1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * (c) UNIX System Laboratories, Inc. 7 * All or some portions of this file are derived from material licensed 8 * to the University of California by American Telephone and Telegraph 9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 10 * the permission of UNIX System Laboratories, Inc. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * @(#)kern_exit.c 8.7 (Berkeley) 2/12/94 37 */ 38 39 #include <sys/cdefs.h> 40 __FBSDID("$FreeBSD$"); 41 42 #include "opt_ktrace.h" 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/sysproto.h> 47 #include <sys/capsicum.h> 48 #include <sys/eventhandler.h> 49 #include <sys/kernel.h> 50 #include <sys/malloc.h> 51 #include <sys/lock.h> 52 #include <sys/mutex.h> 53 #include <sys/proc.h> 54 #include <sys/procdesc.h> 55 #include <sys/pioctl.h> 56 #include <sys/jail.h> 57 #include <sys/tty.h> 58 #include <sys/wait.h> 59 #include <sys/vmmeter.h> 60 #include <sys/vnode.h> 61 #include <sys/racct.h> 62 #include <sys/resourcevar.h> 63 #include <sys/sbuf.h> 64 #include <sys/signalvar.h> 65 #include <sys/sched.h> 66 #include <sys/sx.h> 67 #include <sys/syscallsubr.h> 68 #include <sys/syslog.h> 69 #include <sys/ptrace.h> 70 #include <sys/acct.h> /* for acct_process() function prototype */ 71 #include <sys/filedesc.h> 72 #include <sys/sdt.h> 73 #include <sys/shm.h> 74 #include <sys/sem.h> 75 #include <sys/umtx.h> 76 #ifdef KTRACE 77 #include <sys/ktrace.h> 78 #endif 79 80 #include <security/audit/audit.h> 81 #include <security/mac/mac_framework.h> 82 83 #include <vm/vm.h> 84 #include <vm/vm_extern.h> 85 #include <vm/vm_param.h> 86 #include <vm/pmap.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_page.h> 89 #include <vm/uma.h> 90 91 #ifdef KDTRACE_HOOKS 92 #include <sys/dtrace_bsd.h> 93 dtrace_execexit_func_t dtrace_fasttrap_exit; 94 #endif 95 96 SDT_PROVIDER_DECLARE(proc); 97 SDT_PROBE_DEFINE1(proc, , , exit, "int"); 98 99 /* Hook for NFS teardown procedure. */ 100 void (*nlminfo_release_p)(struct proc *p); 101 102 struct proc * 103 proc_realparent(struct proc *child) 104 { 105 struct proc *p, *parent; 106 107 sx_assert(&proctree_lock, SX_LOCKED); 108 if ((child->p_treeflag & P_TREE_ORPHANED) == 0) 109 return (child->p_pptr->p_pid == child->p_oppid ? 110 child->p_pptr : initproc); 111 for (p = child; (p->p_treeflag & P_TREE_FIRST_ORPHAN) == 0;) { 112 /* Cannot use LIST_PREV(), since the list head is not known. */ 113 p = __containerof(p->p_orphan.le_prev, struct proc, 114 p_orphan.le_next); 115 KASSERT((p->p_treeflag & P_TREE_ORPHANED) != 0, 116 ("missing P_ORPHAN %p", p)); 117 } 118 parent = __containerof(p->p_orphan.le_prev, struct proc, 119 p_orphans.lh_first); 120 return (parent); 121 } 122 123 void 124 reaper_abandon_children(struct proc *p, bool exiting) 125 { 126 struct proc *p1, *p2, *ptmp; 127 128 sx_assert(&proctree_lock, SX_LOCKED); 129 KASSERT(p != initproc, ("reaper_abandon_children for initproc")); 130 if ((p->p_treeflag & P_TREE_REAPER) == 0) 131 return; 132 p1 = p->p_reaper; 133 LIST_FOREACH_SAFE(p2, &p->p_reaplist, p_reapsibling, ptmp) { 134 LIST_REMOVE(p2, p_reapsibling); 135 p2->p_reaper = p1; 136 p2->p_reapsubtree = p->p_reapsubtree; 137 LIST_INSERT_HEAD(&p1->p_reaplist, p2, p_reapsibling); 138 if (exiting && p2->p_pptr == p) { 139 PROC_LOCK(p2); 140 proc_reparent(p2, p1, true); 141 PROC_UNLOCK(p2); 142 } 143 } 144 KASSERT(LIST_EMPTY(&p->p_reaplist), ("p_reaplist not empty")); 145 p->p_treeflag &= ~P_TREE_REAPER; 146 } 147 148 static void 149 reaper_clear(struct proc *p) 150 { 151 struct proc *p1; 152 bool clear; 153 154 sx_assert(&proctree_lock, SX_LOCKED); 155 LIST_REMOVE(p, p_reapsibling); 156 if (p->p_reapsubtree == 1) 157 return; 158 clear = true; 159 LIST_FOREACH(p1, &p->p_reaper->p_reaplist, p_reapsibling) { 160 if (p1->p_reapsubtree == p->p_reapsubtree) { 161 clear = false; 162 break; 163 } 164 } 165 if (clear) 166 proc_id_clear(PROC_ID_REAP, p->p_reapsubtree); 167 } 168 169 static void 170 clear_orphan(struct proc *p) 171 { 172 struct proc *p1; 173 174 sx_assert(&proctree_lock, SA_XLOCKED); 175 if ((p->p_treeflag & P_TREE_ORPHANED) == 0) 176 return; 177 if ((p->p_treeflag & P_TREE_FIRST_ORPHAN) != 0) { 178 p1 = LIST_NEXT(p, p_orphan); 179 if (p1 != NULL) 180 p1->p_treeflag |= P_TREE_FIRST_ORPHAN; 181 p->p_treeflag &= ~P_TREE_FIRST_ORPHAN; 182 } 183 LIST_REMOVE(p, p_orphan); 184 p->p_treeflag &= ~P_TREE_ORPHANED; 185 } 186 187 /* 188 * exit -- death of process. 