xref: /freebsd/sys/kern/kern_exit.c (revision c4f6a2a9e1b1879b618c436ab4f56ff75c73a0f5)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
39  * $FreeBSD$
40  */
41 
42 #include "opt_compat.h"
43 #include "opt_ktrace.h"
44 
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/pioctl.h>
54 #include <sys/tty.h>
55 #include <sys/wait.h>
56 #include <sys/vmmeter.h>
57 #include <sys/vnode.h>
58 #include <sys/resourcevar.h>
59 #include <sys/signalvar.h>
60 #include <sys/sx.h>
61 #include <sys/ptrace.h>
62 #include <sys/acct.h>		/* for acct_process() function prototype */
63 #include <sys/filedesc.h>
64 #include <sys/shm.h>
65 #include <sys/sem.h>
66 #include <sys/jail.h>
67 #ifdef KTRACE
68 #include <sys/ktrace.h>
69 #endif
70 
71 #include <vm/vm.h>
72 #include <vm/vm_extern.h>
73 #include <vm/vm_param.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_map.h>
76 #include <vm/uma.h>
77 #include <sys/user.h>
78 
79 /* Required to be non-static for SysVR4 emulator */
80 MALLOC_DEFINE(M_ZOMBIE, "zombie", "zombie proc status");
81 
82 static MALLOC_DEFINE(M_ATEXIT, "atexit", "atexit callback");
83 
84 static int wait1(struct thread *, struct wait_args *, int);
85 
86 /*
87  * callout list for things to do at exit time
88  */
89 struct exitlist {
90 	exitlist_fn function;
91 	TAILQ_ENTRY(exitlist) next;
92 };
93 
94 TAILQ_HEAD(exit_list_head, exitlist);
95 static struct exit_list_head exit_list = TAILQ_HEAD_INITIALIZER(exit_list);
96 
97 /*
98  * exit --
99  *	Death of process.
100  *
101  * MPSAFE
102  */
103 void
104 sys_exit(td, uap)
105 	struct thread *td;
106 	struct sys_exit_args /* {
107 		int	rval;
108 	} */ *uap;
109 {
110 
111 	mtx_lock(&Giant);
112 	exit1(td, W_EXITCODE(uap->rval, 0));
113 	/* NOTREACHED */
114 }
115 
116 /*
117  * Exit: deallocate address space and other resources, change proc state
118  * to zombie, and unlink proc from allproc and parent's lists.  Save exit
119  * status and rusage for wait().  Check for child processes and orphan them.
120  */
121 void
122 exit1(td, rv)
123 	register struct thread *td;
124 	int rv;
125 {
126 	struct exitlist *ep;
127 	struct proc *p, *nq, *q;
128 	struct tty *tp;
129 	struct vnode *ttyvp;
130 	register struct vmspace *vm;
131 	struct vnode *vtmp;
132 #ifdef KTRACE
133 	struct vnode *tracevp;
134 #endif
135 
136 	GIANT_REQUIRED;
137 
138 	p = td->td_proc;
139 	if (p == initproc) {
140 		printf("init died (signal %d, exit %d)\n",
141 		    WTERMSIG(rv), WEXITSTATUS(rv));
142 		panic("Going nowhere without my init!");
143 	}
144 
145 	/*
146 	 * XXXXKSE: MUST abort all other threads before proceeding past here.
147 	 */
148 	PROC_LOCK(p);
149 	if (p->p_flag & P_KSES) {
150 		/*
151 		 * First check if some other thread got here before us..
152 		 * if so, act apropriatly, (exit or suspend);
153 		 */
154 		thread_suspend_check(0);
155 		/*
156 		 * Here is a trick..
157 		 * We need to free up our KSE to process other threads
158 		 * so that we can safely set the UNBOUND flag
159 		 * (whether or not we have a mailbox) as we are NEVER
160 		 * going to return to the user.
161 		 * The flag will not be set yet if we are exiting
162 		 * because of a signal, pagefault, or similar
163 		 * (or even an exit(2) from the UTS).
164 		 */
165 		td->td_flags |= TDF_UNBOUND;
166 
167 		/*
168 		 * Kill off the other threads. This requires
169 		 * Some co-operation from other parts of the kernel
170 		 * so it may not be instant.
