xref: /freebsd/sys/kern/kern_exit.c (revision 2c8d04d0228871c24017509cf039e7c5d97d97be)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  * (c) UNIX System Laboratories, Inc.
5  * All or some portions of this file are derived from material licensed
6  * to the University of California by American Telephone and Telegraph
7  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8  * the permission of UNIX System Laboratories, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	@(#)kern_exit.c	8.7 (Berkeley) 2/12/94
35  */
36 
37 #include <sys/cdefs.h>
38 __FBSDID("$FreeBSD$");
39 
40 #include "opt_compat.h"
41 #include "opt_ktrace.h"
42 
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/sysproto.h>
46 #include <sys/capsicum.h>
47 #include <sys/eventhandler.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/mutex.h>
52 #include <sys/proc.h>
53 #include <sys/procdesc.h>
54 #include <sys/pioctl.h>
55 #include <sys/jail.h>
56 #include <sys/tty.h>
57 #include <sys/wait.h>
58 #include <sys/vmmeter.h>
59 #include <sys/vnode.h>
60 #include <sys/racct.h>
61 #include <sys/resourcevar.h>
62 #include <sys/sbuf.h>
63 #include <sys/signalvar.h>
64 #include <sys/sched.h>
65 #include <sys/sx.h>
66 #include <sys/syscallsubr.h>
67 #include <sys/syslog.h>
68 #include <sys/ptrace.h>
69 #include <sys/acct.h>		/* for acct_process() function prototype */
70 #include <sys/filedesc.h>
71 #include <sys/sdt.h>
72 #include <sys/shm.h>
73 #include <sys/sem.h>
74 #include <sys/umtx.h>
75 #ifdef KTRACE
76 #include <sys/ktrace.h>
77 #endif
78 
79 #include <security/audit/audit.h>
80 #include <security/mac/mac_framework.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_extern.h>
84 #include <vm/vm_param.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/uma.h>
89 #include <vm/vm_domain.h>
90 
91 #ifdef KDTRACE_HOOKS
92 #include <sys/dtrace_bsd.h>
93 dtrace_execexit_func_t	dtrace_fasttrap_exit;
94 #endif
95 
96 SDT_PROVIDER_DECLARE(proc);
97 SDT_PROBE_DEFINE1(proc, , , exit, "int");
98 
99 /* Hook for NFS teardown procedure. */
100 void (*nlminfo_release_p)(struct proc *p);
101 
102 struct proc *
103 proc_realparent(struct proc *child)
104 {
105 	struct proc *p, *parent;
106 
107 	sx_assert(&proctree_lock, SX_LOCKED);
108 	if ((child->p_treeflag & P_TREE_ORPHANED) == 0) {
109 		if (child->p_oppid == 0 ||
110 		    child->p_pptr->p_pid == child->p_oppid)
111 			parent = child->p_pptr;
112 		else
113 			parent = initproc;
114 		return (parent);
115 	}
116 	for (p = child; (p->p_treeflag & P_TREE_FIRST_ORPHAN) == 0;) {
117 		/* Cannot use LIST_PREV(), since the list head is not known. */
118 		p = __containerof(p->p_orphan.le_prev, struct proc,
119 		    p_orphan.le_next);
120 		KASSERT((p->p_treeflag & P_TREE_ORPHANED) != 0,
121 		    ("missing P_ORPHAN %p", p));
122 	}
123 	parent = __containerof(p->p_orphan.le_prev, struct proc,
124 	    p_orphans.lh_first);
125 	return (parent);
126 }
127 
128 void
129 reaper_abandon_children(struct proc *p, bool exiting)
130 {
131 	struct proc *p1, *p2, *ptmp;
132 
133 	sx_assert(&proctree_lock, SX_LOCKED);
134 	KASSERT(p != initproc, ("reaper_abandon_children for initproc"));
135 	if ((p->p_treeflag & P_TREE_REAPER) == 0)
136 		return;
137 	p1 = p->p_reaper;
138 	LIST_FOREACH_SAFE(p2, &p->p_reaplist, p_reapsibling, ptmp) {
139 		LIST_REMOVE(p2, p_reapsibling);
140 		p2->p_reaper = p1;
141 		p2->p_reapsubtree = p->p_reapsubtree;
142 		LIST_INSERT_HEAD(&p1->p_reaplist, p2, p_reapsibling);
143 		if (exiting && p2->p_pptr == p) {
144 			PROC_LOCK(p2);
145 			proc_reparent(p2, p1);
146 			PROC_UNLOCK(p2);
147 		}
148 	}
149 	KASSERT(LIST_EMPTY(&p->p_reaplist), ("p_reaplist not empty"));
150 	p->p_treeflag &= ~P_TREE_REAPER;
151 }
152 
153 static void
154 clear_orphan(struct proc *p)
155 {
156 	struct proc *p1;
157 
158 	sx_assert(&proctree_lock, SA_XLOCKED);
159 	if ((p->p_treeflag & P_TREE_ORPHANED) == 0)
160 		return;
161 	if ((p->p_treeflag & P_TREE_FIRST_ORPHAN) != 0) {
162 		p1 = LIST_NEXT(p, p_orphan);
163 		if (p1 != NULL)
164 			p1->p_treeflag |= P_TREE_FIRST_ORPHAN;
165 		p->p_treeflag &= ~P_TREE_FIRST_ORPHAN;
166 	}
167 	LIST_REMOVE(p, p_orphan);
168 	p->p_treeflag &= ~P_TREE_ORPHANED;
169 }
170 
171 /*
172  * exit -- death of process.
173  */
174 void
175 sys_sys_exit(struct thread *td, struct sys_exit_args *uap)
176 {
177 
178 	exit1(td, uap->rval, 0);
179 	/* NOTREACHED */
180 }
181 
182 /*
183  * Exit: deallocate address space and other resources, change proc state to
184  * zombie, and unlink proc from allproc and parent's lists.  Save exit status
185  * and rusage for wait().  Check for child processes and orphan them.
