xref: /freebsd/sys/kern/kern_exit.c (revision 5dae51da3da0cc94d17bd67b308fad304ebec7e0)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysproto.h>
46 #include <sys/capsicum.h>
47 #include <sys/eventhandler.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/procdesc.h>
54 #include <sys/pioctl.h>
55 #include <sys/jail.h>
56 #include <sys/tty.h>
57 #include <sys/wait.h>
58 #include <sys/vmmeter.h>
59 #include <sys/vnode.h>
60 #include <sys/racct.h>
61 #include <sys/resourcevar.h>
62 #include <sys/sbuf.h>
63 #include <sys/signalvar.h>
64 #include <sys/sched.h>
65 #include <sys/sx.h>
66 #include <sys/syscallsubr.h>
67 #include <sys/syslog.h>
68 #include <sys/ptrace.h>
69 #include <sys/acct.h>		/* for acct_process() function prototype */
70 #include <sys/filedesc.h>
71 #include <sys/sdt.h>
72 #include <sys/shm.h>
73 #include <sys/sem.h>
74 #include <sys/umtx.h>
75 #ifdef KTRACE
76 #include <sys/ktrace.h>
77 #endif
78 
79 #include <security/audit/audit.h>
80 #include <security/mac/mac_framework.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_extern.h>
84 #include <vm/vm_param.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/uma.h>
89 #include <vm/vm_domain.h>
90 
91 #ifdef KDTRACE_HOOKS
92 #include <sys/dtrace_bsd.h>
93 dtrace_execexit_func_t	dtrace_fasttrap_exit;
94 #endif
95 
96 SDT_PROVIDER_DECLARE(proc);
97 SDT_PROBE_DEFINE1(proc, , , exit, "int");
98 
99 /* Hook for NFS teardown procedure. */
100 void (*nlminfo_release_p)(struct proc *p);
101 
102 struct proc *
103 proc_realparent(struct proc *child)
104 {
105 	struct proc *p, *parent;
106 
107 	sx_assert(&proctree_lock, SX_LOCKED);
108 	if ((child->p_treeflag & P_TREE_ORPHANED) == 0) {
109 		if (child->p_oppid == 0 ||
110 		    child->p_pptr->p_pid == child->p_oppid)
111 			parent = child->p_pptr;
112 		else
113 			parent = initproc;
114 		return (parent);
115 	}
116 	for (p = child; (p->p_treeflag & P_TREE_FIRST_ORPHAN) == 0;) {
117 		/* Cannot use LIST_PREV(), since the list head is not known. */
118 		p = __containerof(p->p_orphan.le_prev, struct proc,
119 		    p_orphan.le_next);
120 		KASSERT((p->p_treeflag & P_TREE_ORPHANED) != 0,
121 		    ("missing P_ORPHAN %p", p));
122 	}
123 	parent = __containerof(p->p_orphan.le_prev, struct proc,
124 	    p_orphans.lh_first);
125 	return (parent);
126 }
127 
128 void
129 reaper_abandon_children(struct proc *p, bool exiting)
130 {
131 	struct proc *p1, *p2, *ptmp;
132 
133 	sx_assert(&proctree_lock, SX_LOCKED);
134 	KASSERT(p != initproc, ("reaper_abandon_children for initproc"));
135 	if ((p->p_treeflag & P_TREE_REAPER) == 0)
136 		return;
137 	p1 = p->p_reaper;
138 	LIST_FOREACH_SAFE(p2, &p->p_reaplist, p_reapsibling, ptmp) {
139 		LIST_REMOVE(p2, p_reapsibling);
140 		p2->p_reaper = p1;
141 		p2->p_reapsubtree = p->p_reapsubtree;
142 		LIST_INSERT_HEAD(&p1->p_reaplist, p2, p_reapsibling);
143 		if (exiting && p2->p_pptr == p) {
144 			PROC_LOCK(p2);
145 			proc_reparent(p2, p1);
146 			PROC_UNLOCK(p2);
147 		}
148 	}
149 	KASSERT(LIST_EMPTY(&p->p_reaplist), ("p_reaplist not empty"));
150 	p->p_treeflag &= ~P_TREE_REAPER;
151 }
152 
153 static void
154 clear_orphan(struct proc *p)
155 {
156 	struct proc *p1;
157 
158 	sx_assert(&proctree_lock, SA_XLOCKED);
159 	if ((p->p_treeflag & P_TREE_ORPHANED) == 0)
160 		return;
161 	if ((p->p_treeflag & P_TREE_FIRST_ORPHAN) != 0) {
162 		p1 = LIST_NEXT(p, p_orphan);
163 		if (p1 != NULL)
164 			p1->p_treeflag |= P_TREE_FIRST_ORPHAN;
165 		p->p_treeflag &= ~P_TREE_FIRST_ORPHAN;
166 	}
167 	LIST_REMOVE(p, p_orphan);
168 	p->p_treeflag &= ~P_TREE_ORPHANED;
169 }
170 
171 /*
172  * exit -- death of process.
173  */
174 void
175 sys_sys_exit(struct thread *td, struct sys_exit_args *uap)
176 {
177 
178 	exit1(td, uap->rval, 0);
179 	/* NOTREACHED */
180 }
181 
182 /*
183  * Exit: deallocate address space and other resources, change proc state to
184  * zombie, and unlink proc from allproc and parent's lists.  Save exit status
185  * and rusage for wait().  Check for child processes and orphan them.
186  */
187 void
188 exit1(struct thread *td, int rval, int signo)
189 {
190 	struct proc *p, *nq, *q, *t;
191 	struct thread *tdt;
192 
193 	mtx_assert(&Giant, MA_NOTOWNED);
194 	KASSERT(rval == 0 || signo == 0, ("exit1 rv %d sig %d", rval, signo));
195 
196 	p = td->td_proc;
197 	/*
198 	 * XXX in case we're rebooting we just let init die in order to
199 	 * work around an unsolved stack overflow seen very late during
200 	 * shutdown on sparc64 when the gmirror worker process exists.