189 */ 190 void 191 sys_sys_exit(struct thread *td, struct sys_exit_args *uap) 192 { 193 194 exit1(td, uap->rval, 0); 195 /* NOTREACHED */ 196 } 197 198 /* 199 * Exit: deallocate address space and other resources, change proc state to 200 * zombie, and unlink proc from allproc and parent's lists. Save exit status 201 * and rusage for wait(). Check for child processes and orphan them. 202 */ 203 void 204 exit1(struct thread *td, int rval, int signo) 205 { 206 struct proc *p, *nq, *q, *t; 207 struct thread *tdt; 208 ksiginfo_t *ksi, *ksi1; 209 int signal_parent; 210 211 mtx_assert(&Giant, MA_NOTOWNED); 212 KASSERT(rval == 0 || signo == 0, ("exit1 rv %d sig %d", rval, signo)); 213 214 p = td->td_proc; 215 /* 216 * XXX in case we're rebooting we just let init die in order to 217 * work around an unsolved stack overflow seen very late during 218 * shutdown on sparc64 when the gmirror worker process exists. 219 */ 220 if (p == initproc && rebooting == 0) { 221 printf("init died (signal %d, exit %d)\n", signo, rval); 222 panic("Going nowhere without my init!"); 223 } 224 225 /* 226 * Deref SU mp, since the thread does not return to userspace. 227 */ 228 td_softdep_cleanup(td); 229 230 /* 231 * MUST abort all other threads before proceeding past here. 232 */ 233 PROC_LOCK(p); 234 /* 235 * First check if some other thread or external request got 236 * here before us. If so, act appropriately: exit or suspend. 237 * We must ensure that stop requests are handled before we set 238 * P_WEXIT. 239 */ 240 thread_suspend_check(0); 241 while (p->p_flag & P_HADTHREADS) { 242 /* 243 * Kill off the other threads. This requires 244 * some co-operation from other parts of the kernel 245 * so it may not be instantaneous. With this state set 246 * any thread entering the kernel from userspace will 247 * thread_exit() in trap(). Any thread attempting to 248 * sleep will return immediately with EINTR or EWOULDBLOCK 249 * which will hopefully force them to back out to userland 250 * freeing resources as they go. Any thread attempting 251 * to return to userland will thread_exit() from userret(). 252 * thread_exit() will unsuspend us when the last of the 253 * other threads exits. 254 * If there is already a thread singler after resumption, 255 * calling thread_single will fail; in that case, we just 256 * re-check all suspension request, the thread should 257 * either be suspended there or exit. 258 */ 259 if (!thread_single(p, SINGLE_EXIT)) 260 /* 261 * All other activity in this process is now 262 * stopped. Threading support has been turned 263 * off. 264 */ 265 break; 266 /* 267 * Recheck for new stop or suspend requests which 268 * might appear while process lock was dropped in 269 * thread_single(). 270 */ 271 thread_suspend_check(0); 272 } 273 KASSERT(p->p_numthreads == 1, 274 ("exit1: proc %p exiting with %d threads", p, p->p_numthreads)); 275 racct_sub(p, RACCT_NTHR, 1); 276 277 /* Let event handler change exit status */ 278 p->p_xexit = rval; 279 p->p_xsig = signo; 280 281 /* 282 * Wakeup anyone in procfs' PIOCWAIT. They should have a hold 283 * on our vmspace, so we should block below until they have 284 * released their reference to us. Note that if they have 285 * requested S_EXIT stops we will block here until they ack 286 * via PIOCCONT. 287 */ 288 _STOPEVENT(p, S_EXIT, 0); 289 290 /* 291 * Ignore any pending request to stop due to a stop signal. 292 * Once P_WEXIT is set, future requests will be ignored as 293 * well. 294 */ 295 p->p_flag &= ~P_STOPPED_SIG; 296 KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped")); 297 298 /* 299 * Note that we are exiting and do another wakeup of anyone in 300 * PIOCWAIT in case they aren't listening for S_EXIT stops or 301 * decided to wait again after we told them we are exiting. 302 */ 303 p->p_flag |= P_WEXIT; 304 wakeup(&p->p_stype); 305 306 /* 307 * Wait for any processes that have a hold on our vmspace to 308 * release their reference. 309 */ 310 while (p->p_lock > 0) 311 msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0); 312 313 PROC_UNLOCK(p); 314 /* Drain the limit callout while we don't have the proc locked */ 315 callout_drain(&p->p_limco); 316 317 #ifdef AUDIT 318 /* 319 * The Sun BSM exit token contains two components: an exit status as 320 * passed to exit(), and a return value to indicate what sort of exit 321 * it was. The exit status is WEXITSTATUS(rv), but it's not clear 322 * what the return value is. 323 */ 324 AUDIT_ARG_EXIT(rval, 0); 325 AUDIT_SYSCALL_EXIT(0, td); 326 #endif 327 328 /* Are we a task leader with peers? */ 329 if (p->p_peers != NULL && p == p->p_leader) { 330 mtx_lock(&ppeers_lock); 331 q = p->p_peers; 332 while (q != NULL) { 333 PROC_LOCK(q); 334 kern_psignal(q, SIGKILL); 335 PROC_UNLOCK(q); 336 q = q->p_peers; 337 } 338 while (p->p_peers != NULL) 339 msleep(p, &ppeers_lock, PWAIT, "exit1", 0); 340 mtx_unlock(&ppeers_lock); 341 } 342 343 /* 344 * Check if any loadable modules need anything done at process exit. 345 * E.g. SYSV IPC stuff. 