186  */
187 void
188 exit1(struct thread *td, int rval, int signo)
189 {
190 	struct proc *p, *nq, *q, *t;
191 	struct thread *tdt;
192 
193 	mtx_assert(&Giant, MA_NOTOWNED);
194 	KASSERT(rval == 0 || signo == 0, ("exit1 rv %d sig %d", rval, signo));
195 
196 	p = td->td_proc;
197 	/*
198 	 * XXX in case we're rebooting we just let init die in order to
199 	 * work around an unsolved stack overflow seen very late during
200 	 * shutdown on sparc64 when the gmirror worker process exists.
201 	 */
202 	if (p == initproc && rebooting == 0) {
203 		printf("init died (signal %d, exit %d)\n", signo, rval);
204 		panic("Going nowhere without my init!");
205 	}
206 
207 	/*
208 	 * Deref SU mp, since the thread does not return to userspace.
209 	 */
210 	if (softdep_ast_cleanup != NULL)
211 		softdep_ast_cleanup();
212 
213 	/*
214 	 * MUST abort all other threads before proceeding past here.
215 	 */
216 	PROC_LOCK(p);
217 	/*
218 	 * First check if some other thread or external request got
219 	 * here before us.  If so, act appropriately: exit or suspend.
220 	 * We must ensure that stop requests are handled before we set
221 	 * P_WEXIT.
222 	 */
223 	thread_suspend_check(0);
224 	while (p->p_flag & P_HADTHREADS) {
225 		/*
226 		 * Kill off the other threads. This requires
227 		 * some co-operation from other parts of the kernel
228 		 * so it may not be instantaneous.  With this state set
229 		 * any thread entering the kernel from userspace will
230 		 * thread_exit() in trap().  Any thread attempting to
231 		 * sleep will return immediately with EINTR or EWOULDBLOCK
232 		 * which will hopefully force them to back out to userland
233 		 * freeing resources as they go.  Any thread attempting
234 		 * to return to userland will thread_exit() from userret().
235 		 * thread_exit() will unsuspend us when the last of the
236 		 * other threads exits.
237 		 * If there is already a thread singler after resumption,
238 		 * calling thread_single will fail; in that case, we just
239 		 * re-check all suspension request, the thread should
240 		 * either be suspended there or exit.
241 		 */
242 		if (!thread_single(p, SINGLE_EXIT))
243 			/*
244 			 * All other activity in this process is now
245 			 * stopped.  Threading support has been turned
246 			 * off.
247 			 */
248 			break;
249 		/*
250 		 * Recheck for new stop or suspend requests which
251 		 * might appear while process lock was dropped in
252 		 * thread_single().
253 		 */
254 		thread_suspend_check(0);
255 	}
256 	KASSERT(p->p_numthreads == 1,
257 	    ("exit1: proc %p exiting with %d threads", p, p->p_numthreads));
258 	racct_sub(p, RACCT_NTHR, 1);
259 
260 	/* Let event handler change exit status */
261 	p->p_xexit = rval;
262 	p->p_xsig = signo;
263 
264 	/*
265 	 * Wakeup anyone in procfs' PIOCWAIT.  They should have a hold
266 	 * on our vmspace, so we should block below until they have
267 	 * released their reference to us.  Note that if they have
268 	 * requested S_EXIT stops we will block here until they ack
269 	 * via PIOCCONT.
270 	 */
271 	_STOPEVENT(p, S_EXIT, 0);
272 
273 	/*
274 	 * Ignore any pending request to stop due to a stop signal.
275 	 * Once P_WEXIT is set, future requests will be ignored as
276 	 * well.
277 	 */
278 	p->p_flag &= ~P_STOPPED_SIG;
279 	KASSERT(!P_SHOULDSTOP(p), ("exiting process is stopped"));
280 
281 	/*
282 	 * Note that we are exiting and do another wakeup of anyone in
283 	 * PIOCWAIT in case they aren't listening for S_EXIT stops or
284 	 * decided to wait again after we told them we are exiting.
285 	 */
286 	p->p_flag |= P_WEXIT;
287 	wakeup(&p->p_stype);
288 
289 	/*
290 	 * Wait for any processes that have a hold on our vmspace to
291 	 * release their reference.
292 	 */
293 	while (p->p_lock > 0)
294 		msleep(&p->p_lock, &p->p_mtx, PWAIT, "exithold", 0);
295 
296 	PROC_UNLOCK(p);
297 	/* Drain the limit callout while we don't have the proc locked */
298 	callout_drain(&p->p_limco);
299 
300 #ifdef AUDIT
301 	/*
302 	 * The Sun BSM exit token contains two components: an exit status as
303 	 * passed to exit(), and a return value to indicate what sort of exit
304 	 * it was.  The exit status is WEXITSTATUS(rv), but it's not clear
305 	 * what the return value is.
306 	 */
307 	AUDIT_ARG_EXIT(rval, 0);
308 	AUDIT_SYSCALL_EXIT(0, td);
309 #endif
310 
311 	/* Are we a task leader with peers? */
312 	if (p->p_peers != NULL && p == p->p_leader) {
313 		mtx_lock(&ppeers_lock);
314 		q = p->p_peers;
315 		while (q != NULL) {
316 			PROC_LOCK(q);
317 			kern_psignal(q, SIGKILL);
318 			PROC_UNLOCK(q);
319 			q = q->p_peers;
320 		}
321 		while (p->p_peers != NULL)
322 			msleep(p, &ppeers_lock, PWAIT, "exit1", 0);
323 		mtx_unlock(&ppeers_lock);
324 	}
325 
326 	/*
327 	 * Check if any loadable modules need anything done at process exit.
328 	 * E.g. SYSV IPC stuff.
329 	 * Event handler could change exit status.
330 	 * XXX what if one of these generates an error?
331 	 */
332 	EVENTHANDLER_INVOKE(process_exit, p);
333 
334 	/*
335 	 * If parent is waiting for us to exit or exec,
336 	 * P_PPWAIT is set; we will wakeup the parent below.