201 	 */
202 	if (p == initproc && rebooting == 0) {
203 		printf("init died (signal %d, exit %d)\n", signo, rval);
204 		panic("Going nowhere without my init!");
205 	}
206 
207 	/*
208 	 * Deref SU mp, since the thread does not return to userspace.
209 	 */
210 	if (softdep_ast_cleanup != NULL)
211 		softdep_ast_cleanup();
212 
213 	/*
214 	 * MUST abort all other threads before proceeding past here.
215 	 */
216 	PROC_LOCK(p);
217 	/*
218 	 * First check if some other thread or external request got
219 	 * here before us.  If so, act appropriately: exit or suspend.
220 	 * We must ensure that stop requests are handled before we set
221 	 * P_WEXIT.
222 	 */
223 	thread_suspend_check(0);
224 	while (p->p_flag & P_HADTHREADS) {
225 		/*
226 		 * Kill off the other threads. This requires
227 		 * some co-operation from other parts of the kernel
228 		 * so it may not be instantaneous.  With this state set
229 		 * any thread entering the kernel from userspace will
230 		 * thread_exit() in trap().  Any thread attempting to
231 		 * sleep will return immediately with EINTR or EWOULDBLOCK
232 		 * which will hopefully force them to back out to userland
233 		 * freeing resources as they go.  Any thread attempting
234 		 * to return to userland will thread_exit() from userret().
235 		 * thread_exit() will unsuspend us when the last of the
236 		 * other threads exits.
237 		 * If there is already a thread singler after resumption,
238 		 * calling thread_single will fail; in that case, we just
239 		 * re-check all suspension request, the thread should
240 		 * either be suspended there or exit.
241 		 */
242 		if (!thread_single(p, SINGLE_EXIT))
243 			/*
244 			 * All other activity in this process is now
245 			 * stopped.  Threading support has been turned
246 			 * off.
247 			 */
248 			break;
249 		/*
250 		 * Recheck for new stop or suspend requests which
251 		 * might appear while process lock was dropped in
252 		 * thread_single().
253 		 */
254 		thread_suspend_check(0);
255 	}
256 	KASSERT(p->p_numthreads == 1,
257 	    ("exit1: proc %p exiting with %d threads", p, p->p_numthreads));
258 	racct_sub(p, RACCT_NTHR, 1);
259 
260 	/* Let event handler change exit status */
261 	p->p_xexit = rval;
262 	p->p_xsig = signo;
263 
264 	/*
265 	 * Wakeup anyone in procfs' PIOCWAIT.  They should have a hold
266 	 * on our vmspace, so we should block below until they have
267 	 * released their reference to us.  Note that if they have
268 	 * requested S_EXIT stops we will block here until they ack
269 	 * via PIOCCONT.
270 	 */
271 	_STOPEVENT(p, S_EXIT, 0);
272 
273 	/*
274 	 * Ignore any pending request to stop due to a stop signal.
275 	 * Once P_WEXIT is set, future requests will be ignored as
276 	 * well.
277 	 */
278 	p->p_flag &= ~P_STOPPED_SIG;
279 	KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped"));
280 
281 	/*
282 	 * Note that we are exiting and do another wakeup of anyone in
283 	 * PIOCWAIT in case they aren't listening for S_EXIT stops or
284 	 * decided to wait again after we told them we are exiting.
285 	 */
286 	p->p_flag |= P_WEXIT;
287 	wakeup(&p->p_stype);
288 
289 	/*
290 	 * Wait for any processes that have a hold on our vmspace to
291 	 * release their reference.
292 	 */
293 	while (p->p_lock > 0)
294 		msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0);
295 
296 	PROC_UNLOCK(p);
297 	/* Drain the limit callout while we don't have the proc locked */
298 	callout_drain(&p->p_limco);
299 
300 #ifdef AUDIT
301 	/*
302 	 * The Sun BSM exit token contains two components: an exit status as
303 	 * passed to exit(), and a return value to indicate what sort of exit
304 	 * it was.  The exit status is WEXITSTATUS(rv), but it's not clear
305 	 * what the return value is.
306 	 */
307 	AUDIT_ARG_EXIT(rval, 0);
308 	AUDIT_SYSCALL_EXIT(0, td);
309 #endif
310 
311 	/* Are we a task leader with peers? */
312 	if (p->p_peers != NULL && p == p->p_leader) {
313 		mtx_lock(&ppeers_lock);
314 		q = p->p_peers;
315 		while (q != NULL) {
316 			PROC_LOCK(q);
317 			kern_psignal(q, SIGKILL);
318 			PROC_UNLOCK(q);
319 			q = q->p_peers;
320 		}
321 		while (p->p_peers != NULL)
322 			msleep(p, &ppeers_lock, PWAIT, "exit1", 0);
323 		mtx_unlock(&ppeers_lock);
324 	}
325 
326 	/*
327 	 * Check if any loadable modules need anything done at process exit.
328 	 * E.g. SYSV IPC stuff.
329 	 * Event handler could change exit status.
330 	 * XXX what if one of these generates an error?
331 	 */
332 	EVENTHANDLER_INVOKE(process_exit, p);
333 
334 	/*
335 	 * If parent is waiting for us to exit or exec,
336 	 * P_PPWAIT is set; we will wakeup the parent below.
337 	 */
338 	PROC_LOCK(p);
339 	stopprofclock(p);
340 	p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE);
341 	p->p_ptevents = 0;
342 
343 	/*
344 	 * Stop the real interval timer.  If the handler is currently
345 	 * executing, prevent it from rearming itself and let it finish.
346 	 */
347 	if (timevalisset(&p->p_realtimer.it_value) &&
348 	    _callout_stop_safe(&p->p_itcallout, CS_EXECUTING, NULL) == 0) {
349 		timevalclear(&p->p_realtimer.it_interval);
350 		msleep(&p->p_itcallout, &p->p_mtx, PWAIT, "ritwait", 0);
351 		KASSERT(!timevalisset(&p->p_realtimer.it_value),
352 		    ("realtime timer is still armed"));
353 	}
354 
355 	PROC_UNLOCK(p);
356 
357 	umtx_thread_exit(td);
358 
359 	/*
360 	 * Reset any sigio structures pointing to us as a result of
361 	 * F_SETOWN with our pid.
