p_flag & P_STATCHILD) { 1228 PROC_LOCK(q); 1229 q->p_flag &= ~P_STATCHILD; 1230 PROC_UNLOCK(q); 1231 } 1232 sx_xlock(&proctree_lock); 1233 loop_locked: 1234 nfound = 0; 1235 LIST_FOREACH(p, &q->p_children, p_sibling) { 1236 pid = p->p_pid; 1237 ret = proc_to_reap(td, p, idtype, id, status, options, 1238 wrusage, siginfo, 0); 1239 if (ret == 0) 1240 continue; 1241 else if (ret != 1) { 1242 td->td_retval[0] = pid; 1243 return (0); 1244 } 1245 1246 nfound++; 1247 PROC_LOCK_ASSERT(p, MA_OWNED); 1248 1249 if ((options & WTRAPPED) != 0 && 1250 (p->p_flag & P_TRACED) != 0) { 1251 PROC_SLOCK(p); 1252 report = 1253 ((p->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) && 1254 p->p_suspcount == p->p_numthreads && 1255 (p->p_flag & P_WAITED) == 0); 1256 PROC_SUNLOCK(p); 1257 if (report) { 1258 CTR4(KTR_PTRACE, 1259 "wait: returning trapped pid %d status %#x " 1260 "(xstat %d) xthread %d", 1261 p->p_pid, W_STOPCODE(p->p_xsig), p->p_xsig, 1262 p->p_xthread != NULL ? 1263 p->p_xthread->td_tid : -1); 1264 report_alive_proc(td, p, siginfo, status, 1265 options, CLD_TRAPPED); 1266 return (0); 1267 } 1268 } 1269 if ((options & WUNTRACED) != 0 && 1270 (p->p_flag & P_STOPPED_SIG) != 0) { 1271 PROC_SLOCK(p); 1272 report = (p->p_suspcount == p->p_numthreads && 1273 ((p->p_flag & P_WAITED) == 0)); 1274 PROC_SUNLOCK(p); 1275 if (report) { 1276 report_alive_proc(td, p, siginfo, status, 1277 options, CLD_STOPPED); 1278 return (0); 1279 } 1280 } 1281 if ((options & WCONTINUED) != 0 && 1282 (p->p_flag & P_CONTINUED) != 0) { 1283 report_alive_proc(td, p, siginfo, status, options, 1284 CLD_CONTINUED); 1285 return (0); 1286 } 1287 PROC_UNLOCK(p); 1288 } 1289 1290 /* 1291 * Look in the orphans list too, to allow the parent to 1292 * collect it's child exit status even if child is being 1293 * debugged. 1294 * 1295 * Debugger detaches from the parent upon successful 1296 * switch-over from parent to child. At this point due to 1297 * re-parenting the parent loses the child to debugger and a 1298 * wait4(2) call would report that it has no children to wait 1299 * for. By maintaining a list of orphans we allow the parent 1300 * to successfully wait until the child becomes a zombie. 1301 */ 1302 if (nfound == 0) { 1303 LIST_FOREACH(p, &q->p_orphans, p_orphan) { 1304 ret = proc_to_reap(td, p, idtype, id, NULL, options, 1305 NULL, NULL, 1); 1306 if (ret != 0) { 1307 KASSERT(ret != -1, ("reaped an orphan (pid %d)", 1308 (int)td->td_retval[0])); 1309 PROC_UNLOCK(p); 1310 nfound++; 1311 break; 1312 } 1313 } 1314 } 1315 if (nfound == 0) { 1316 sx_xunlock(&proctree_lock); 1317 return (ECHILD); 1318 } 1319 if (options & WNOHANG) { 1320 sx_xunlock(&proctree_lock); 1321 td->td_retval[0] = 0; 1322 return (0); 1323 } 1324 PROC_LOCK(q); 1325 if (q->p_flag & P_STATCHILD) { 1326 q->p_flag &= ~P_STATCHILD; 1327 PROC_UNLOCK(q); 1328 goto loop_locked; 1329 } 1330 sx_xunlock(&proctree_lock); 1331 error = msleep(q, &q->p_mtx, PWAIT | PCATCH | PDROP, "wait", 0); 1332 if (error) 1333 return (error); 1334 goto loop; 1335 } 1336 1337 void 1338 proc_add_orphan(struct proc *child, struct proc *parent) 1339 { 1340 1341 sx_assert(&proctree_lock, SX_XLOCKED); 1342 KASSERT((child->p_flag & P_TRACED) != 0, 1343 ("proc_add_orphan: not traced")); 1344 1345 if (LIST_EMPTY(&parent->p_orphans)) { 1346 child->p_treeflag |= P_TREE_FIRST_ORPHAN; 1347 LIST_INSERT_HEAD(&parent->p_orphans, child, p_orphan); 1348 } else { 1349 LIST_INSERT_AFTER(LIST_FIRST(&parent->p_orphans), 1350 child, p_orphan); 1351 } 1352 child->p_treeflag |= P_TREE_ORPHANED; 1353 } 1354 1355 /* 1356 * Make process 'parent' the new parent of process 'child'. 1357 * Must be called with an exclusive hold of proctree lock. 1358 */ 1359 void 1360 proc_reparent(struct proc *child, struct proc *parent, bool set_oppid) 1361 { 1362 1363 sx_assert(&proctree_lock, SX_XLOCKED); 1364 PROC_LOCK_ASSERT(child, MA_OWNED); 1365 if (child->p_pptr == parent) 1366 return; 1367 1368 PROC_LOCK(child->p_pptr); 1369 sigqueue_take(child->p_ksi); 1370 PROC_UNLOCK(child->p_pptr); 1371 LIST_REMOVE(child, p_sibling); 1372 LIST_INSERT_HEAD(&parent->p_children, child, p_sibling); 1373 1374 proc_clear_orphan(child); 1375 if ((child->p_flag & P_TRACED) != 0) { 1376 proc_add_orphan(child, child->p_pptr); 1377 } 1378 1379 child->p_pptr = parent; 1380 if (set_oppid) 1381 child->p_oppid = parent->p_pid; 1382 } 1383