171 		 * With this state set:
172 		 * Any thread entering the kernel from userspace will
173 		 * thread_exit() in trap().  Any thread attempting to
174 		 * sleep will return immediatly
175 		 * with EINTR or EWOULDBLOCK, which will hopefully force them
176 		 * to back out to userland, freeing resources as they go, and
177 		 * anything attempting to return to userland will thread_exit()
178 		 * from userret().  thread_exit() will unsuspend us
179 		 * when the last other thread exits.
180 		 */
181 		if (thread_single(SNGLE_EXIT)) {
182 			panic ("Exit: Single threading fouled up");
183 		}
184 		/*
185 		 * All other activity in this process is now stopped.
186 		 * Remove excess KSEs and KSEGRPS. XXXKSE (when we have them)
187 		 * ...
188 		 * Turn off threading support.
189 		 */
190 		p->p_flag &= ~P_KSES;
191 		td->td_flags &= ~TDF_UNBOUND;
192 		thread_single_end(); 	/* Don't need this any more. */
193 	}
194 	/*
195 	 * With this state set:
196 	 * Any thread entering the kernel from userspace will thread_exit()
197 	 * in trap().  Any thread attempting to sleep will return immediatly
198 	 * with EINTR or EWOULDBLOCK, which will hopefully force them
199 	 * to back out to userland, freeing resources as they go, and
200 	 * anything attempting to return to userland will thread_exit()
201 	 * from userret().  thread_exit() will do a wakeup on p->p_numthreads
202 	 * if it transitions to 1.
203 	 */
204 
205 	p->p_flag |= P_WEXIT;
206 	PROC_UNLOCK(p);
207 	if (td->td_kse->ke_mdstorage)
208 		cpu_free_kse_mdstorage(td->td_kse);
209 
210 	/* Are we a task leader? */
211 	PROC_LOCK(p);
212 	if (p == p->p_leader) {
213 		q = p->p_peers;
214 		while (q != NULL) {
215 			PROC_LOCK(q);
216 			psignal(q, SIGKILL);
217 			PROC_UNLOCK(q);
218 			q = q->p_peers;
219 		}
220 		while (p->p_peers)
221 			msleep(p, &p->p_mtx, PWAIT, "exit1", 0);
222 	}
223 	PROC_UNLOCK(p);
224 
225 #ifdef PGINPROF
226 	vmsizmon();
227 #endif
228 	STOPEVENT(p, S_EXIT, rv);
229 	wakeup(&p->p_stype);	/* Wakeup anyone in procfs' PIOCWAIT */
230 
231 	/*
232 	 * Check if any loadable modules need anything done at process exit.
233 	 * e.g. SYSV IPC stuff
234 	 * XXX what if one of these generates an error?
235 	 */
236 	TAILQ_FOREACH(ep, &exit_list, next)
237 		(*ep->function)(p);
238 
239 	stopprofclock(p);
240 
241 	MALLOC(p->p_ru, struct rusage *, sizeof(struct rusage),
242 		M_ZOMBIE, M_WAITOK);
243 	/*
244 	 * If parent is waiting for us to exit or exec,
245 	 * P_PPWAIT is set; we will wakeup the parent below.
246 	 */
247 	PROC_LOCK(p);
248 	p->p_flag &= ~(P_TRACED | P_PPWAIT);
249 	SIGEMPTYSET(p->p_siglist);
250 	PROC_UNLOCK(p);
251 	if (timevalisset(&p->p_realtimer.it_value))
252 		callout_stop(&p->p_itcallout);
253 
254 	/*
255 	 * Reset any sigio structures pointing to us as a result of
256 	 * F_SETOWN with our pid.
257 	 */
258 	funsetownlst(&p->p_sigiolst);
259 
260 	/*
261 	 * Close open files and release open-file table.
262 	 * This may block!
263 	 */
264 	fdfree(td); /* XXXKSE *//* may not be the one in proc */
265 
266 	/*
267 	 * Remove ourself from our leader's peer list and wake our leader.
268 	 */
269 	PROC_LOCK(p->p_leader);
270 	if (p->p_leader->p_peers) {
271 		q = p->p_leader;
272 		while (q->p_peers != p)
273 			q = q->p_peers;
274 		q->p_peers = p->p_peers;
275 		wakeup(p->p_leader);
276 	}
277 	PROC_UNLOCK(p->p_leader);
278 
279 	/* The next two chunks should probably be moved to vmspace_exit. */
280 	vm = p->p_vmspace;
281 	/*
282 	 * Release user portion of address space.