337 	 */
338 	PROC_LOCK(p);
339 	stopprofclock(p);
340 	p->p_flag &= ~(P_TRACED | P_PPWAIT | P_PPTRACE);
341 	p->p_ptevents = 0;
342 
343 	/*
344 	 * Stop the real interval timer.  If the handler is currently
345 	 * executing, prevent it from rearming itself and let it finish.
346 	 */
347 	if (timevalisset(&p->p_realtimer.it_value) &&
348 	    _callout_stop_safe(&p->p_itcallout, CS_EXECUTING, NULL) == 0) {
349 		timevalclear(&p->p_realtimer.it_interval);
350 		msleep(&p->p_itcallout, &p->p_mtx, PWAIT, "ritwait", 0);
351 		KASSERT(!timevalisset(&p->p_realtimer.it_value),
352 		    ("realtime timer is still armed"));
353 	}
354 
355 	PROC_UNLOCK(p);
356 
357 	umtx_thread_exit(td);
358 
359 	/*
360 	 * Reset any sigio structures pointing to us as a result of
361 	 * F_SETOWN with our pid.
362 	 */
363 	funsetownlst(&p->p_sigiolst);
364 
365 	/*
366 	 * If this process has an nlminfo data area (for lockd), release it
367 	 */
368 	if (nlminfo_release_p != NULL && p->p_nlminfo != NULL)
369 		(*nlminfo_release_p)(p);
370 
371 	/*
372 	 * Close open files and release open-file table.
373 	 * This may block!
374 	 */
375 	fdescfree(td);
376 
377 	/*
378 	 * If this thread tickled GEOM, we need to wait for the giggling to
379 	 * stop before we return to userland
380 	 */
381 	if (td->td_pflags & TDP_GEOM)
382 		g_waitidle();
383 
384 	/*
385 	 * Remove ourself from our leader's peer list and wake our leader.
386 	 */
387 	if (p->p_leader->p_peers != NULL) {
388 		mtx_lock(&ppeers_lock);
389 		if (p->p_leader->p_peers != NULL) {
390 			q = p->p_leader;
391 			while (q->p_peers != p)
392 				q = q->p_peers;
393 			q->p_peers = p->p_peers;
394 			wakeup(p->p_leader);
395 		}
396 		mtx_unlock(&ppeers_lock);
397 	}
398 
399 	vmspace_exit(td);
400 	killjobc();
401 	(void)acct_process(td);
402 
403 #ifdef KTRACE
404 	ktrprocexit(td);
405 #endif
406 	/*
407 	 * Release reference to text vnode
408 	 */
409 	if (p->p_textvp != NULL) {
410 		vrele(p->p_textvp);
411 		p->p_textvp = NULL;
412 	}
413 
414 	/*
415 	 * Release our limits structure.
416 	 */
417 	lim_free(p->p_limit);
418 	p->p_limit = NULL;
419 
420 	tidhash_remove(td);
421 
422 	/*
423 	 * Remove proc from allproc queue and pidhash chain.
424 	 * Place onto zombproc.  Unlink from parent's child list.
425 	 */
426 	sx_xlock(&allproc_lock);
427 	LIST_REMOVE(p, p_list);
428 	LIST_INSERT_HEAD(&zombproc, p, p_list);
429 	LIST_REMOVE(p, p_hash);
430 	sx_xunlock(&allproc_lock);
431 
432 	/*
433 	 * Call machine-dependent code to release any
434 	 * machine-dependent resources other than the address space.
435 	 * The address space is released by "vmspace_exitfree(p)" in
436 	 * vm_waitproc().
437 	 */
438 	cpu_exit(td);
439 
440 	WITNESS_WARN(WARN_PANIC, NULL, "process (pid %d) exiting", p->p_pid);
441 
442 	/*
443 	 * Reparent all children processes:
444 	 * - traced ones to the original parent (or init if we are that parent)
445 	 * - the rest to init
446 	 */
447 	sx_xlock(&proctree_lock);
448 	q = LIST_FIRST(&p->p_children);
449 	if (q != NULL)		/* only need this if any child is S_ZOMB */
450 		wakeup(q->p_reaper);
451 	for (; q != NULL; q = nq) {
452 		nq = LIST_NEXT(q, p_sibling);
453 		PROC_LOCK(q);
454 		q->p_sigparent = SIGCHLD;
455 
456 		if (!(q->p_flag & P_TRACED)) {
457 			proc_reparent(q, q->p_reaper);
458 		} else {
459 			/*
460 			 * Traced processes are killed since their existence
461 			 * means someone is screwing up.
462 			 */
463 			t = proc_realparent(q);
464 			if (t == p) {
465 				proc_reparent(q, q->p_reaper);
466 			} else {
467 				PROC_LOCK(t);
468 				proc_reparent(q, t);
469 				PROC_UNLOCK(t);
470 			}
471 			/*
472 			 * Since q was found on our children list, the
473 			 * proc_reparent() call moved q to the orphan
474 			 * list due to present P_TRACED flag. Clear
475 			 * orphan link for q now while q is locked.
476 			 */
477 			clear_orphan(q);
478 			q->p_flag &= ~(P_TRACED | P_STOPPED_TRACE);
479 			q->p_ptevents = 0;
480 			FOREACH_THREAD_IN_PROC(q, tdt)
481 				tdt->td_dbgflags &= ~TDB_SUSPEND;
482 			kern_psignal(q, SIGKILL);
483 		}
484 		PROC_UNLOCK(q);
485 	}
486 
487 	/*
488 	 * Also get rid of our orphans.
489 	 */
490 	while ((q = LIST_FIRST(&p->p_orphans)) != NULL) {
491 		PROC_LOCK(q);
492 		CTR2(KTR_PTRACE, "exit: pid %d, clearing orphan %d", p->p_pid,
493 		    q->p_pid);
494 		clear_orphan(q);
495 		PROC_UNLOCK(q);
496 	}
497 
498 	/* Save exit status. */
499 	PROC_LOCK(p);
500 	p->p_xthread = td;
501 
502 	/* Tell the prison that we are gone. */
503 	prison_proc_free(p->p_ucred->cr_prison);
504 
505 #ifdef KDTRACE_HOOKS
506 	/*
507 	 * Tell the DTrace fasttrap provider about the exit if it
508 	 * has declared an interest.