346 * Event handler could change exit status. 347 * XXX what if one of these generates an error? 348 */ 349 EVENTHANDLER_DIRECT_INVOKE(process_exit, p); 350 351 /* 352 * If parent is waiting for us to exit or exec, 353 * P_PPWAIT is set; we will wakeup the parent below. 354 */ 355 PROC_LOCK(p); 356 stopprofclock(p); 357 p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE); 358 p->p_ptevents = 0; 359 360 /* 361 * Stop the real interval timer. If the handler is currently 362 * executing, prevent it from rearming itself and let it finish. 363 */ 364 if (timevalisset(&p->p_realtimer.it_value) && 365 _callout_stop_safe(&p->p_itcallout, CS_EXECUTING, NULL) == 0) { 366 timevalclear(&p->p_realtimer.it_interval); 367 msleep(&p->p_itcallout, &p->p_mtx, PWAIT, "ritwait", 0); 368 KASSERT(!timevalisset(&p->p_realtimer.it_value), 369 ("realtime timer is still armed")); 370 } 371 372 PROC_UNLOCK(p); 373 374 umtx_thread_exit(td); 375 376 /* 377 * Reset any sigio structures pointing to us as a result of 378 * F_SETOWN with our pid. 379 */ 380 funsetownlst(&p->p_sigiolst); 381 382 /* 383 * If this process has an nlminfo data area (for lockd), release it 384 */ 385 if (nlminfo_release_p != NULL && p->p_nlminfo != NULL) 386 (*nlminfo_release_p)(p); 387 388 /* 389 * Close open files and release open-file table. 390 * This may block! 391 */ 392 fdescfree(td); 393 394 /* 395 * If this thread tickled GEOM, we need to wait for the giggling to 396 * stop before we return to userland 397 */ 398 if (td->td_pflags & TDP_GEOM) 399 g_waitidle(); 400 401 /* 402 * Remove ourself from our leader's peer list and wake our leader. 403 */ 404 if (p->p_leader->p_peers != NULL) { 405 mtx_lock(&ppeers_lock); 406 if (p->p_leader->p_peers != NULL) { 407 q = p->p_leader; 408 while (q->p_peers != p) 409 q = q->p_peers; 410 q->p_peers = p->p_peers; 411 wakeup(p->p_leader); 412 } 413 mtx_unlock(&ppeers_lock); 414 } 415 416 vmspace_exit(td); 417 killjobc(); 418 (void)acct_process(td); 419 420 #ifdef KTRACE 421 ktrprocexit(td); 422 #endif 423 /* 424 * Release reference to text vnode 425 */ 426 if (p->p_textvp != NULL) { 427 vrele(p->p_textvp); 428 p->p_textvp = NULL; 429 } 430 431 /* 432 * Release our limits structure. 433 */ 434 lim_free(p->p_limit); 435 p->p_limit = NULL; 436 437 tidhash_remove(td); 438 439 /* 440 * Call machine-dependent code to release any 441 * machine-dependent resources other than the address space. 442 * The address space is released by "vmspace_exitfree(p)" in 443 * vm_waitproc(). 444 */ 445 cpu_exit(td); 446 447 WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid); 448 449 /* 450 * Move proc from allproc queue to zombproc. 451 */ 452 sx_xlock(&allproc_lock); 453 sx_xlock(&zombproc_lock); 454 LIST_REMOVE(p, p_list); 455 LIST_INSERT_HEAD(&zombproc, p, p_list); 456 sx_xunlock(&zombproc_lock); 457 sx_xunlock(&allproc_lock); 458 459 sx_xlock(&proctree_lock); 460 461 /* 462 * Reparent all children processes: 463 * - traced ones to the original parent (or init if we are that parent) 464 * - the rest to init 465 */ 466 q = LIST_FIRST(&p->p_children); 467 if (q != NULL) /* only need this if any child is S_ZOMB */ 468 wakeup(q->p_reaper); 469 for (; q != NULL; q = nq) { 470 nq = LIST_NEXT(q, p_sibling); 471 ksi = ksiginfo_alloc(TRUE); 472 PROC_LOCK(q); 473 q->p_sigparent = SIGCHLD; 474 475 if (!(q->p_flag & P_TRACED)) { 476 proc_reparent(q, q->p_reaper, true); 477 if (q->p_state == PRS_ZOMBIE) { 478 /* 479 * Inform reaper about the reparented 480 * zombie, since wait(2) has something 481 * new to report. Guarantee queueing 482 * of the SIGCHLD signal, similar to 483 * the _exit() behaviour, by providing 484 * our ksiginfo. Ksi is freed by the 485 * signal delivery. 486 */ 487 if (q->p_ksi == NULL) { 488 ksi1 = NULL; 489 } else { 490 ksiginfo_copy(q->p_ksi, ksi); 491 ksi->ksi_flags |= KSI_INS; 492 ksi1 = ksi; 493 ksi = NULL; 494 } 495 PROC_LOCK(q->p_reaper); 496 pksignal(q->p_reaper, SIGCHLD, ksi1); 497 PROC_UNLOCK(q->p_reaper); 498 } else if (q->p_pdeathsig > 0) { 499 /* 500 * The child asked to received a signal 501 * when we exit. 502 */ 503 kern_psignal(q, q->p_pdeathsig); 504 } 505 } else { 506 /* 507 * Traced processes are killed since their existence 508 * means someone is screwing up. 509 */ 510 t = proc_realparent(q); 511 if (t == p) { 512 proc_reparent(q, q->p_reaper, true); 513 } else { 514 PROC_LOCK(t); 515 proc_reparent(q, t, true); 516 PROC_UNLOCK(t); 517 } 518 /* 519 * Since q was found on our children list, the 520 * proc_reparent() call moved q to the orphan 521 * list due to present P_TRACED flag. Clear 522 * orphan link for q now while q is locked. 