362 	 */
363 	funsetownlst(&p->p_sigiolst);
364 
365 	/*
366 	 * If this process has an nlminfo data area (for lockd), release it
367 	 */
368 	if (nlminfo_release_p != NULL && p->p_nlminfo != NULL)
369 		(*nlminfo_release_p)(p);
370 
371 	/*
372 	 * Close open files and release open-file table.
373 	 * This may block!
374 	 */
375 	fdescfree(td);
376 
377 	/*
378 	 * If this thread tickled GEOM, we need to wait for the giggling to
379 	 * stop before we return to userland
380 	 */
381 	if (td->td_pflags & TDP_GEOM)
382 		g_waitidle();
383 
384 	/*
385 	 * Remove ourself from our leader's peer list and wake our leader.
386 	 */
387 	if (p->p_leader->p_peers != NULL) {
388 		mtx_lock(&ppeers_lock);
389 		if (p->p_leader->p_peers != NULL) {
390 			q = p->p_leader;
391 			while (q->p_peers != p)
392 				q = q->p_peers;
393 			q->p_peers = p->p_peers;
394 			wakeup(p->p_leader);
395 		}
396 		mtx_unlock(&ppeers_lock);
397 	}
398 
399 	vmspace_exit(td);
400 	killjobc();
401 	(void)acct_process(td);
402 
403 #ifdef KTRACE
404 	ktrprocexit(td);
405 #endif
406 	/*
407 	 * Release reference to text vnode
408 	 */
409 	if (p->p_textvp != NULL) {
410 		vrele(p->p_textvp);
411 		p->p_textvp = NULL;
412 	}
413 
414 	/*
415 	 * Release our limits structure.
416 	 */
417 	lim_free(p->p_limit);
418 	p->p_limit = NULL;
419 
420 	tidhash_remove(td);
421 
422 	/*
423 	 * Remove proc from allproc queue and pidhash chain.
424 	 * Place onto zombproc.  Unlink from parent's child list.
425 	 */
426 	sx_xlock(&allproc_lock);
427 	LIST_REMOVE(p, p_list);
428 	LIST_INSERT_HEAD(&zombproc, p, p_list);
429 	LIST_REMOVE(p, p_hash);
430 	sx_xunlock(&allproc_lock);
431 
432 	/*
433 	 * Call machine-dependent code to release any
434 	 * machine-dependent resources other than the address space.
435 	 * The address space is released by "vmspace_exitfree(p)" in
436 	 * vm_waitproc().
437 	 */
438 	cpu_exit(td);
439 
440 	WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid);
441 
442 	/*
443 	 * Reparent all children processes:
444 	 * - traced ones to the original parent (or init if we are that parent)
445 	 * - the rest to init
446 	 */
447 	sx_xlock(&proctree_lock);
448 	q = LIST_FIRST(&p->p_children);
449 	if (q != NULL)		/* only need this if any child is S_ZOMB */
450 		wakeup(q->p_reaper);
451 	for (; q != NULL; q = nq) {
452 		nq = LIST_NEXT(q, p_sibling);
453 		PROC_LOCK(q);
454 		q->p_sigparent = SIGCHLD;
455 
456 		if (!(q->p_flag & P_TRACED)) {
457 			proc_reparent(q, q->p_reaper);
458 		} else {
459 			/*
460 			 * Traced processes are killed since their existence
461 			 * means someone is screwing up.
462 			 */
463 			t = proc_realparent(q);
464 			if (t == p) {
465 				proc_reparent(q, q->p_reaper);
466 			} else {
467 				PROC_LOCK(t);
468 				proc_reparent(q, t);
469 				PROC_UNLOCK(t);
470 			}
471 			/*
472 			 * Since q was found on our children list, the
473 			 * proc_reparent() call moved q to the orphan
474 			 * list due to present P_TRACED flag. Clear
475 			 * orphan link for q now while q is locked.
476 			 */
477 			clear_orphan(q);
478 			q->p_flag &= ~(P_TRACED | P_STOPPED_TRACE);
479 			q->p_flag2 &= ~P2_PTRACE_FSTP;
480 			q->p_ptevents = 0;
481 			FOREACH_THREAD_IN_PROC(q, tdt) {
482 				tdt->td_dbgflags &= ~(TDB_SUSPEND | TDB_XSIG |
483 				    TDB_FSTP);
484 			}
485 			kern_psignal(q, SIGKILL);
486 		}
487 		PROC_UNLOCK(q);
488 	}
489 
490 	/*
491 	 * Also get rid of our orphans.
492 	 */
493 	while ((q = LIST_FIRST(&p->p_orphans)) != NULL) {
494 		PROC_LOCK(q);
495 		CTR2(KTR_PTRACE, "exit: pid %d, clearing orphan %d", p->p_pid,
496 		    q->p_pid);
497 		clear_orphan(q);
498 		PROC_UNLOCK(q);
499 	}
500 
501 	/* Save exit status. */
502 	PROC_LOCK(p);
503 	p->p_xthread = td;
504 
505 	/* Tell the prison that we are gone. */
506 	prison_proc_free(p->p_ucred->cr_prison);
507 
508 #ifdef KDTRACE_HOOKS
509 	/*
510 	 * Tell the DTrace fasttrap provider about the exit if it
511 	 * has declared an interest.
512 	 */
513 	if (dtrace_fasttrap_exit)
514 		dtrace_fasttrap_exit(p);
515 #endif
516 
517 	/*
518 	 * Notify interested parties of our demise.