509 	 */
510 	if (dtrace_fasttrap_exit)
511 		dtrace_fasttrap_exit(p);
512 #endif
513 
514 	/*
515 	 * Notify interested parties of our demise.
516 	 */
517 	KNOTE_LOCKED(p->p_klist, NOTE_EXIT);
518 
519 #ifdef KDTRACE_HOOKS
520 	int reason = CLD_EXITED;
521 	if (WCOREDUMP(signo))
522 		reason = CLD_DUMPED;
523 	else if (WIFSIGNALED(signo))
524 		reason = CLD_KILLED;
525 	SDT_PROBE1(proc, , , exit, reason);
526 #endif
527 
528 	/*
529 	 * If this is a process with a descriptor, we may not need to deliver
530 	 * a signal to the parent.  proctree_lock is held over
531 	 * procdesc_exit() to serialize concurrent calls to close() and
532 	 * exit().
533 	 */
534 	if (p->p_procdesc == NULL || procdesc_exit(p)) {
535 		/*
536 		 * Notify parent that we're gone.  If parent has the
537 		 * PS_NOCLDWAIT flag set, or if the handler is set to SIG_IGN,
538 		 * notify process 1 instead (and hope it will handle this
539 		 * situation).
540 		 */
541 		PROC_LOCK(p->p_pptr);
542 		mtx_lock(&p->p_pptr->p_sigacts->ps_mtx);
543 		if (p->p_pptr->p_sigacts->ps_flag &
544 		    (PS_NOCLDWAIT | PS_CLDSIGIGN)) {
545 			struct proc *pp;
546 
547 			mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
548 			pp = p->p_pptr;
549 			PROC_UNLOCK(pp);
550 			proc_reparent(p, p->p_reaper);
551 			p->p_sigparent = SIGCHLD;
552 			PROC_LOCK(p->p_pptr);
553 
554 			/*
555 			 * Notify parent, so in case he was wait(2)ing or
556 			 * executing waitpid(2) with our pid, he will
557 			 * continue.
558 			 */
559 			wakeup(pp);
560 		} else
561 			mtx_unlock(&p->p_pptr->p_sigacts->ps_mtx);
562 
563 		if (p->p_pptr == p->p_reaper || p->p_pptr == initproc)
564 			childproc_exited(p);
565 		else if (p->p_sigparent != 0) {
566 			if (p->p_sigparent == SIGCHLD)
567 				childproc_exited(p);
568 			else	/* LINUX thread */
569 				kern_psignal(p->p_pptr, p->p_sigparent);
570 		}
571 	} else
572 		PROC_LOCK(p->p_pptr);
573 	sx_xunlock(&proctree_lock);
574 
575 	/*
576 	 * The state PRS_ZOMBIE prevents other proesses from sending
577 	 * signal to the process, to avoid memory leak, we free memory
578 	 * for signal queue at the time when the state is set.
579 	 */
580 	sigqueue_flush(&p->p_sigqueue);
581 	sigqueue_flush(&td->td_sigqueue);
582 
583 	/*
584 	 * We have to wait until after acquiring all locks before
585 	 * changing p_state.  We need to avoid all possible context
586 	 * switches (including ones from blocking on a mutex) while
587 	 * marked as a zombie.  We also have to set the zombie state
588 	 * before we release the parent process' proc lock to avoid
589 	 * a lost wakeup.  So, we first call wakeup, then we grab the
590 	 * sched lock, update the state, and release the parent process'
591 	 * proc lock.
592 	 */
593 	wakeup(p->p_pptr);
594 	cv_broadcast(&p->p_pwait);
595 	sched_exit(p->p_pptr, td);
596 	PROC_SLOCK(p);
597 	p->p_state = PRS_ZOMBIE;
598 	PROC_UNLOCK(p->p_pptr);
599 
600 	/*
601 	 * Save our children's rusage information in our exit rusage.
602 	 */
603 	PROC_STATLOCK(p);
604 	ruadd(&p->p_ru, &p->p_rux, &p->p_stats->p_cru, &p->p_crux);
605 	PROC_STATUNLOCK(p);
606 
607 	/*
608 	 * Make sure the scheduler takes this thread out of its tables etc.
609 	 * This will also release this thread's reference to the ucred.
610 	 * Other thread parts to release include pcb bits and such.
611 	 */
612 	thread_exit();
613 }
614 
615 
616 #ifndef _SYS_SYSPROTO_H_
617 struct abort2_args {
618 	char *why;
619 	int nargs;
620 	void **args;
621 };
622 #endif
623 
624 int
625 sys_abort2(struct thread *td, struct abort2_args *uap)
626 {
627 	struct proc *p = td->td_proc;
628 	struct sbuf *sb;
629 	void *uargs[16];
630 	int error, i, sig;
631 
632 	/*
633 	 * Do it right now so we can log either proper call of abort2(), or
634 	 * note, that invalid argument was passed. 512 is big enough to
635 	 * handle 16 arguments' descriptions with additional comments.
636 	 */
637 	sb = sbuf_new(NULL, NULL, 512, SBUF_FIXEDLEN);
638 	sbuf_clear(sb);
639 	sbuf_printf(sb, "%s(pid %d uid %d) aborted: ",
640 	    p->p_comm, p->p_pid, td->td_ucred->cr_uid);
641 	/*
642 	 * Since we can't return from abort2(), send SIGKILL in cases, where
643 	 * abort2() was called improperly
644 	 */
645 	sig = SIGKILL;
646 	/* Prevent from DoSes from user-space. */
647 	if (uap->nargs < 0 || uap->nargs > 16)
648 		goto out;
649 	if (uap->nargs > 0) {
650 		if (uap->args == NULL)
651 			goto out;
652 		error = copyin(uap->args, uargs, uap->nargs * sizeof(void *));
653 		if (error != 0)
654 			goto out;
655 	}
656 	/*
657 	 * Limit size of 'reason' string to 128. Will fit even when
658 	 * maximal number of arguments was chosen to be logged.