523 */ 524 clear_orphan(q); 525 q->p_flag &= ~(P_TRACED | P_STOPPED_TRACE); 526 q->p_flag2 &= ~P2_PTRACE_FSTP; 527 q->p_ptevents = 0; 528 FOREACH_THREAD_IN_PROC(q, tdt) { 529 tdt->td_dbgflags &= ~(TDB_SUSPEND | TDB_XSIG | 530 TDB_FSTP); 531 } 532 kern_psignal(q, SIGKILL); 533 } 534 PROC_UNLOCK(q); 535 if (ksi != NULL) 536 ksiginfo_free(ksi); 537 } 538 539 /* 540 * Also get rid of our orphans. 541 */ 542 while ((q = LIST_FIRST(&p->p_orphans)) != NULL) { 543 PROC_LOCK(q); 544 KASSERT(q->p_oppid == p->p_pid, 545 ("orphan %p of %p has unexpected oppid %d", q, p, 546 q->p_oppid)); 547 q->p_oppid = q->p_reaper->p_pid; 548 549 /* 550 * If we are the real parent of this process 551 * but it has been reparented to a debugger, then 552 * check if it asked for a signal when we exit. 553 */ 554 if (q->p_pdeathsig > 0) 555 kern_psignal(q, q->p_pdeathsig); 556 CTR2(KTR_PTRACE, "exit: pid %d, clearing orphan %d", p->p_pid, 557 q->p_pid); 558 clear_orphan(q); 559 PROC_UNLOCK(q); 560 } 561 562 #ifdef KDTRACE_HOOKS 563 if (SDT_PROBES_ENABLED()) { 564 int reason = CLD_EXITED; 565 if (WCOREDUMP(signo)) 566 reason = CLD_DUMPED; 567 else if (WIFSIGNALED(signo)) 568 reason = CLD_KILLED; 569 SDT_PROBE1(proc, , , exit, reason); 570 } 571 #endif 572 573 /* Save exit status. */ 574 PROC_LOCK(p); 575 p->p_xthread = td; 576 577 #ifdef KDTRACE_HOOKS 578 /* 579 * Tell the DTrace fasttrap provider about the exit if it 580 * has declared an interest. 581 */ 582 if (dtrace_fasttrap_exit) 583 dtrace_fasttrap_exit(p); 584 #endif 585 586 /* 587 * Notify interested parties of our demise. 588 */ 589 KNOTE_LOCKED(p->p_klist, NOTE_EXIT); 590 591 /* 592 * If this is a process with a descriptor, we may not need to deliver 593 * a signal to the parent. proctree_lock is held over 594 * procdesc_exit() to serialize concurrent calls to close() and 595 * exit(). 596 */ 597 signal_parent = 0; 598 if (p->p_procdesc == NULL || procdesc_exit(p)) { 599 /* 600 * Notify parent that we're gone. If parent has the 601 * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN, 602 * notify process 1 instead (and hope it will handle this 603 * situation). 604 */ 605 PROC_LOCK(p->p_pptr); 606 mtx_lock(&p->p_pptr->p_sigacts->ps_mtx); 607 if (p->p_pptr->p_sigacts->ps_flag & 608 (PS_NOCLDWAIT | PS_CLDSIGIGN)) { 609 struct proc *pp; 610 611 mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); 612 pp = p->p_pptr; 613 PROC_UNLOCK(pp); 614 proc_reparent(p, p->p_reaper, true); 615 p->p_sigparent = SIGCHLD; 616 PROC_LOCK(p->p_pptr); 617 618 /* 619 * Notify parent, so in case he was wait(2)ing or 620 * executing waitpid(2) with our pid, he will 621 * continue. 622 */ 623 wakeup(pp); 624 } else 625 mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx); 626 627 if (p->p_pptr == p->p_reaper || p->p_pptr == initproc) { 628 signal_parent = 1; 629 } else if (p->p_sigparent != 0) { 630 if (p->p_sigparent == SIGCHLD) { 631 signal_parent = 1; 632 } else { /* LINUX thread */ 633 signal_parent = 2; 634 } 635 } 636 } else 637 PROC_LOCK(p->p_pptr); 638 sx_xunlock(&proctree_lock); 639 640 if (signal_parent == 1) { 641 childproc_exited(p); 642 } else if (signal_parent == 2) { 643 kern_psignal(p->p_pptr, p->p_sigparent); 644 } 645 646 /* Tell the prison that we are gone. */ 647 prison_proc_free(p->p_ucred->cr_prison); 648 649 /* 650 * The state PRS_ZOMBIE prevents other proesses from sending 651 * signal to the process, to avoid memory leak, we free memory 652 * for signal queue at the time when the state is set. 653 */ 654 sigqueue_flush(&p->p_sigqueue); 655 sigqueue_flush(&td->td_sigqueue); 656 657 /* 658 * We have to wait until after acquiring all locks before 659 * changing p_state. We need to avoid all possible context 660 * switches (including ones from blocking on a mutex) while 661 * marked as a zombie. We also have to set the zombie state 662 * before we release the parent process' proc lock to avoid 663 * a lost wakeup. So, we first call wakeup, then we grab the 664 * sched lock, update the state, and release the parent process' 665 * proc lock. 666 */ 667 wakeup(p->p_pptr); 668 cv_broadcast(&p->p_pwait); 669 sched_exit(p->p_pptr, td); 670 PROC_SLOCK(p); 671 p->p_state = PRS_ZOMBIE; 672 PROC_UNLOCK(p->p_pptr); 673 674 /* 675 * Save our children's rusage information in our exit rusage. 676 */ 677 PROC_STATLOCK(p); 678 ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux); 679 PROC_STATUNLOCK(p); 680 681 /* 682 * Make sure the scheduler takes this thread out of its tables etc. 683 * This will also release this thread's reference to the ucred. 