283 	 * This releases references to vnodes,
284 	 * which could cause I/O if the file has been unlinked.
285 	 * Need to do this early enough that we can still sleep.
286 	 * Can't free the entire vmspace as the kernel stack
287 	 * may be mapped within that space also.
288 	 */
289 	if (--vm->vm_refcnt == 0) {
290 		if (vm->vm_shm)
291 			shmexit(p);
292 		pmap_remove_pages(vmspace_pmap(vm), VM_MIN_ADDRESS,
293 		    VM_MAXUSER_ADDRESS);
294 		(void) vm_map_remove(&vm->vm_map, VM_MIN_ADDRESS,
295 		    VM_MAXUSER_ADDRESS);
296 		vm->vm_freer = p;
297 	}
298 
299 	sx_xlock(&proctree_lock);
300 	if (SESS_LEADER(p)) {
301 		register struct session *sp;
302 
303 		sp = p->p_session;
304 		if (sp->s_ttyvp) {
305 			/*
306 			 * Controlling process.
307 			 * Signal foreground pgrp,
308 			 * drain controlling terminal
309 			 * and revoke access to controlling terminal.
310 			 */
311 			if (sp->s_ttyp && (sp->s_ttyp->t_session == sp)) {
312 				tp = sp->s_ttyp;
313 				if (sp->s_ttyp->t_pgrp) {
314 					PGRP_LOCK(sp->s_ttyp->t_pgrp);
315 					pgsignal(sp->s_ttyp->t_pgrp, SIGHUP, 1);
316 					PGRP_UNLOCK(sp->s_ttyp->t_pgrp);
317 				}
318 				/* XXX tp should be locked. */
319 				sx_xunlock(&proctree_lock);
320 				(void) ttywait(tp);
321 				sx_xlock(&proctree_lock);
322 				/*
323 				 * The tty could have been revoked
324 				 * if we blocked.
325 				 */
326 				if (sp->s_ttyvp) {
327 					ttyvp = sp->s_ttyvp;
328 					SESS_LOCK(p->p_session);
329 					sp->s_ttyvp = NULL;
330 					SESS_UNLOCK(p->p_session);
331 					sx_xunlock(&proctree_lock);
332 					VOP_REVOKE(ttyvp, REVOKEALL);
333 					vrele(ttyvp);
334 					sx_xlock(&proctree_lock);
335 				}
336 			}
337 			if (sp->s_ttyvp) {
338 				ttyvp = sp->s_ttyvp;
339 				SESS_LOCK(p->p_session);
340 				sp->s_ttyvp = NULL;
341 				SESS_UNLOCK(p->p_session);
342 				vrele(ttyvp);
343 			}
344 			/*
345 			 * s_ttyp is not zero'd; we use this to indicate
346 			 * that the session once had a controlling terminal.
347 			 * (for logging and informational purposes)
348 			 */
349 		}
350 		SESS_LOCK(p->p_session);
351 		sp->s_leader = NULL;
352 		SESS_UNLOCK(p->p_session);
353 	}
354 	fixjobc(p, p->p_pgrp, 0);
355 	sx_xunlock(&proctree_lock);
356 	(void)acct_process(td);
357 #ifdef KTRACE
358 	/*
359 	 * release trace file
360 	 */
361 	PROC_LOCK(p);
362 	mtx_lock(&ktrace_mtx);
363 	p->p_traceflag = 0;	/* don't trace the vrele() */
364 	tracevp = p->p_tracep;
365 	p->p_tracep = NULL;
366 	mtx_unlock(&ktrace_mtx);
367 	PROC_UNLOCK(p);
368 	if (tracevp != NULL)
369 		vrele(tracevp);
370 #endif
371 	/*
372 	 * Release reference to text vnode
373 	 */
374 	if ((vtmp = p->p_textvp) != NULL) {
375 		p->p_textvp = NULL;
376 		vrele(vtmp);
377 	}
378 
379 	/*
380 	 * Release our limits structure.
381 	 */
382 	mtx_assert(&Giant, MA_OWNED);
383 	if (--p->p_limit->p_refcnt == 0) {
384 		FREE(p->p_limit, M_SUBPROC);
385 		p->p_limit = NULL;
386 	}
387 
388 	/*
389 	 * Release this thread's reference to the ucred.  The actual proc
390 	 * reference will stay around until the proc is harvested by
391 	 * wait().  At this point the ucred is immutable (no other threads
392 	 * from this proc are around that can change it) so we leave the
393 	 * per-thread ucred pointer intact in case it is needed although
394 	 * in theory nothing should be using it at this point.