519 	 */
520 	KNOTE_LOCKED(p->p_klist, NOTE_EXIT);
521 
522 #ifdef KDTRACE_HOOKS
523 	int reason = CLD_EXITED;
524 	if (WCOREDUMP(signo))
525 		reason = CLD_DUMPED;
526 	else if (WIFSIGNALED(signo))
527 		reason = CLD_KILLED;
528 	SDT_PROBE1(proc, , , exit, reason);
529 #endif
530 
531 	/*
532 	 * If this is a process with a descriptor, we may not need to deliver
533 	 * a signal to the parent.  proctree_lock is held over
534 	 * procdesc_exit() to serialize concurrent calls to close() and
535 	 * exit().
536 	 */
537 	if (p->p_procdesc == NULL || procdesc_exit(p)) {
538 		/*
539 		 * Notify parent that we're gone.  If parent has the
540 		 * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN,
541 		 * notify process 1 instead (and hope it will handle this
542 		 * situation).
543 		 */
544 		PROC_LOCK(p->p_pptr);
545 		mtx_lock(&p->p_pptr->p_sigacts->ps_mtx);
546 		if (p->p_pptr->p_sigacts->ps_flag &
547 		    (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
548 			struct proc *pp;
549 
550 			mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
551 			pp = p->p_pptr;
552 			PROC_UNLOCK(pp);
553 			proc_reparent(p, p->p_reaper);
554 			p->p_sigparent = SIGCHLD;
555 			PROC_LOCK(p->p_pptr);
556 
557 			/*
558 			 * Notify parent, so in case he was wait(2)ing or
559 			 * executing waitpid(2) with our pid, he will
560 			 * continue.
561 			 */
562 			wakeup(pp);
563 		} else
564 			mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
565 
566 		if (p->p_pptr == p->p_reaper || p->p_pptr == initproc)
567 			childproc_exited(p);
568 		else if (p->p_sigparent != 0) {
569 			if (p->p_sigparent == SIGCHLD)
570 				childproc_exited(p);
571 			else	/* LINUX thread */
572 				kern_psignal(p->p_pptr, p->p_sigparent);
573 		}
574 	} else
575 		PROC_LOCK(p->p_pptr);
576 	sx_xunlock(&proctree_lock);
577 
578 	/*
579 	 * The state PRS_ZOMBIE prevents other proesses from sending
580 	 * signal to the process, to avoid memory leak, we free memory
581 	 * for signal queue at the time when the state is set.
582 	 */
583 	sigqueue_flush(&p->p_sigqueue);
584 	sigqueue_flush(&td->td_sigqueue);
585 
586 	/*
587 	 * We have to wait until after acquiring all locks before
588 	 * changing p_state.  We need to avoid all possible context
589 	 * switches (including ones from blocking on a mutex) while
590 	 * marked as a zombie.  We also have to set the zombie state
591 	 * before we release the parent process' proc lock to avoid
592 	 * a lost wakeup.  So, we first call wakeup, then we grab the
593 	 * sched lock, update the state, and release the parent process'
594 	 * proc lock.
595 	 */
596 	wakeup(p->p_pptr);
597 	cv_broadcast(&p->p_pwait);
598 	sched_exit(p->p_pptr, td);
599 	PROC_SLOCK(p);
600 	p->p_state = PRS_ZOMBIE;
601 	PROC_UNLOCK(p->p_pptr);
602 
603 	/*
604 	 * Save our children's rusage information in our exit rusage.
605 	 */
606 	PROC_STATLOCK(p);
607 	ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux);
608 	PROC_STATUNLOCK(p);
609 
610 	/*
611 	 * Make sure the scheduler takes this thread out of its tables etc.
612 	 * This will also release this thread's reference to the ucred.
613 	 * Other thread parts to release include pcb bits and such.
614 	 */
615 	thread_exit();
616 }
617 
618 
619 #ifndef _SYS_SYSPROTO_H_
620 struct abort2_args {
621 	char *why;
622 	int nargs;
623 	void **args;
624 };
625 #endif
626 
627 int
628 sys_abort2(struct thread *td, struct abort2_args *uap)
629 {
630 	struct proc *p = td->td_proc;
631 	struct sbuf *sb;
632 	void *uargs[16];
633 	int error, i, sig;
634 
635 	/*
636 	 * Do it right now so we can log either proper call of abort2(), or
637 	 * note, that invalid argument was passed. 512 is big enough to
638 	 * handle 16 arguments' descriptions with additional comments.
639 	 */
640 	sb = sbuf_new(NULL, NULL, 512, SBUF_FIXEDLEN);
641 	sbuf_clear(sb);
642 	sbuf_printf(sb, "%s(pid %d uid %d) aborted: ",
643 	    p->p_comm, p->p_pid, td->td_ucred->cr_uid);
644 	/*
645 	 * Since we can't return from abort2(), send SIGKILL in cases, where
646 	 * abort2() was called improperly
647 	 */
648 	sig = SIGKILL;
649 	/* Prevent from DoSes from user-space. */
650 	if (uap->nargs < 0 || uap->nargs > 16)
651 		goto out;
652 	if (uap->nargs > 0) {
653 		if (uap->args == NULL)
654 			goto out;
655 		error = copyin(uap->args, uargs, uap->nargs * sizeof(void *));
656 		if (error != 0)
657 			goto out;
658 	}
659 	/*
660 	 * Limit size of 'reason' string to 128. Will fit even when
661 	 * maximal number of arguments was chosen to be logged.
662 	 */
663 	if (uap->why != NULL) {
664 		error = sbuf_copyin(sb, uap->why, 128);
665 		if (error < 0)
666 			goto out;
667 	} else {
668 		sbuf_printf(sb, "(null)");
669 	}
670 	if (uap->nargs > 0) {
671 		sbuf_printf(sb, "(");
672 		for (i = 0;i < uap->nargs; i++)
673 			sbuf_printf(sb, "%s%p", i == 0 ? "" : ", ", uargs[i]);
674 		sbuf_printf(sb, ")");
675 	}
676 	/*
677 	 * Final stage: arguments were proper, string has been
678 	 * successfully copied from userspace, and copying pointers
679 	 * from user-space succeed.