684 * Other thread parts to release include pcb bits and such. 685 */ 686 thread_exit(); 687 } 688 689 690 #ifndef _SYS_SYSPROTO_H_ 691 struct abort2_args { 692 char *why; 693 int nargs; 694 void **args; 695 }; 696 #endif 697 698 int 699 sys_abort2(struct thread *td, struct abort2_args *uap) 700 { 701 struct proc *p = td->td_proc; 702 struct sbuf *sb; 703 void *uargs[16]; 704 int error, i, sig; 705 706 /* 707 * Do it right now so we can log either proper call of abort2(), or 708 * note, that invalid argument was passed. 512 is big enough to 709 * handle 16 arguments' descriptions with additional comments. 710 */ 711 sb = sbuf_new(NULL, NULL, 512, SBUF_FIXEDLEN); 712 sbuf_clear(sb); 713 sbuf_printf(sb, "%s(pid %d uid %d) aborted: ", 714 p->p_comm, p->p_pid, td->td_ucred->cr_uid); 715 /* 716 * Since we can't return from abort2(), send SIGKILL in cases, where 717 * abort2() was called improperly 718 */ 719 sig = SIGKILL; 720 /* Prevent from DoSes from user-space. */ 721 if (uap->nargs < 0 || uap->nargs > 16) 722 goto out; 723 if (uap->nargs > 0) { 724 if (uap->args == NULL) 725 goto out; 726 error = copyin(uap->args, uargs, uap->nargs * sizeof(void *)); 727 if (error != 0) 728 goto out; 729 } 730 /* 731 * Limit size of 'reason' string to 128. Will fit even when 732 * maximal number of arguments was chosen to be logged. 733 */ 734 if (uap->why != NULL) { 735 error = sbuf_copyin(sb, uap->why, 128); 736 if (error < 0) 737 goto out; 738 } else { 739 sbuf_printf(sb, "(null)"); 740 } 741 if (uap->nargs > 0) { 742 sbuf_printf(sb, "("); 743 for (i = 0;i < uap->nargs; i++) 744 sbuf_printf(sb, "%s%p", i == 0 ? "" : ", ", uargs[i]); 745 sbuf_printf(sb, ")"); 746 } 747 /* 748 * Final stage: arguments were proper, string has been 749 * successfully copied from userspace, and copying pointers 750 * from user-space succeed. 751 */ 752 sig = SIGABRT; 753 out: 754 if (sig == SIGKILL) { 755 sbuf_trim(sb); 756 sbuf_printf(sb, " (Reason text inaccessible)"); 757 } 758 sbuf_cat(sb, "\n"); 759 sbuf_finish(sb); 760 log(LOG_INFO, "%s", sbuf_data(sb)); 761 sbuf_delete(sb); 762 exit1(td, 0, sig); 763 return (0); 764 } 765 766 767 #ifdef COMPAT_43 768 /* 769 * The dirty work is handled by kern_wait(). 770 */ 771 int 772 owait(struct thread *td, struct owait_args *uap __unused) 773 { 774 int error, status; 775 776 error = kern_wait(td, WAIT_ANY, &status, 0, NULL); 777 if (error == 0) 778 td->td_retval[1] = status; 779 return (error); 780 } 781 #endif /* COMPAT_43 */ 782 783 /* 784 * The dirty work is handled by kern_wait(). 785 */ 786 int 787 sys_wait4(struct thread *td, struct wait4_args *uap) 788 { 789 struct rusage ru, *rup; 790 int error, status; 791 792 if (uap->rusage != NULL) 793 rup = &ru; 794 else 795 rup = NULL; 796 error = kern_wait(td, uap->pid, &status, uap->options, rup); 797 if (uap->status != NULL && error == 0 && td->td_retval[0] != 0) 798 error = copyout(&status, uap->status, sizeof(status)); 799 if (uap->rusage != NULL && error == 0 && td->td_retval[0] != 0) 800 error = copyout(&ru, uap->rusage, sizeof(struct rusage)); 801 return (error); 802 } 803 804 int 805 sys_wait6(struct thread *td, struct wait6_args *uap) 806 { 807 struct __wrusage wru, *wrup; 808 siginfo_t si, *sip; 809 idtype_t idtype; 810 id_t id; 811 int error, status; 812 813 idtype = uap->idtype; 814 id = uap->id; 815 816 if (uap->wrusage != NULL) 817 wrup = &wru; 818 else 819 wrup = NULL; 820 821 if (uap->info != NULL) { 822 sip = &si; 823 bzero(sip, sizeof(*sip)); 824 } else 825 sip = NULL; 826 827 /* 828 * We expect all callers of wait6() to know about WEXITED and 829 * WTRAPPED. 830 */ 831 error = kern_wait6(td, idtype, id, &status, uap->options, wrup, sip); 832 833 if (uap->status != NULL && error == 0 && td->td_retval[0] != 0) 834 error = copyout(&status, uap->status, sizeof(status)); 835 if (uap->wrusage != NULL && error == 0 && td->td_retval[0] != 0) 836 error = copyout(&wru, uap->wrusage, sizeof(wru)); 837 if (uap->info != NULL && error == 0) 838 error = copyout(&si, uap->info, sizeof(si)); 839 return (error); 840 } 841 842 /* 843 * Reap the remains of a zombie process and optionally return status and 844 * rusage. Asserts and will release both the proctree_lock and the process 845 * lock as part of its work. 846 */ 847 void 848 proc_reap(struct thread *td, struct proc *p, int *status, int options) 849 { 850 struct proc *q, *t; 851 852 sx_assert(&proctree_lock, SA_XLOCKED); 853 PROC_LOCK_ASSERT(p, MA_OWNED); 854 KASSERT(p->p_state == PRS_ZOMBIE, ("proc_reap: !PRS_ZOMBIE")); 855 856 mtx_spin_wait_unlocked(&p->p_slock); 857 858 q = td->td_proc; 859 860 if (status) 861 *status = KW_EXITCODE(p->p_xexit, p->p_xsig); 862 if (options & WNOWAIT) { 863 /* 864 * Only poll, returning the status. Caller does not wish to 865 * release the proc struct just yet. 866 */ 867 PROC_UNLOCK(p); 868 sx_xunlock(&proctree_lock); 869 return; 870 } 871 872 PROC_LOCK(q); 873 sigqueue_take(p->p_ksi); 874 PROC_UNLOCK(q); 875 876 /* 877 * If we got the child via a ptrace 'attach', we need to give it back 878 * to the old parent. 