659 	 */
660 	if (uap->why != NULL) {
661 		error = sbuf_copyin(sb, uap->why, 128);
662 		if (error < 0)
663 			goto out;
664 	} else {
665 		sbuf_printf(sb, "(null)");
666 	}
667 	if (uap->nargs > 0) {
668 		sbuf_printf(sb, "(");
669 		for (i = 0;i < uap->nargs; i++)
670 			sbuf_printf(sb, "%s%p", i == 0 ? "" : ", ", uargs[i]);
671 		sbuf_printf(sb, ")");
672 	}
673 	/*
674 	 * Final stage: arguments were proper, string has been
675 	 * successfully copied from userspace, and copying pointers
676 	 * from user-space succeed.
677 	 */
678 	sig = SIGABRT;
679 out:
680 	if (sig == SIGKILL) {
681 		sbuf_trim(sb);
682 		sbuf_printf(sb, " (Reason text inaccessible)");
683 	}
684 	sbuf_cat(sb, "\n");
685 	sbuf_finish(sb);
686 	log(LOG_INFO, "%s", sbuf_data(sb));
687 	sbuf_delete(sb);
688 	exit1(td, 0, sig);
689 	return (0);
690 }
691 
692 
693 #ifdef COMPAT_43
694 /*
695  * The dirty work is handled by kern_wait().
696  */
697 int
698 owait(struct thread *td, struct owait_args *uap __unused)
699 {
700 	int error, status;
701 
702 	error = kern_wait(td, WAIT_ANY, &status, 0, NULL);
703 	if (error == 0)
704 		td->td_retval[1] = status;
705 	return (error);
706 }
707 #endif /* COMPAT_43 */
708 
709 /*
710  * The dirty work is handled by kern_wait().
711  */
712 int
713 sys_wait4(struct thread *td, struct wait4_args *uap)
714 {
715 	struct rusage ru, *rup;
716 	int error, status;
717 
718 	if (uap->rusage != NULL)
719 		rup = &ru;
720 	else
721 		rup = NULL;
722 	error = kern_wait(td, uap->pid, &status, uap->options, rup);
723 	if (uap->status != NULL && error == 0)
724 		error = copyout(&status, uap->status, sizeof(status));
725 	if (uap->rusage != NULL && error == 0)
726 		error = copyout(&ru, uap->rusage, sizeof(struct rusage));
727 	return (error);
728 }
729 
730 int
731 sys_wait6(struct thread *td, struct wait6_args *uap)
732 {
733 	struct __wrusage wru, *wrup;
734 	siginfo_t si, *sip;
735 	idtype_t idtype;
736 	id_t id;
737 	int error, status;
738 
739 	idtype = uap->idtype;
740 	id = uap->id;
741 
742 	if (uap->wrusage != NULL)
743 		wrup = &wru;
744 	else
745 		wrup = NULL;
746 
747 	if (uap->info != NULL) {
748 		sip = &si;
749 		bzero(sip, sizeof(*sip));
750 	} else
751 		sip = NULL;
752 
753 	/*
754 	 *  We expect all callers of wait6() to know about WEXITED and
755 	 *  WTRAPPED.
756 	 */
757 	error = kern_wait6(td, idtype, id, &status, uap->options, wrup, sip);
758 
759 	if (uap->status != NULL && error == 0)
760 		error = copyout(&status, uap->status, sizeof(status));
761 	if (uap->wrusage != NULL && error == 0)
762 		error = copyout(&wru, uap->wrusage, sizeof(wru));
763 	if (uap->info != NULL && error == 0)
764 		error = copyout(&si, uap->info, sizeof(si));
765 	return (error);
766 }
767 
768 /*
769  * Reap the remains of a zombie process and optionally return status and
770  * rusage.  Asserts and will release both the proctree_lock and the process
771  * lock as part of its work.
772  */
773 void
774 proc_reap(struct thread *td, struct proc *p, int *status, int options)
775 {
776 	struct proc *q, *t;
777 
778 	sx_assert(&proctree_lock, SA_XLOCKED);
779 	PROC_LOCK_ASSERT(p, MA_OWNED);
780 	PROC_SLOCK_ASSERT(p, MA_OWNED);
781 	KASSERT(p->p_state == PRS_ZOMBIE, ("proc_reap: !PRS_ZOMBIE"));
782 
783 	q = td->td_proc;
784 
785 	PROC_SUNLOCK(p);
786 	if (status)
787 		*status = KW_EXITCODE(p->p_xexit, p->p_xsig);
788 	if (options & WNOWAIT) {
789 		/*
790 		 *  Only poll, returning the status.  Caller does not wish to
791 		 * release the proc struct just yet.
792 		 */
793 		PROC_UNLOCK(p);
794 		sx_xunlock(&proctree_lock);
795 		return;
796 	}
797 
798 	PROC_LOCK(q);
799 	sigqueue_take(p->p_ksi);
800 	PROC_UNLOCK(q);
801 
802 	/*
803 	 * If we got the child via a ptrace 'attach', we need to give it back
804 	 * to the old parent.
805 	 */
806 	if (p->p_oppid != 0 && p->p_oppid != p->p_pptr->p_pid) {
807 		PROC_UNLOCK(p);
808 		t = proc_realparent(p);
809 		PROC_LOCK(t);
810 		PROC_LOCK(p);
811 		CTR2(KTR_PTRACE,
812 		    "wait: traced child %d moved back to parent %d", p->p_pid,
813 		    t->p_pid);
814 		proc_reparent(p, t);
815 		p->p_oppid = 0;
816 		PROC_UNLOCK(p);
817 		pksignal(t, SIGCHLD, p->p_ksi);
818 		wakeup(t);
819 		cv_broadcast(&p->p_pwait);
820 		PROC_UNLOCK(t);
821 		sx_xunlock(&proctree_lock);
822 		return;
823 	}
824 	p->p_oppid = 0;
825 	PROC_UNLOCK(p);
826 
827 	/*
828 	 * Remove other references to this process to ensure we have an
829 	 * exclusive reference.