680 	 */
681 	sig = SIGABRT;
682 out:
683 	if (sig == SIGKILL) {
684 		sbuf_trim(sb);
685 		sbuf_printf(sb, " (Reason text inaccessible)");
686 	}
687 	sbuf_cat(sb, "\n");
688 	sbuf_finish(sb);
689 	log(LOG_INFO, "%s", sbuf_data(sb));
690 	sbuf_delete(sb);
691 	exit1(td, 0, sig);
692 	return (0);
693 }
694 
695 
696 #ifdef COMPAT_43
697 /*
698  * The dirty work is handled by kern_wait().
699  */
700 int
701 owait(struct thread *td, struct owait_args *uap __unused)
702 {
703 	int error, status;
704 
705 	error = kern_wait(td, WAIT_ANY, &status, 0, NULL);
706 	if (error == 0)
707 		td->td_retval[1] = status;
708 	return (error);
709 }
710 #endif /* COMPAT_43 */
711 
712 /*
713  * The dirty work is handled by kern_wait().
714  */
715 int
716 sys_wait4(struct thread *td, struct wait4_args *uap)
717 {
718 	struct rusage ru, *rup;
719 	int error, status;
720 
721 	if (uap->rusage != NULL)
722 		rup = &ru;
723 	else
724 		rup = NULL;
725 	error = kern_wait(td, uap->pid, &status, uap->options, rup);
726 	if (uap->status != NULL && error == 0 && td->td_retval[0] != 0)
727 		error = copyout(&status, uap->status, sizeof(status));
728 	if (uap->rusage != NULL && error == 0 && td->td_retval[0] != 0)
729 		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
730 	return (error);
731 }
732 
733 int
734 sys_wait6(struct thread *td, struct wait6_args *uap)
735 {
736 	struct __wrusage wru, *wrup;
737 	siginfo_t si, *sip;
738 	idtype_t idtype;
739 	id_t id;
740 	int error, status;
741 
742 	idtype = uap->idtype;
743 	id = uap->id;
744 
745 	if (uap->wrusage != NULL)
746 		wrup = &wru;
747 	else
748 		wrup = NULL;
749 
750 	if (uap->info != NULL) {
751 		sip = &si;
752 		bzero(sip, sizeof(*sip));
753 	} else
754 		sip = NULL;
755 
756 	/*
757 	 *  We expect all callers of wait6() to know about WEXITED and
758 	 *  WTRAPPED.
759 	 */
760 	error = kern_wait6(td, idtype, id, &status, uap->options, wrup, sip);
761 
762 	if (uap->status != NULL && error == 0 && td->td_retval[0] != 0)
763 		error = copyout(&status, uap->status, sizeof(status));
764 	if (uap->wrusage != NULL && error == 0 && td->td_retval[0] != 0)
765 		error = copyout(&wru, uap->wrusage, sizeof(wru));
766 	if (uap->info != NULL && error == 0)
767 		error = copyout(&si, uap->info, sizeof(si));
768 	return (error);
769 }
770 
771 /*
772  * Reap the remains of a zombie process and optionally return status and
773  * rusage.  Asserts and will release both the proctree_lock and the process
774  * lock as part of its work.
775  */
776 void
777 proc_reap(struct thread *td, struct proc *p, int *status, int options)
778 {
779 	struct proc *q, *t;
780 
781 	sx_assert(&proctree_lock, SA_XLOCKED);
782 	PROC_LOCK_ASSERT(p, MA_OWNED);
783 	PROC_SLOCK_ASSERT(p, MA_OWNED);
784 	KASSERT(p->p_state == PRS_ZOMBIE, ("proc_reap: !PRS_ZOMBIE"));
785 
786 	q = td->td_proc;
787 
788 	PROC_SUNLOCK(p);
789 	if (status)
790 		*status = KW_EXITCODE(p->p_xexit, p->p_xsig);
791 	if (options & WNOWAIT) {
792 		/*
793 		 *  Only poll, returning the status.  Caller does not wish to
794 		 * release the proc struct just yet.
795 		 */
796 		PROC_UNLOCK(p);
797 		sx_xunlock(&proctree_lock);
798 		return;
799 	}
800 
801 	PROC_LOCK(q);
802 	sigqueue_take(p->p_ksi);
803 	PROC_UNLOCK(q);
804 
805 	/*
806 	 * If we got the child via a ptrace 'attach', we need to give it back
807 	 * to the old parent.
808 	 */
809 	if (p->p_oppid != 0 && p->p_oppid != p->p_pptr->p_pid) {
810 		PROC_UNLOCK(p);
811 		t = proc_realparent(p);
812 		PROC_LOCK(t);
813 		PROC_LOCK(p);
814 		CTR2(KTR_PTRACE,
815 		    "wait: traced child %d moved back to parent %d", p->p_pid,
816 		    t->p_pid);
817 		proc_reparent(p, t);
818 		p->p_oppid = 0;
819 		PROC_UNLOCK(p);
820 		pksignal(t, SIGCHLD, p->p_ksi);
821 		wakeup(t);
822 		cv_broadcast(&p->p_pwait);
823 		PROC_UNLOCK(t);
824 		sx_xunlock(&proctree_lock);
825 		return;
826 	}
827 	p->p_oppid = 0;
828 	PROC_UNLOCK(p);
829 
830 	/*
831 	 * Remove other references to this process to ensure we have an
832 	 * exclusive reference.
833 	 */
834 	sx_xlock(&allproc_lock);
835 	LIST_REMOVE(p, p_list);	/* off zombproc */
836 	sx_xunlock(&allproc_lock);
837 	LIST_REMOVE(p, p_sibling);
838 	reaper_abandon_children(p, true);
839 	LIST_REMOVE(p, p_reapsibling);
840 	PROC_LOCK(p);
841 	clear_orphan(p);
842 	PROC_UNLOCK(p);
843 	leavepgrp(p);
844 	if (p->p_procdesc != NULL)
845 		procdesc_reap(p);
846 	sx_xunlock(&proctree_lock);
847 
848 	PROC_LOCK(p);
849 	knlist_detach(p->p_klist);
850 	p->p_klist = NULL;
851 	PROC_UNLOCK(p);
852 
853 	/*
854 	 * Removal from allproc list and process group list paired with
855 	 * PROC_LOCK which was executed during that time should guarantee
856 	 * nothing can reach this process anymore. As such further locking
857 	 * is unnecessary.