395 	 */
396 	crfree(td->td_ucred);
397 
398 	/*
399 	 * Remove proc from allproc queue and pidhash chain.
400 	 * Place onto zombproc.  Unlink from parent's child list.
401 	 */
402 	sx_xlock(&allproc_lock);
403 	LIST_REMOVE(p, p_list);
404 	LIST_INSERT_HEAD(&zombproc, p, p_list);
405 	LIST_REMOVE(p, p_hash);
406 	sx_xunlock(&allproc_lock);
407 
408 	sx_xlock(&proctree_lock);
409 	q = LIST_FIRST(&p->p_children);
410 	if (q != NULL)		/* only need this if any child is S_ZOMB */
411 		wakeup(initproc);
412 	for (; q != NULL; q = nq) {
413 		nq = LIST_NEXT(q, p_sibling);
414 		PROC_LOCK(q);
415 		proc_reparent(q, initproc);
416 		q->p_sigparent = SIGCHLD;
417 		/*
418 		 * Traced processes are killed
419 		 * since their existence means someone is screwing up.
420 		 */
421 		if (q->p_flag & P_TRACED) {
422 			q->p_flag &= ~P_TRACED;
423 			psignal(q, SIGKILL);
424 		}
425 		PROC_UNLOCK(q);
426 	}
427 
428 	/*
429 	 * Save exit status and final rusage info, adding in child rusage
430 	 * info and self times.
431 	 */
432 	PROC_LOCK(p);
433 	p->p_xstat = rv;
434 	*p->p_ru = p->p_stats->p_ru;
435 	mtx_lock_spin(&sched_lock);
436 	calcru(p, &p->p_ru->ru_utime, &p->p_ru->ru_stime, NULL);
437 	mtx_unlock_spin(&sched_lock);
438 	ruadd(p->p_ru, &p->p_stats->p_cru);
439 
440 	/*
441 	 * Notify interested parties of our demise.
442 	 */
443 	KNOTE(&p->p_klist, NOTE_EXIT);
444 
445 	/*
446 	 * Notify parent that we're gone.  If parent has the PS_NOCLDWAIT
447 	 * flag set, or if the handler is set to SIG_IGN, notify process
448 	 * 1 instead (and hope it will handle this situation).
449 	 */
450 	PROC_LOCK(p->p_pptr);
451 	if (p->p_pptr->p_procsig->ps_flag & (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
452 		struct proc *pp;
453 
454 		pp = p->p_pptr;
455 		PROC_UNLOCK(pp);
456 		proc_reparent(p, initproc);
457 		PROC_LOCK(p->p_pptr);
458 		/*
459 		 * If this was the last child of our parent, notify
460 		 * parent, so in case he was wait(2)ing, he will
461 		 * continue.
462 		 */
463 		if (LIST_EMPTY(&pp->p_children))
464 			wakeup(pp);
465 	}
466 
467 	if (p->p_sigparent && p->p_pptr != initproc)
468 	        psignal(p->p_pptr, p->p_sigparent);
469 	else
470 	        psignal(p->p_pptr, SIGCHLD);
471 	PROC_UNLOCK(p->p_pptr);
472 
473 	/*
474 	 * If this is a kthread, then wakeup anyone waiting for it to exit.
475 	 */
476 	if (p->p_flag & P_KTHREAD)
477 		wakeup(p);
478 	PROC_UNLOCK(p);
479 
480 	/*
481 	 * Finally, call machine-dependent code to release the remaining
482 	 * resources including address space, the kernel stack and pcb.
483 	 * The address space is released by "vmspace_exitfree(p)" in
484 	 * vm_waitproc().
485 	 */
486 	cpu_exit(td);
487 
488 	PROC_LOCK(p);
489 	PROC_LOCK(p->p_pptr);
490 	sx_xunlock(&proctree_lock);
491 	mtx_lock_spin(&sched_lock);
492 	while (mtx_owned(&Giant))
493 		mtx_unlock(&Giant);
494 
495 	/*
496 	 * We have to wait until after releasing all locks before
497 	 * changing p_state.  If we block on a mutex then we will be
498 	 * back at SRUN when we resume and our parent will never
499 	 * harvest us.