830 	 */
831 	sx_xlock(&allproc_lock);
832 	LIST_REMOVE(p, p_list);	/* off zombproc */
833 	sx_xunlock(&allproc_lock);
834 	LIST_REMOVE(p, p_sibling);
835 	reaper_abandon_children(p, true);
836 	LIST_REMOVE(p, p_reapsibling);
837 	PROC_LOCK(p);
838 	clear_orphan(p);
839 	PROC_UNLOCK(p);
840 	leavepgrp(p);
841 	if (p->p_procdesc != NULL)
842 		procdesc_reap(p);
843 	sx_xunlock(&proctree_lock);
844 
845 	PROC_LOCK(p);
846 	knlist_detach(p->p_klist);
847 	p->p_klist = NULL;
848 	PROC_UNLOCK(p);
849 
850 	/*
851 	 * Removal from allproc list and process group list paired with
852 	 * PROC_LOCK which was executed during that time should guarantee
853 	 * nothing can reach this process anymore. As such further locking
854 	 * is unnecessary.
855 	 */
856 	p->p_xexit = p->p_xsig = 0;		/* XXX: why? */
857 
858 	PROC_LOCK(q);
859 	ruadd(&q->p_stats->p_cru, &q->p_crux, &p->p_ru, &p->p_rux);
860 	PROC_UNLOCK(q);
861 
862 	/*
863 	 * Decrement the count of procs running with this uid.
864 	 */
865 	(void)chgproccnt(p->p_ucred->cr_ruidinfo, -1, 0);
866 
867 	/*
868 	 * Destroy resource accounting information associated with the process.
869 	 */
870 #ifdef RACCT
871 	if (racct_enable) {
872 		PROC_LOCK(p);
873 		racct_sub(p, RACCT_NPROC, 1);
874 		PROC_UNLOCK(p);
875 	}
876 #endif
877 	racct_proc_exit(p);
878 
879 	/*
880 	 * Free credentials, arguments, and sigacts.
881 	 */
882 	crfree(p->p_ucred);
883 	proc_set_cred(p, NULL);
884 	pargs_drop(p->p_args);
885 	p->p_args = NULL;
886 	sigacts_free(p->p_sigacts);
887 	p->p_sigacts = NULL;
888 
889 	/*
890 	 * Do any thread-system specific cleanups.
891 	 */
892 	thread_wait(p);
893 
894 	/*
895 	 * Give vm and machine-dependent layer a chance to free anything that
896 	 * cpu_exit couldn't release while still running in process context.
897 	 */
898 	vm_waitproc(p);
899 #ifdef MAC
900 	mac_proc_destroy(p);
901 #endif
902 	/*
903 	 * Free any domain policy that's still hiding around.
904 	 */
905 	vm_domain_policy_cleanup(&p->p_vm_dom_policy);
906 
907 	KASSERT(FIRST_THREAD_IN_PROC(p),
908 	    ("proc_reap: no residual thread!"));
909 	uma_zfree(proc_zone, p);
910 	atomic_add_int(&nprocs, -1);
911 }
912 
913 static int
914 proc_to_reap(struct thread *td, struct proc *p, idtype_t idtype, id_t id,
915     int *status, int options, struct __wrusage *wrusage, siginfo_t *siginfo,
916     int check_only)
917 {
918 	struct rusage *rup;
919 
920 	sx_assert(&proctree_lock, SA_XLOCKED);
921 
922 	PROC_LOCK(p);
923 
924 	switch (idtype) {
925 	case P_ALL:
926 		if (p->p_procdesc != NULL) {
927 			PROC_UNLOCK(p);
928 			return (0);
929 		}
930 		break;
931 	case P_PID:
932 		if (p->p_pid != (pid_t)id) {
933 			PROC_UNLOCK(p);
934 			return (0);
935 		}
936 		break;
937 	case P_PGID:
938 		if (p->p_pgid != (pid_t)id) {
939 			PROC_UNLOCK(p);
940 			return (0);
941 		}
942 		break;
943 	case P_SID:
944 		if (p->p_session->s_sid != (pid_t)id) {
945 			PROC_UNLOCK(p);
946 			return (0);
947 		}
948 		break;
949 	case P_UID:
950 		if (p->p_ucred->cr_uid != (uid_t)id) {
951 			PROC_UNLOCK(p);
952 			return (0);
953 		}
954 		break;
955 	case P_GID:
956 		if (p->p_ucred->cr_gid != (gid_t)id) {
957 			PROC_UNLOCK(p);
958 			return (0);
959 		}
960 		break;
961 	case P_JAILID:
962 		if (p->p_ucred->cr_prison->pr_id != (int)id) {
963 			PROC_UNLOCK(p);
964 			return (0);
965 		}
966 		break;
967 	/*
968 	 * It seems that the thread structures get zeroed out
969 	 * at process exit.  This makes it impossible to
970 	 * support P_SETID, P_CID or P_CPUID.
971 	 */
972 	default:
973 		PROC_UNLOCK(p);
974 		return (0);
975 	}
976 
977 	if (p_canwait(td, p)) {
978 		PROC_UNLOCK(p);
979 		return (0);
980 	}
981 
982 	if (((options & WEXITED) == 0) && (p->p_state == PRS_ZOMBIE)) {
983 		PROC_UNLOCK(p);
984 		return (0);
985 	}
986 
987 	/*
988 	 * This special case handles a kthread spawned by linux_clone
989 	 * (see linux_misc.c).  The linux_wait4 and linux_waitpid
990 	 * functions need to be able to distinguish between waiting
991 	 * on a process and waiting on a thread.  It is a thread if
992 	 * p_sigparent is not SIGCHLD, and the WLINUXCLONE option
993 	 * signifies we want to wait for threads and not processes.