858 	 */
859 	p->p_xexit = p->p_xsig = 0;		/* XXX: why? */
860 
861 	PROC_LOCK(q);
862 	ruadd(&q->p_stats->p_cru, &q->p_crux, &p->p_ru, &p->p_rux);
863 	PROC_UNLOCK(q);
864 
865 	/*
866 	 * Decrement the count of procs running with this uid.
867 	 */
868 	(void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
869 
870 	/*
871 	 * Destroy resource accounting information associated with the process.
872 	 */
873 #ifdef RACCT
874 	if (racct_enable) {
875 		PROC_LOCK(p);
876 		racct_sub(p, RACCT_NPROC, 1);
877 		PROC_UNLOCK(p);
878 	}
879 #endif
880 	racct_proc_exit(p);
881 
882 	/*
883 	 * Free credentials, arguments, and sigacts.
884 	 */
885 	crfree(p->p_ucred);
886 	proc_set_cred(p, NULL);
887 	pargs_drop(p->p_args);
888 	p->p_args = NULL;
889 	sigacts_free(p->p_sigacts);
890 	p->p_sigacts = NULL;
891 
892 	/*
893 	 * Do any thread-system specific cleanups.
894 	 */
895 	thread_wait(p);
896 
897 	/*
898 	 * Give vm and machine-dependent layer a chance to free anything that
899 	 * cpu_exit couldn't release while still running in process context.
900 	 */
901 	vm_waitproc(p);
902 #ifdef MAC
903 	mac_proc_destroy(p);
904 #endif
905 	/*
906 	 * Free any domain policy that's still hiding around.
907 	 */
908 	vm_domain_policy_cleanup(&p->p_vm_dom_policy);
909 
910 	KASSERT(FIRST_THREAD_IN_PROC(p),
911 	    ("proc_reap: no residual thread!"));
912 	uma_zfree(proc_zone, p);
913 	atomic_add_int(&nprocs, -1);
914 }
915 
916 static int
917 proc_to_reap(struct thread *td, struct proc *p, idtype_t idtype, id_t id,
918     int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo,
919     int check_only)
920 {
921 	struct rusage *rup;
922 
923 	sx_assert(&proctree_lock, SA_XLOCKED);
924 
925 	PROC_LOCK(p);
926 
927 	switch (idtype) {
928 	case P_ALL:
929 		if (p->p_procdesc != NULL) {
930 			PROC_UNLOCK(p);
931 			return (0);
932 		}
933 		break;
934 	case P_PID:
935 		if (p->p_pid != (pid_t)id) {
936 			PROC_UNLOCK(p);
937 			return (0);
938 		}
939 		break;
940 	case P_PGID:
941 		if (p->p_pgid != (pid_t)id) {
942 			PROC_UNLOCK(p);
943 			return (0);
944 		}
945 		break;
946 	case P_SID:
947 		if (p->p_session->s_sid != (pid_t)id) {
948 			PROC_UNLOCK(p);
949 			return (0);
950 		}
951 		break;
952 	case P_UID:
953 		if (p->p_ucred->cr_uid != (uid_t)id) {
954 			PROC_UNLOCK(p);
955 			return (0);
956 		}
957 		break;
958 	case P_GID:
959 		if (p->p_ucred->cr_gid != (gid_t)id) {
960 			PROC_UNLOCK(p);
961 			return (0);
962 		}
963 		break;
964 	case P_JAILID:
965 		if (p->p_ucred->cr_prison->pr_id != (int)id) {
966 			PROC_UNLOCK(p);
967 			return (0);
968 		}
969 		break;
970 	/*
971 	 * It seems that the thread structures get zeroed out
972 	 * at process exit.  This makes it impossible to
973 	 * support P_SETID, P_CID or P_CPUID.
974 	 */
975 	default:
976 		PROC_UNLOCK(p);
977 		return (0);
978 	}
979 
980 	if (p_canwait(td, p)) {
981 		PROC_UNLOCK(p);
982 		return (0);
983 	}
984 
985 	if (((options & WEXITED) == 0) && (p->p_state == PRS_ZOMBIE)) {
986 		PROC_UNLOCK(p);
987 		return (0);
988 	}
989 
990 	/*
991 	 * This special case handles a kthread spawned by linux_clone
992 	 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
993 	 * functions need to be able to distinguish between waiting
994 	 * on a process and waiting on a thread.  It is a thread if
995 	 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
996 	 * signifies we want to wait for threads and not processes.
997 	 */
998 	if ((p->p_sigparent != SIGCHLD) ^
999 	    ((options & WLINUXCLONE) != 0)) {
1000 		PROC_UNLOCK(p);
1001 		return (0);
1002 	}
1003 
1004 	if (siginfo != NULL) {
1005 		bzero(siginfo, sizeof(*siginfo));
1006 		siginfo->si_errno = 0;
1007 
1008 		/*
1009 		 * SUSv4 requires that the si_signo value is always
1010 		 * SIGCHLD. Obey it despite the rfork(2) interface
1011 		 * allows to request other signal for child exit
1012 		 * notification.
1013 		 */
1014 		siginfo->si_signo = SIGCHLD;
1015 
1016 		/*
1017 		 *  This is still a rough estimate.  We will fix the
1018 		 *  cases TRAPPED, STOPPED, and CONTINUED later.
1019 		 */
1020 		if (WCOREDUMP(p->p_xsig)) {
1021 			siginfo->si_code = CLD_DUMPED;
1022 			siginfo->si_status = WTERMSIG(p->p_xsig);
1023 		} else if (WIFSIGNALED(p->p_xsig)) {
1024 			siginfo->si_code = CLD_KILLED;
1025 			siginfo->si_status = WTERMSIG(p->p_xsig);
1026 		} else {
1027 			siginfo->si_code = CLD_EXITED;
1028 			siginfo->si_status = p->p_xexit;
1029 		}
1030 
1031 		siginfo->si_pid = p->p_pid;
1032 		siginfo->si_uid = p->p_ucred->cr_uid;
1033 
1034 		/*
1035 		 * The si_addr field would be useful additional
1036 		 * detail, but apparently the PC value may be lost
1037 		 * when we reach this point.  bzero() above sets
1038 		 * siginfo->si_addr to NULL.