500 	 */
501 	p->p_state = PRS_ZOMBIE;
502 
503 	wakeup(p->p_pptr);
504 	PROC_UNLOCK(p->p_pptr);
505 	cnt.v_swtch++;
506 	binuptime(PCPU_PTR(switchtime));
507 	PCPU_SET(switchticks, ticks);
508 
509 	cpu_sched_exit(td); /* XXXKSE check if this should be in thread_exit */
510 	/*
511 	 * Make sure this thread is discarded from the zombie.
512 	 * This will also release this thread's reference to the ucred.
513 	 */
514 	thread_exit();
515 	panic("exit1");
516 }
517 
518 #ifdef COMPAT_43
519 /*
520  * MPSAFE.  The dirty work is handled by wait1().
521  */
522 int
523 owait(td, uap)
524 	struct thread *td;
525 	register struct owait_args /* {
526 		int     dummy;
527 	} */ *uap;
528 {
529 	struct wait_args w;
530 
531 	w.options = 0;
532 	w.rusage = NULL;
533 	w.pid = WAIT_ANY;
534 	w.status = NULL;
535 	return (wait1(td, &w, 1));
536 }
537 #endif /* COMPAT_43 */
538 
539 /*
540  * MPSAFE.  The dirty work is handled by wait1().
541  */
542 int
543 wait4(td, uap)
544 	struct thread *td;
545 	struct wait_args *uap;
546 {
547 
548 	return (wait1(td, uap, 0));
549 }
550 
551 /*
552  * MPSAFE
553  */
554 static int
555 wait1(td, uap, compat)
556 	register struct thread *td;
557 	register struct wait_args /* {
558 		int pid;
559 		int *status;
560 		int options;
561 		struct rusage *rusage;
562 	} */ *uap;
563 	int compat;
564 {
565 	struct rusage ru;
566 	register int nfound;
567 	register struct proc *p, *q, *t;
568 	int status, error;
569 	struct kse *ke;
570 	struct ksegrp *kg;
571 
572 	q = td->td_proc;
573 	if (uap->pid == 0) {
574 		PROC_LOCK(q);
575 		uap->pid = -q->p_pgid;
576 		PROC_UNLOCK(q);
577 	}
578 	if (uap->options &~ (WUNTRACED|WNOHANG|WCONTINUED|WLINUXCLONE))
579 		return (EINVAL);
580 	mtx_lock(&Giant);
581 loop:
582 	nfound = 0;
583 	sx_xlock(&proctree_lock);
584 	LIST_FOREACH(p, &q->p_children, p_sibling) {
585 		PROC_LOCK(p);
586 		if (uap->pid != WAIT_ANY &&
587 		    p->p_pid != uap->pid && p->p_pgid != -uap->pid) {
588 			PROC_UNLOCK(p);
589 			continue;
590 		}
591 
592 		/*
593 		 * This special case handles a kthread spawned by linux_clone
594 		 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
595 		 * functions need to be able to distinguish between waiting
596 		 * on a process and waiting on a thread.  It is a thread if
597 		 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
598 		 * signifies we want to wait for threads and not processes.
599 		 */
600 		if ((p->p_sigparent != SIGCHLD) ^
601 		    ((uap->options & WLINUXCLONE) != 0)) {
602 			PROC_UNLOCK(p);
603 			continue;
604 		}
605 
606 		nfound++;
607 		if (p->p_state == PRS_ZOMBIE) {
608 			/*
609 			 * charge childs scheduling cpu usage to parent
610 			 * XXXKSE assume only one thread & kse & ksegrp
611 			 * keep estcpu in each ksegrp
612 			 * so charge it to the ksegrp that did the wait
613 			 * since process estcpu is sum of all ksegrps,
614 			 * this is strictly as expected.
615 			 * Assume that the child process aggregated all
616 			 * tke estcpu into the 'build-in' ksegrp.