879 */ 880 if (p->p_oppid != p->p_pptr->p_pid) { 881 PROC_UNLOCK(p); 882 t = proc_realparent(p); 883 PROC_LOCK(t); 884 PROC_LOCK(p); 885 CTR2(KTR_PTRACE, 886 "wait: traced child %d moved back to parent %d", p->p_pid, 887 t->p_pid); 888 proc_reparent(p, t, false); 889 PROC_UNLOCK(p); 890 pksignal(t, SIGCHLD, p->p_ksi); 891 wakeup(t); 892 cv_broadcast(&p->p_pwait); 893 PROC_UNLOCK(t); 894 sx_xunlock(&proctree_lock); 895 return; 896 } 897 PROC_UNLOCK(p); 898 899 /* 900 * Remove other references to this process to ensure we have an 901 * exclusive reference. 902 */ 903 sx_xlock(&zombproc_lock); 904 LIST_REMOVE(p, p_list); /* off zombproc */ 905 sx_xunlock(&zombproc_lock); 906 sx_xlock(PIDHASHLOCK(p->p_pid)); 907 LIST_REMOVE(p, p_hash); 908 sx_xunlock(PIDHASHLOCK(p->p_pid)); 909 LIST_REMOVE(p, p_sibling); 910 reaper_abandon_children(p, true); 911 reaper_clear(p); 912 proc_id_clear(PROC_ID_PID, p->p_pid); 913 PROC_LOCK(p); 914 clear_orphan(p); 915 PROC_UNLOCK(p); 916 leavepgrp(p); 917 if (p->p_procdesc != NULL) 918 procdesc_reap(p); 919 sx_xunlock(&proctree_lock); 920 921 PROC_LOCK(p); 922 knlist_detach(p->p_klist); 923 p->p_klist = NULL; 924 PROC_UNLOCK(p); 925 926 /* 927 * Removal from allproc list and process group list paired with 928 * PROC_LOCK which was executed during that time should guarantee 929 * nothing can reach this process anymore. As such further locking 930 * is unnecessary. 931 */ 932 p->p_xexit = p->p_xsig = 0; /* XXX: why? */ 933 934 PROC_LOCK(q); 935 ruadd(&q->p_stats->p_cru, &q->p_crux, &p->p_ru, &p->p_rux); 936 PROC_UNLOCK(q); 937 938 /* 939 * Decrement the count of procs running with this uid. 940 */ 941 (void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0); 942 943 /* 944 * Destroy resource accounting information associated with the process. 945 */ 946 #ifdef RACCT 947 if (racct_enable) { 948 PROC_LOCK(p); 949 racct_sub(p, RACCT_NPROC, 1); 950 PROC_UNLOCK(p); 951 } 952 #endif 953 racct_proc_exit(p); 954 955 /* 956 * Free credentials, arguments, and sigacts. 957 */ 958 crfree(p->p_ucred); 959 proc_set_cred(p, NULL); 960 pargs_drop(p->p_args); 961 p->p_args = NULL; 962 sigacts_free(p->p_sigacts); 963 p->p_sigacts = NULL; 964 965 /* 966 * Do any thread-system specific cleanups. 967 */ 968 thread_wait(p); 969 970 /* 971 * Give vm and machine-dependent layer a chance to free anything that 972 * cpu_exit couldn't release while still running in process context. 973 */ 974 vm_waitproc(p); 975 #ifdef MAC 976 mac_proc_destroy(p); 977 #endif 978 979 KASSERT(FIRST_THREAD_IN_PROC(p), 980 ("proc_reap: no residual thread!")); 981 uma_zfree(proc_zone, p); 982 atomic_add_int(&nprocs, -1); 983 } 984 985 static int 986 proc_to_reap(struct thread *td, struct proc *p, idtype_t idtype, id_t id, 987 int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo, 988 int check_only) 989 { 990 struct rusage *rup; 991 992 sx_assert(&proctree_lock, SA_XLOCKED); 993 994 PROC_LOCK(p); 995 996 switch (idtype) { 997 case P_ALL: 998 if (p->p_procdesc != NULL) { 999 PROC_UNLOCK(p); 1000 return (0); 1001 } 1002 break; 1003 case P_PID: 1004 if (p->p_pid != (pid_t)id) { 1005 PROC_UNLOCK(p); 1006 return (0); 1007 } 1008 break; 1009 case P_PGID: 1010 if (p->p_pgid != (pid_t)id) { 1011 PROC_UNLOCK(p); 1012 return (0); 1013 } 1014 break; 1015 case P_SID: 1016 if (p->p_session->s_sid != (pid_t)id) { 1017 PROC_UNLOCK(p); 1018 return (0); 1019 } 1020 break; 1021 case P_UID: 1022 if (p->p_ucred->cr_uid != (uid_t)id) { 1023 PROC_UNLOCK(p); 1024 return (0); 1025 } 1026 break; 1027 case P_GID: 1028 if (p->p_ucred->cr_gid != (gid_t)id) { 1029 PROC_UNLOCK(p); 1030 return (0); 1031 } 1032 break; 1033 case P_JAILID: 1034 if (p->p_ucred->cr_prison->pr_id != (int)id) { 1035 PROC_UNLOCK(p); 1036 return (0); 1037 } 1038 break; 1039 /* 1040 * It seems that the thread structures get zeroed out 1041 * at process exit. This makes it impossible to 1042 * support P_SETID, P_CID or P_CPUID. 