1039 		 */
1040 	}
1041 
1042 	/*
1043 	 * There should be no reason to limit resources usage info to
1044 	 * exited processes only.  A snapshot about any resources used
1045 	 * by a stopped process may be exactly what is needed.
1046 	 */
1047 	if (wrusage != NULL) {
1048 		rup = &wrusage->wru_self;
1049 		*rup = p->p_ru;
1050 		PROC_STATLOCK(p);
1051 		calcru(p, &rup->ru_utime, &rup->ru_stime);
1052 		PROC_STATUNLOCK(p);
1053 
1054 		rup = &wrusage->wru_children;
1055 		*rup = p->p_stats->p_cru;
1056 		calccru(p, &rup->ru_utime, &rup->ru_stime);
1057 	}
1058 
1059 	if (p->p_state == PRS_ZOMBIE && !check_only) {
1060 		PROC_SLOCK(p);
1061 		proc_reap(td, p, status, options);
1062 		return (-1);
1063 	}
1064 	PROC_UNLOCK(p);
1065 	return (1);
1066 }
1067 
1068 int
1069 kern_wait(struct thread *td, pid_t pid, int *status, int options,
1070     struct rusage *rusage)
1071 {
1072 	struct __wrusage wru, *wrup;
1073 	idtype_t idtype;
1074 	id_t id;
1075 	int ret;
1076 
1077 	/*
1078 	 * Translate the special pid values into the (idtype, pid)
1079 	 * pair for kern_wait6.  The WAIT_MYPGRP case is handled by
1080 	 * kern_wait6() on its own.
1081 	 */
1082 	if (pid == WAIT_ANY) {
1083 		idtype = P_ALL;
1084 		id = 0;
1085 	} else if (pid < 0) {
1086 		idtype = P_PGID;
1087 		id = (id_t)-pid;
1088 	} else {
1089 		idtype = P_PID;
1090 		id = (id_t)pid;
1091 	}
1092 
1093 	if (rusage != NULL)
1094 		wrup = &wru;
1095 	else
1096 		wrup = NULL;
1097 
1098 	/*
1099 	 * For backward compatibility we implicitly add flags WEXITED
1100 	 * and WTRAPPED here.
1101 	 */
1102 	options |= WEXITED | WTRAPPED;
1103 	ret = kern_wait6(td, idtype, id, status, options, wrup, NULL);
1104 	if (rusage != NULL)
1105 		*rusage = wru.wru_self;
1106 	return (ret);
1107 }
1108 
1109 int
1110 kern_wait6(struct thread *td, idtype_t idtype, id_t id, int *status,
1111     int options, struct __wrusage *wrusage, siginfo_t *siginfo)
1112 {
1113 	struct proc *p, *q;
1114 	pid_t pid;
1115 	int error, nfound, ret;
1116 
1117 	AUDIT_ARG_VALUE((int)idtype);	/* XXX - This is likely wrong! */
1118 	AUDIT_ARG_PID((pid_t)id);	/* XXX - This may be wrong! */
1119 	AUDIT_ARG_VALUE(options);
1120 
1121 	q = td->td_proc;
1122 
1123 	if ((pid_t)id == WAIT_MYPGRP && (idtype == P_PID || idtype == P_PGID)) {
1124 		PROC_LOCK(q);
1125 		id = (id_t)q->p_pgid;
1126 		PROC_UNLOCK(q);
1127 		idtype = P_PGID;
1128 	}
1129 
1130 	/* If we don't know the option, just return. */
1131 	if ((options & ~(WUNTRACED | WNOHANG | WCONTINUED | WNOWAIT |
1132 	    WEXITED | WTRAPPED | WLINUXCLONE)) != 0)
1133 		return (EINVAL);
1134 	if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) {
1135 		/*
1136 		 * We will be unable to find any matching processes,
1137 		 * because there are no known events to look for.
1138 		 * Prefer to return error instead of blocking
1139 		 * indefinitely.