994 	 */
995 	if ((p->p_sigparent != SIGCHLD) ^
996 	    ((options & WLINUXCLONE) != 0)) {
997 		PROC_UNLOCK(p);
998 		return (0);
999 	}
1000 
1001 	if (siginfo != NULL) {
1002 		bzero(siginfo, sizeof(*siginfo));
1003 		siginfo->si_errno = 0;
1004 
1005 		/*
1006 		 * SUSv4 requires that the si_signo value is always
1007 		 * SIGCHLD. Obey it despite the rfork(2) interface
1008 		 * allows to request other signal for child exit
1009 		 * notification.
1010 		 */
1011 		siginfo->si_signo = SIGCHLD;
1012 
1013 		/*
1014 		 *  This is still a rough estimate.  We will fix the
1015 		 *  cases TRAPPED, STOPPED, and CONTINUED later.
1016 		 */
1017 		if (WCOREDUMP(p->p_xsig)) {
1018 			siginfo->si_code = CLD_DUMPED;
1019 			siginfo->si_status = WTERMSIG(p->p_xsig);
1020 		} else if (WIFSIGNALED(p->p_xsig)) {
1021 			siginfo->si_code = CLD_KILLED;
1022 			siginfo->si_status = WTERMSIG(p->p_xsig);
1023 		} else {
1024 			siginfo->si_code = CLD_EXITED;
1025 			siginfo->si_status = p->p_xexit;
1026 		}
1027 
1028 		siginfo->si_pid = p->p_pid;
1029 		siginfo->si_uid = p->p_ucred->cr_uid;
1030 
1031 		/*
1032 		 * The si_addr field would be useful additional
1033 		 * detail, but apparently the PC value may be lost
1034 		 * when we reach this point.  bzero() above sets
1035 		 * siginfo->si_addr to NULL.
1036 		 */
1037 	}
1038 
1039 	/*
1040 	 * There should be no reason to limit resources usage info to
1041 	 * exited processes only.  A snapshot about any resources used
1042 	 * by a stopped process may be exactly what is needed.
1043 	 */
1044 	if (wrusage != NULL) {
1045 		rup = &wrusage->wru_self;
1046 		*rup = p->p_ru;
1047 		PROC_STATLOCK(p);
1048 		calcru(p, &rup->ru_utime, &rup->ru_stime);
1049 		PROC_STATUNLOCK(p);
1050 
1051 		rup = &wrusage->wru_children;
1052 		*rup = p->p_stats->p_cru;
1053 		calccru(p, &rup->ru_utime, &rup->ru_stime);
1054 	}
1055 
1056 	if (p->p_state == PRS_ZOMBIE && !check_only) {
1057 		PROC_SLOCK(p);
1058 		proc_reap(td, p, status, options);
1059 		return (-1);
1060 	}
1061 	PROC_UNLOCK(p);
1062 	return (1);
1063 }
1064 
1065 int
1066 kern_wait(struct thread *td, pid_t pid, int *status, int options,
1067     struct rusage *rusage)
1068 {
1069 	struct __wrusage wru, *wrup;
1070 	idtype_t idtype;
1071 	id_t id;
1072 	int ret;
1073 
1074 	/*
1075 	 * Translate the special pid values into the (idtype, pid)
1076 	 * pair for kern_wait6.  The WAIT_MYPGRP case is handled by
1077 	 * kern_wait6() on its own.
1078 	 */
1079 	if (pid == WAIT_ANY) {
1080 		idtype = P_ALL;
1081 		id = 0;
1082 	} else if (pid < 0) {
1083 		idtype = P_PGID;
1084 		id = (id_t)-pid;
1085 	} else {
1086 		idtype = P_PID;
1087 		id = (id_t)pid;
1088 	}
1089 
1090 	if (rusage != NULL)
1091 		wrup = &wru;
1092 	else
1093 		wrup = NULL;
1094 
1095 	/*
1096 	 * For backward compatibility we implicitly add flags WEXITED
1097 	 * and WTRAPPED here.
1098 	 */
1099 	options |= WEXITED | WTRAPPED;
1100 	ret = kern_wait6(td, idtype, id, status, options, wrup, NULL);
1101 	if (rusage != NULL)
1102 		*rusage = wru.wru_self;
1103 	return (ret);
1104 }
1105 
1106 int
1107 kern_wait6(struct thread *td, idtype_t idtype, id_t id, int *status,
1108     int options, struct __wrusage *wrusage, siginfo_t *siginfo)
1109 {
1110 	struct proc *p, *q;
1111 	pid_t pid;
1112 	int error, nfound, ret;
1113 
1114 	AUDIT_ARG_VALUE((int)idtype);	/* XXX - This is likely wrong! */
1115 	AUDIT_ARG_PID((pid_t)id);	/* XXX - This may be wrong! */
1116 	AUDIT_ARG_VALUE(options);
1117 
1118 	q = td->td_proc;
1119 
1120 	if ((pid_t)id == WAIT_MYPGRP && (idtype == P_PID || idtype == P_PGID)) {
1121 		PROC_LOCK(q);
1122 		id = (id_t)q->p_pgid;
1123 		PROC_UNLOCK(q);
1124 		idtype = P_PGID;
1125 	}
1126 
1127 	/* If we don't know the option, just return. */
1128 	if ((options & ~(WUNTRACED | WNOHANG | WCONTINUED | WNOWAIT |
1129 	    WEXITED | WTRAPPED | WLINUXCLONE)) != 0)
1130 		return (EINVAL);
1131 	if ((options & (WEXITED | WUNTRACED | WCONTINUED | WTRAPPED)) == 0) {
1132 		/*
1133 		 * We will be unable to find any matching processes,
1134 		 * because there are no known events to look for.
1135 		 * Prefer to return error instead of blocking
1136 		 * indefinitely.