1043 */ 1044 default: 1045 PROC_UNLOCK(p); 1046 return (0); 1047 } 1048 1049 if (p_canwait(td, p)) { 1050 PROC_UNLOCK(p); 1051 return (0); 1052 } 1053 1054 if (((options & WEXITED) == 0) && (p->p_state == PRS_ZOMBIE)) { 1055 PROC_UNLOCK(p); 1056 return (0); 1057 } 1058 1059 /* 1060 * This special case handles a kthread spawned by linux_clone 1061 * (see linux_misc.c). The linux_wait4 and linux_waitpid 1062 * functions need to be able to distinguish between waiting 1063 * on a process and waiting on a thread. It is a thread if 1064 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option 1065 * signifies we want to wait for threads and not processes. 1066 */ 1067 if ((p->p_sigparent != SIGCHLD) ^ 1068 ((options & WLINUXCLONE) != 0)) { 1069 PROC_UNLOCK(p); 1070 return (0); 1071 } 1072 1073 if (siginfo != NULL) { 1074 bzero(siginfo, sizeof(*siginfo)); 1075 siginfo->si_errno = 0; 1076 1077 /* 1078 * SUSv4 requires that the si_signo value is always 1079 * SIGCHLD. Obey it despite the rfork(2) interface 1080 * allows to request other signal for child exit 1081 * notification. 1082 */ 1083 siginfo->si_signo = SIGCHLD; 1084 1085 /* 1086 * This is still a rough estimate. We will fix the 1087 * cases TRAPPED, STOPPED, and CONTINUED later. 1088 */ 1089 if (WCOREDUMP(p->p_xsig)) { 1090 siginfo->si_code = CLD_DUMPED; 1091 siginfo->si_status = WTERMSIG(p->p_xsig); 1092 } else if (WIFSIGNALED(p->p_xsig)) { 1093 siginfo->si_code = CLD_KILLED; 1094 siginfo->si_status = WTERMSIG(p->p_xsig); 1095 } else { 1096 siginfo->si_code = CLD_EXITED; 1097 siginfo->si_status = p->p_xexit; 1098 } 1099 1100 siginfo->si_pid = p->p_pid; 1101 siginfo->si_uid = p->p_ucred->cr_uid; 1102 1103 /* 1104 * The si_addr field would be useful additional 1105 * detail, but apparently the PC value may be lost 1106 * when we reach this point. bzero() above sets 1107 * siginfo->si_addr to NULL. 1108 */ 1109 } 1110 1111 /* 1112 * There should be no reason to limit resources usage info to 1113 * exited processes only. A snapshot about any resources used 1114 * by a stopped process may be exactly what is needed. 1115 */ 1116 if (wrusage != NULL) { 1117 rup = &wrusage->wru_self; 1118 *rup = p->p_ru; 1119 PROC_STATLOCK(p); 1120 calcru(p, &rup->ru_utime, &rup->ru_stime); 1121 PROC_STATUNLOCK(p); 1122 1123 rup = &wrusage->wru_children; 1124 *rup = p->p_stats->p_cru; 1125 calccru(p, &rup->ru_utime, &rup->ru_stime); 1126 } 1127 1128 if (p->p_state == PRS_ZOMBIE && !check_only) { 1129 proc_reap(td, p, status, options); 1130 return (-1); 1131 } 1132 return (1); 1133 } 1134 1135 int 1136 kern_wait(struct thread *td, pid_t pid, int *status, int options, 1137 struct rusage *rusage) 1138 { 1139 struct __wrusage wru, *wrup; 1140 idtype_t idtype; 1141 id_t id; 1142 int ret; 1143 1144 /* 1145 * Translate the special pid values into the (idtype, pid) 1146 * pair for kern_wait6. The WAIT_MYPGRP case is handled by 1147 * kern_wait6() on its own. 1148 */ 1149 if (pid == WAIT_ANY) { 1150 idtype = P_ALL; 1151 id = 0; 1152 } else if (pid < 0) { 1153 idtype = P_PGID; 1154 id = (id_t)-pid; 1155 } else { 1156 idtype = P_PID; 1157 id = (id_t)pid; 1158 } 1159 1160 if (rusage != NULL) 1161 wrup = &wru; 1162 else 1163 wrup = NULL; 1164 1165 /* 1166 * For backward compatibility we implicitly add flags WEXITED 1167 * and WTRAPPED here. 1168 */ 1169 options |= WEXITED | WTRAPPED; 1170 ret = kern_wait6(td, idtype, id, status, options, wrup, NULL); 1171 if (rusage != NULL) 1172 *rusage = wru.wru_self; 1173 return (ret); 1174 } 1175 1176 static void 1177 report_alive_proc(struct thread *td, struct proc *p, siginfo_t *siginfo, 1178 int *status, int options, int si_code) 1179 { 1180 bool cont; 1181 1182 PROC_LOCK_ASSERT(p, MA_OWNED); 1183 sx_assert(&proctree_lock, SA_XLOCKED); 1184 MPASS(si_code == CLD_TRAPPED || si_code == CLD_STOPPED || 1185 si_code == CLD_CONTINUED); 1186 1187 cont = si_code == CLD_CONTINUED; 1188 if ((options & WNOWAIT) == 0) { 1189 if (cont) 1190 p->p_flag &= ~P_CONTINUED; 1191 else 1192 p->p_flag |= P_WAITED; 1193 PROC_LOCK(td->td_proc); 1194 sigqueue_take(p->p_ksi); 1195 PROC_UNLOCK(td->td_proc); 1196 } 1197 sx_xunlock(&proctree_lock); 1198 if (siginfo != NULL) { 1199 siginfo->si_code = si_code; 1200 siginfo->si_status = cont ? SIGCONT : p->p_xsig; 1201 } 1202 if (status != NULL) 1203 *status = cont ? SIGCONT : W_STOPCODE(p->p_xsig); 1204 PROC_UNLOCK(p); 1205 td->td_retval[0] = p->p_pid; 1206 } 1207 1208 int 1209 kern_wait6(struct thread *td, idtype_t idtype, id_t id, int *status, 1210 int options, struct __wrusage *wrusage, siginfo_t *siginfo) 1211 { 1212 struct proc *p, *q; 1213 pid_t pid; 1214 int error, nfound, ret; 1215 bool report; 1216 1217 AUDIT_ARG_VALUE((int)idtype); /* XXX - This is likely wrong! */ 1218 AUDIT_ARG_PID((pid_t)id); /* XXX - This may be wrong! */ 1219 AUDIT_ARG_VALUE(options); 1220 1221 q = td->td_proc; 1222 1223 if ((pid_t)id == WAIT_MYPGRP && (idtype == P_PID || idtype == P_PGID)) { 1224 PROC_LOCK(q); 1225 id = (id_t)q->p_pgid; 1226 PROC_UNLOCK(q); 1227 idtype = P_PGID; 1228 } 1229 1230 /* If we don't know the option, just return. */ 1231 if ((options & ~(WUNTRACED | WNOHANG | WCONTINUED | WNOWAIT | 1232 WEXITED | WTRAPPED | WLINUXCLONE)) != 0) 1233 return (EINVAL); 1234 if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) { 1235 /* 1236 * We will be unable to find any matching processes, 1237 * because there are no known events to look for. 1238 * Prefer to return error instead of blocking 1239 * indefinitely. 