1140 		 */
1141 		return (EINVAL);
1142 	}
1143 
1144 loop:
1145 	if (q->p_flag & P_STATCHILD) {
1146 		PROC_LOCK(q);
1147 		q->p_flag &= ~P_STATCHILD;
1148 		PROC_UNLOCK(q);
1149 	}
1150 	nfound = 0;
1151 	sx_xlock(&proctree_lock);
1152 	LIST_FOREACH(p, &q->p_children, p_sibling) {
1153 		pid = p->p_pid;
1154 		ret = proc_to_reap(td, p, idtype, id, status, options,
1155 		    wrusage, siginfo, 0);
1156 		if (ret == 0)
1157 			continue;
1158 		else if (ret == 1)
1159 			nfound++;
1160 		else {
1161 			td->td_retval[0] = pid;
1162 			return (0);
1163 		}
1164 
1165 		PROC_LOCK(p);
1166 		PROC_SLOCK(p);
1167 
1168 		if ((options & WTRAPPED) != 0 &&
1169 		    (p->p_flag & P_TRACED) != 0 &&
1170 		    (p->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) != 0 &&
1171 		    (p->p_suspcount == p->p_numthreads) &&
1172 		    ((p->p_flag & P_WAITED) == 0)) {
1173 			PROC_SUNLOCK(p);
1174 			if ((options & WNOWAIT) == 0)
1175 				p->p_flag |= P_WAITED;
1176 			sx_xunlock(&proctree_lock);
1177 
1178 			if (status != NULL)
1179 				*status = W_STOPCODE(p->p_xsig);
1180 			if (siginfo != NULL) {
1181 				siginfo->si_status = p->p_xsig;
1182 				siginfo->si_code = CLD_TRAPPED;
1183 			}
1184 			if ((options & WNOWAIT) == 0) {
1185 				PROC_LOCK(q);
1186 				sigqueue_take(p->p_ksi);
1187 				PROC_UNLOCK(q);
1188 			}
1189 
1190 			CTR4(KTR_PTRACE,
1191 	    "wait: returning trapped pid %d status %#x (xstat %d) xthread %d",
1192 			    p->p_pid, W_STOPCODE(p->p_xsig), p->p_xsig,
1193 			    p->p_xthread != NULL ? p->p_xthread->td_tid : -1);
1194 			PROC_UNLOCK(p);
1195 			td->td_retval[0] = pid;
1196 			return (0);
1197 		}
1198 		if ((options & WUNTRACED) != 0 &&
1199 		    (p->p_flag & P_STOPPED_SIG) != 0 &&
1200 		    (p->p_suspcount == p->p_numthreads) &&
1201 		    ((p->p_flag & P_WAITED) == 0)) {
1202 			PROC_SUNLOCK(p);
1203 			if ((options & WNOWAIT) == 0)
1204 				p->p_flag |= P_WAITED;
1205 			sx_xunlock(&proctree_lock);
1206 
1207 			if (status != NULL)
1208 				*status = W_STOPCODE(p->p_xsig);
1209 			if (siginfo != NULL) {
1210 				siginfo->si_status = p->p_xsig;
1211 				siginfo->si_code = CLD_STOPPED;
1212 			}
1213 			if ((options & WNOWAIT) == 0) {
1214 				PROC_LOCK(q);
1215 				sigqueue_take(p->p_ksi);
1216 				PROC_UNLOCK(q);
1217 			}
1218 
1219 			PROC_UNLOCK(p);
1220 			td->td_retval[0] = pid;
1221 			return (0);
1222 		}
1223 		PROC_SUNLOCK(p);
1224 		if ((options & WCONTINUED) != 0 &&
1225 		    (p->p_flag & P_CONTINUED) != 0) {
1226 			sx_xunlock(&proctree_lock);
1227 			if ((options & WNOWAIT) == 0) {
1228 				p->p_flag &= ~P_CONTINUED;
1229 				PROC_LOCK(q);
1230 				sigqueue_take(p->p_ksi);
1231 				PROC_UNLOCK(q);
1232 			}
1233 			PROC_UNLOCK(p);
1234 
1235 			if (status != NULL)
1236 				*status = SIGCONT;
1237 			if (siginfo != NULL) {
1238 				siginfo->si_status = SIGCONT;
1239 				siginfo->si_code = CLD_CONTINUED;
1240 			}
1241 			td->td_retval[0] = pid;
1242 			return (0);
1243 		}
1244 		PROC_UNLOCK(p);
1245 	}
1246 
1247 	/*
1248 	 * Look in the orphans list too, to allow the parent to
1249 	 * collect it's child exit status even if child is being
1250 	 * debugged.
1251 	 *
1252 	 * Debugger detaches from the parent upon successful
1253 	 * switch-over from parent to child.  At this point due to
1254 	 * re-parenting the parent loses the child to debugger and a
1255 	 * wait4(2) call would report that it has no children to wait
1256 	 * for.  By maintaining a list of orphans we allow the parent
1257 	 * to successfully wait until the child becomes a zombie.
1258 	 */
1259 	if (nfound == 0) {
1260 		LIST_FOREACH(p, &q->p_orphans, p_orphan) {
1261 			ret = proc_to_reap(td, p, idtype, id, NULL, options,
1262 			    NULL, NULL, 1);
1263 			if (ret != 0) {
1264 				KASSERT(ret != -1, ("reaped an orphan (pid %d)",
1265 				    (int)td->td_retval[0]));
1266 				nfound++;
1267 				break;
1268 			}
1269 		}
1270 	}
1271 	if (nfound == 0) {
1272 		sx_xunlock(&proctree_lock);
1273 		return (ECHILD);
1274 	}
1275 	if (options & WNOHANG) {
1276 		sx_xunlock(&proctree_lock);
1277 		td->td_retval[0] = 0;
1278 		return (0);
1279 	}
1280 	PROC_LOCK(q);
1281 	sx_xunlock(&proctree_lock);
1282 	if (q->p_flag & P_STATCHILD) {
1283 		q->p_flag &= ~P_STATCHILD;
1284 		error = 0;
1285 	} else
1286 		error = msleep(q, &q->p_mtx, PWAIT | PCATCH, "wait", 0);
1287 	PROC_UNLOCK(q);
1288 	if (error)
1289 		return (error);
1290 	goto loop;
1291 }
1292 
1293 /*
1294  * Make process 'parent' the new parent of process 'child'.
1295  * Must be called with an exclusive hold of proctree lock.
1296  */
1297 void
1298 proc_reparent(struct proc *child, struct proc *parent)
1299 {
1300 
1301 	sx_assert(&proctree_lock, SX_XLOCKED);
1302 	PROC_LOCK_ASSERT(child, MA_OWNED);
1303 	if (child->p_pptr == parent)
1304 		return;
1305 
1306 	PROC_LOCK(child->p_pptr);
1307 	sigqueue_take(child->p_ksi);
1308 	PROC_UNLOCK(child->p_pptr);
1309 	LIST_REMOVE(child, p_sibling);
1310 	LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1311 
1312 	clear_orphan(child);
1313 	if (child->p_flag & P_TRACED) {
1314 		if (LIST_EMPTY(&child->p_pptr->p_orphans)) {
1315 			child->p_treeflag |= P_TREE_FIRST_ORPHAN;
1316 			LIST_INSERT_HEAD(&child->p_pptr->p_orphans, child,
1317 			    p_orphan);
1318 		} else {
1319 			LIST_INSERT_AFTER(LIST_FIRST(&child->p_pptr->p_orphans),
1320 			    child, p_orphan);
1321 		}
1322 		child->p_treeflag |= P_TREE_ORPHANED;
1323 	}
1324 
1325 	child->p_pptr = parent;
1326 }
1327