617 			 * XXXKSE
618 			 */
619 			if (curthread->td_proc->p_pid != 1) {
620 				mtx_lock_spin(&sched_lock);
621 				curthread->td_ksegrp->kg_estcpu =
622 				    ESTCPULIM(curthread->td_ksegrp->kg_estcpu +
623 				    p->p_ksegrp.kg_estcpu);
624 				mtx_unlock_spin(&sched_lock);
625 			}
626 
627 			td->td_retval[0] = p->p_pid;
628 #ifdef COMPAT_43
629 			if (compat)
630 				td->td_retval[1] = p->p_xstat;
631 			else
632 #endif
633 			if (uap->status) {
634 				status = p->p_xstat;	/* convert to int */
635 				PROC_UNLOCK(p);
636 				if ((error = copyout(&status,
637 				    uap->status, sizeof(status)))) {
638 					sx_xunlock(&proctree_lock);
639 					mtx_unlock(&Giant);
640 					return (error);
641 				}
642 				PROC_LOCK(p);
643 			}
644 			if (uap->rusage) {
645 				bcopy(p->p_ru, &ru, sizeof(ru));
646 				PROC_UNLOCK(p);
647 				if ((error = copyout(&ru,
648 				    uap->rusage, sizeof (struct rusage)))) {
649 					sx_xunlock(&proctree_lock);
650 					mtx_unlock(&Giant);
651 					return (error);
652 				}
653 			} else
654 				PROC_UNLOCK(p);
655 			/*
656 			 * If we got the child via a ptrace 'attach',
657 			 * we need to give it back to the old parent.
658 			 */
659 			if (p->p_oppid && (t = pfind(p->p_oppid)) != NULL) {
660 				PROC_LOCK(p);
661 				p->p_oppid = 0;
662 				proc_reparent(p, t);
663 				PROC_UNLOCK(p);
664 				psignal(t, SIGCHLD);
665 				wakeup(t);
666 				PROC_UNLOCK(t);
667 				sx_xunlock(&proctree_lock);
668 				mtx_unlock(&Giant);
669 				return (0);
670 			}
671 			/*
672 			 * Remove other references to this process to ensure
673 			 * we have an exclusive reference.
674 			 */
675 			leavepgrp(p);
676 
677 			sx_xlock(&allproc_lock);
678 			LIST_REMOVE(p, p_list);	/* off zombproc */
679 			sx_xunlock(&allproc_lock);
680 
681 			LIST_REMOVE(p, p_sibling);
682 			sx_xunlock(&proctree_lock);
683 
684 			/*
685 			 * As a side effect of this lock, we know that
686 			 * all other writes to this proc are visible now, so
687 			 * no more locking is needed for p.
688 			 */
689 			PROC_LOCK(p);
690 			p->p_xstat = 0;		/* XXX: why? */
691 			PROC_UNLOCK(p);
692 			PROC_LOCK(q);
693 			ruadd(&q->p_stats->p_cru, p->p_ru);
694 			PROC_UNLOCK(q);
695 			FREE(p->p_ru, M_ZOMBIE);
696 			p->p_ru = NULL;
697 
698 			/*
699 			 * Decrement the count of procs running with this uid.
700 			 */
701 			(void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
702 
703 			/*
704 			 * Free up credentials.
705 			 */
706 			crfree(p->p_ucred);
707 			p->p_ucred = NULL;	/* XXX: why? */
708 
709 			/*
710 			 * Remove unused arguments
711 			 */
712 			pargs_drop(p->p_args);
713 			p->p_args = NULL;
714 
715 			if (--p->p_procsig->ps_refcnt == 0) {
716 				if (p->p_sigacts != &p->p_uarea->u_sigacts)
717 					FREE(p->p_sigacts, M_SUBPROC);
718 			        FREE(p->p_procsig, M_SUBPROC);
719 				p->p_procsig = NULL;
720 			}
721 
722 			/*
723 			 * There should only be one KSE/KSEGRP but
724 			 * do it right anyhow.
725 			 */
726 			FOREACH_KSEGRP_IN_PROC(p, kg) {
727 				FOREACH_KSE_IN_GROUP(kg, ke) {
728 					/* Free the KSE spare thread. */
729 					if (ke->ke_tdspare != NULL) {
730 						thread_free(ke->ke_tdspare);
731 						p->p_kse.ke_tdspare = NULL;
732 					}
733 				}
734 			}
735 			thread_reap();	/* check for zombie threads */
736 
737 			/*
738 			 * Give vm and machine-dependent layer a chance
739 			 * to free anything that cpu_exit couldn't
740 			 * release while still running in process context.