1240 */ 1241 return (EINVAL); 1242 } 1243 1244 loop: 1245 if (q->p_flag & P_STATCHILD) { 1246 PROC_LOCK(q); 1247 q->p_flag &= ~P_STATCHILD; 1248 PROC_UNLOCK(q); 1249 } 1250 sx_xlock(&proctree_lock); 1251 loop_locked: 1252 nfound = 0; 1253 LIST_FOREACH(p, &q->p_children, p_sibling) { 1254 pid = p->p_pid; 1255 ret = proc_to_reap(td, p, idtype, id, status, options, 1256 wrusage, siginfo, 0); 1257 if (ret == 0) 1258 continue; 1259 else if (ret != 1) { 1260 td->td_retval[0] = pid; 1261 return (0); 1262 } 1263 1264 nfound++; 1265 PROC_LOCK_ASSERT(p, MA_OWNED); 1266 1267 if ((options & WTRAPPED) != 0 && 1268 (p->p_flag & P_TRACED) != 0) { 1269 PROC_SLOCK(p); 1270 report = 1271 ((p->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) && 1272 p->p_suspcount == p->p_numthreads && 1273 (p->p_flag & P_WAITED) == 0); 1274 PROC_SUNLOCK(p); 1275 if (report) { 1276 CTR4(KTR_PTRACE, 1277 "wait: returning trapped pid %d status %#x " 1278 "(xstat %d) xthread %d", 1279 p->p_pid, W_STOPCODE(p->p_xsig), p->p_xsig, 1280 p->p_xthread != NULL ? 1281 p->p_xthread->td_tid : -1); 1282 report_alive_proc(td, p, siginfo, status, 1283 options, CLD_TRAPPED); 1284 return (0); 1285 } 1286 } 1287 if ((options & WUNTRACED) != 0 && 1288 (p->p_flag & P_STOPPED_SIG) != 0) { 1289 PROC_SLOCK(p); 1290 report = (p->p_suspcount == p->p_numthreads && 1291 ((p->p_flag & P_WAITED) == 0)); 1292 PROC_SUNLOCK(p); 1293 if (report) { 1294 report_alive_proc(td, p, siginfo, status, 1295 options, CLD_STOPPED); 1296 return (0); 1297 } 1298 } 1299 if ((options & WCONTINUED) != 0 && 1300 (p->p_flag & P_CONTINUED) != 0) { 1301 report_alive_proc(td, p, siginfo, status, options, 1302 CLD_CONTINUED); 1303 return (0); 1304 } 1305 PROC_UNLOCK(p); 1306 } 1307 1308 /* 1309 * Look in the orphans list too, to allow the parent to 1310 * collect it's child exit status even if child is being 1311 * debugged. 1312 * 1313 * Debugger detaches from the parent upon successful 1314 * switch-over from parent to child. At this point due to 1315 * re-parenting the parent loses the child to debugger and a 1316 * wait4(2) call would report that it has no children to wait 1317 * for. By maintaining a list of orphans we allow the parent 1318 * to successfully wait until the child becomes a zombie. 1319 */ 1320 if (nfound == 0) { 1321 LIST_FOREACH(p, &q->p_orphans, p_orphan) { 1322 ret = proc_to_reap(td, p, idtype, id, NULL, options, 1323 NULL, NULL, 1); 1324 if (ret != 0) { 1325 KASSERT(ret != -1, ("reaped an orphan (pid %d)", 1326 (int)td->td_retval[0])); 1327 PROC_UNLOCK(p); 1328 nfound++; 1329 break; 1330 } 1331 } 1332 } 1333 if (nfound == 0) { 1334 sx_xunlock(&proctree_lock); 1335 return (ECHILD); 1336 } 1337 if (options & WNOHANG) { 1338 sx_xunlock(&proctree_lock); 1339 td->td_retval[0] = 0; 1340 return (0); 1341 } 1342 PROC_LOCK(q); 1343 if (q->p_flag & P_STATCHILD) { 1344 q->p_flag &= ~P_STATCHILD; 1345 PROC_UNLOCK(q); 1346 goto loop_locked; 1347 } 1348 sx_xunlock(&proctree_lock); 1349 error = msleep(q, &q->p_mtx, PWAIT | PCATCH | PDROP, "wait", 0); 1350 if (error) 1351 return (error); 1352 goto loop; 1353 } 1354 1355 /* 1356 * Make process 'parent' the new parent of process 'child'. 1357 * Must be called with an exclusive hold of proctree lock. 1358 */ 1359 void 1360 proc_reparent(struct proc *child, struct proc *parent, bool set_oppid) 1361 { 1362 1363 sx_assert(&proctree_lock, SX_XLOCKED); 1364 PROC_LOCK_ASSERT(child, MA_OWNED); 1365 if (child->p_pptr == parent) 1366 return; 1367 1368 PROC_LOCK(child->p_pptr); 1369 sigqueue_take(child->p_ksi); 1370 PROC_UNLOCK(child->p_pptr); 1371 LIST_REMOVE(child, p_sibling); 1372 LIST_INSERT_HEAD(&parent->p_children, child, p_sibling); 1373 1374 clear_orphan(child); 1375 if (child->p_flag & P_TRACED) { 1376 if (LIST_EMPTY(&child->p_pptr->p_orphans)) { 1377 child->p_treeflag |= P_TREE_FIRST_ORPHAN; 1378 LIST_INSERT_HEAD(&child->p_pptr->p_orphans, child, 1379 p_orphan); 1380 } else { 1381 LIST_INSERT_AFTER(LIST_FIRST(&child->p_pptr->p_orphans), 1382 child, p_orphan); 1383 } 1384 child->p_treeflag |= P_TREE_ORPHANED; 1385 } 1386 1387 child->p_pptr = parent; 1388 if (set_oppid) 1389 child->p_oppid = parent->p_pid; 1390 } 1391