741 			 */
742 			vm_waitproc(p);
743 			mtx_destroy(&p->p_mtx);
744 			uma_zfree(proc_zone, p);
745 			sx_xlock(&allproc_lock);
746 			nprocs--;
747 			sx_xunlock(&allproc_lock);
748 			mtx_unlock(&Giant);
749 			return (0);
750 		}
751 		if (P_SHOULDSTOP(p) && ((p->p_flag & P_WAITED) == 0) &&
752 		    (p->p_flag & P_TRACED || uap->options & WUNTRACED)) {
753 			p->p_flag |= P_WAITED;
754 			sx_xunlock(&proctree_lock);
755 			td->td_retval[0] = p->p_pid;
756 #ifdef COMPAT_43
757 			if (compat) {
758 				td->td_retval[1] = W_STOPCODE(p->p_xstat);
759 				PROC_UNLOCK(p);
760 				error = 0;
761 			} else
762 #endif
763 			if (uap->status) {
764 				status = W_STOPCODE(p->p_xstat);
765 				PROC_UNLOCK(p);
766 				error = copyout(&status,
767 					uap->status, sizeof(status));
768 			} else {
769 				PROC_UNLOCK(p);
770 				error = 0;
771 			}
772 			mtx_unlock(&Giant);
773 			return (error);
774 		}
775 		if (uap->options & WCONTINUED && (p->p_flag & P_CONTINUED)) {
776 			sx_xunlock(&proctree_lock);
777 			td->td_retval[0] = p->p_pid;
778 			p->p_flag &= ~P_CONTINUED;
779 			PROC_UNLOCK(p);
780 
781 			if (uap->status) {
782 				status = SIGCONT;
783 				error = copyout(&status,
784 				    uap->status, sizeof(status));
785 			} else
786 				error = 0;
787 
788 			mtx_unlock(&Giant);
789 			return (error);
790 		}
791 		PROC_UNLOCK(p);
792 	}
793 	if (nfound == 0) {
794 		sx_xunlock(&proctree_lock);
795 		mtx_unlock(&Giant);
796 		return (ECHILD);
797 	}
798 	if (uap->options & WNOHANG) {
799 		sx_xunlock(&proctree_lock);
800 		td->td_retval[0] = 0;
801 		mtx_unlock(&Giant);
802 		return (0);
803 	}
804 	PROC_LOCK(q);
805 	sx_xunlock(&proctree_lock);
806 	error = msleep(q, &q->p_mtx, PWAIT | PCATCH, "wait", 0);
807 	PROC_UNLOCK(q);
808 	if (error) {
809 		mtx_unlock(&Giant);
810 		return (error);
811 	}
812 	goto loop;
813 }
814 
815 /*
816  * Make process 'parent' the new parent of process 'child'.
817  * Must be called with an exclusive hold of proctree lock.
818  */
819 void
820 proc_reparent(child, parent)
821 	register struct proc *child;
822 	register struct proc *parent;
823 {
824 
825 	sx_assert(&proctree_lock, SX_XLOCKED);
826 	PROC_LOCK_ASSERT(child, MA_OWNED);
827 	if (child->p_pptr == parent)
828 		return;
829 
830 	LIST_REMOVE(child, p_sibling);
831 	LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
832 	child->p_pptr = parent;
833 }
834 
835 /*
836  * The next two functions are to handle adding/deleting items on the
837  * exit callout list
838  *
839  * at_exit():
840  * Take the arguments given and put them onto the exit callout list,
841  * However first make sure that it's not already there.
842  * returns 0 on success.
843  */
844 
845 int
846 at_exit(function)
847 	exitlist_fn function;
848 {
849 	struct exitlist *ep;
850 
851 #ifdef INVARIANTS
852 	/* Be noisy if the programmer has lost track of things */
853 	if (rm_at_exit(function))
854 		printf("WARNING: exit callout entry (%p) already present\n",
855 		    function);
856 #endif
857 	ep = malloc(sizeof(*ep), M_ATEXIT, M_NOWAIT);
858 	if (ep == NULL)
859 		return (ENOMEM);
860 	ep->function = function;
861 	TAILQ_INSERT_TAIL(&exit_list, ep, next);
862 	return (0);
863 }
864 
865 /*
866  * Scan the exit callout list for the given item and remove it.
867  * Returns the number of items removed (0 or 1)
868  */
869 int
870 rm_at_exit(function)
871 	exitlist_fn function;
872 {
873 	struct exitlist *ep;
874 
875 	TAILQ_FOREACH(ep, &exit_list, next) {
876 		if (ep->function == function) {
877 			TAILQ_REMOVE(&exit_list, ep, next);
878 			free(ep, M_ATEXIT);
879 			return (1);
880 		}
881 	}
882 	return (0);
883 }
884