1137 		 */
1138 		return (EINVAL);
1139 	}
1140 
1141 loop:
1142 	if (q->p_flag & P_STATCHILD) {
1143 		PROC_LOCK(q);
1144 		q->p_flag &= ~P_STATCHILD;
1145 		PROC_UNLOCK(q);
1146 	}
1147 	nfound = 0;
1148 	sx_xlock(&proctree_lock);
1149 	LIST_FOREACH(p, &q->p_children, p_sibling) {
1150 		pid = p->p_pid;
1151 		ret = proc_to_reap(td, p, idtype, id, status, options,
1152 		    wrusage, siginfo, 0);
1153 		if (ret == 0)
1154 			continue;
1155 		else if (ret == 1)
1156 			nfound++;
1157 		else {
1158 			td->td_retval[0] = pid;
1159 			return (0);
1160 		}
1161 
1162 		PROC_LOCK(p);
1163 		PROC_SLOCK(p);
1164 
1165 		if ((options & WTRAPPED) != 0 &&
1166 		    (p->p_flag & P_TRACED) != 0 &&
1167 		    (p->p_flag & (P_STOPPED_TRACE | P_STOPPED_SIG)) != 0 &&
1168 		    (p->p_suspcount == p->p_numthreads) &&
1169 		    ((p->p_flag & P_WAITED) == 0)) {
1170 			PROC_SUNLOCK(p);
1171 			if ((options & WNOWAIT) == 0)
1172 				p->p_flag |= P_WAITED;
1173 			sx_xunlock(&proctree_lock);
1174 
1175 			if (status != NULL)
1176 				*status = W_STOPCODE(p->p_xsig);
1177 			if (siginfo != NULL) {
1178 				siginfo->si_status = p->p_xsig;
1179 				siginfo->si_code = CLD_TRAPPED;
1180 			}
1181 			if ((options & WNOWAIT) == 0) {
1182 				PROC_LOCK(q);
1183 				sigqueue_take(p->p_ksi);
1184 				PROC_UNLOCK(q);
1185 			}
1186 
1187 			CTR4(KTR_PTRACE,
1188 	    "wait: returning trapped pid %d status %#x (xstat %d) xthread %d",
1189 			    p->p_pid, W_STOPCODE(p->p_xsig), p->p_xsig,
1190 			    p->p_xthread != NULL ? p->p_xthread->td_tid : -1);
1191 			PROC_UNLOCK(p);
1192 			td->td_retval[0] = pid;
1193 			return (0);
1194 		}
1195 		if ((options & WUNTRACED) != 0 &&
1196 		    (p->p_flag & P_STOPPED_SIG) != 0 &&
1197 		    (p->p_suspcount == p->p_numthreads) &&
1198 		    ((p->p_flag & P_WAITED) == 0)) {
1199 			PROC_SUNLOCK(p);
1200 			if ((options & WNOWAIT) == 0)
1201 				p->p_flag |= P_WAITED;
1202 			sx_xunlock(&proctree_lock);
1203 
1204 			if (status != NULL)
1205 				*status = W_STOPCODE(p->p_xsig);
1206 			if (siginfo != NULL) {
1207 				siginfo->si_status = p->p_xsig;
1208 				siginfo->si_code = CLD_STOPPED;
1209 			}
1210 			if ((options & WNOWAIT) == 0) {
1211 				PROC_LOCK(q);
1212 				sigqueue_take(p->p_ksi);
1213 				PROC_UNLOCK(q);
1214 			}
1215 
1216 			PROC_UNLOCK(p);
1217 			td->td_retval[0] = pid;
1218 			return (0);
1219 		}
1220 		PROC_SUNLOCK(p);
1221 		if ((options & WCONTINUED) != 0 &&
1222 		    (p->p_flag & P_CONTINUED) != 0) {
1223 			sx_xunlock(&proctree_lock);
1224 			if ((options & WNOWAIT) == 0) {
1225 				p->p_flag &= ~P_CONTINUED;
1226 				PROC_LOCK(q);
1227 				sigqueue_take(p->p_ksi);
1228 				PROC_UNLOCK(q);
1229 			}
1230 			PROC_UNLOCK(p);
1231 
1232 			if (status != NULL)
1233 				*status = SIGCONT;
1234 			if (siginfo != NULL) {
1235 				siginfo->si_status = SIGCONT;
1236 				siginfo->si_code = CLD_CONTINUED;
1237 			}
1238 			td->td_retval[0] = pid;
1239 			return (0);
1240 		}
1241 		PROC_UNLOCK(p);
1242 	}
1243 
1244 	/*
1245 	 * Look in the orphans list too, to allow the parent to
1246 	 * collect it's child exit status even if child is being
1247 	 * debugged.
1248 	 *
1249 	 * Debugger detaches from the parent upon successful
1250 	 * switch-over from parent to child.  At this point due to
1251 	 * re-parenting the parent loses the child to debugger and a
1252 	 * wait4(2) call would report that it has no children to wait
1253 	 * for.  By maintaining a list of orphans we allow the parent
1254 	 * to successfully wait until the child becomes a zombie.
1255 	 */
1256 	if (nfound == 0) {
1257 		LIST_FOREACH(p, &q->p_orphans, p_orphan) {
1258 			ret = proc_to_reap(td, p, idtype, id, NULL, options,
1259 			    NULL, NULL, 1);
1260 			if (ret != 0) {
1261 				KASSERT(ret != -1, ("reaped an orphan (pid %d)",
1262 				    (int)td->td_retval[0]));
1263 				nfound++;
1264 				break;
1265 			}
1266 		}
1267 	}
1268 	if (nfound == 0) {
1269 		sx_xunlock(&proctree_lock);
1270 		return (ECHILD);
1271 	}
1272 	if (options & WNOHANG) {
1273 		sx_xunlock(&proctree_lock);
1274 		td->td_retval[0] = 0;
1275 		return (0);
1276 	}
1277 	PROC_LOCK(q);
1278 	sx_xunlock(&proctree_lock);
1279 	if (q->p_flag & P_STATCHILD) {
1280 		q->p_flag &= ~P_STATCHILD;
1281 		error = 0;
1282 	} else
1283 		error = msleep(q, &q->p_mtx, PWAIT | PCATCH, "wait", 0);
1284 	PROC_UNLOCK(q);
1285 	if (error)
1286 		return (error);
1287 	goto loop;
1288 }
1289 
1290 /*
1291  * Make process 'parent' the new parent of process 'child'.
1292  * Must be called with an exclusive hold of proctree lock.
1293  */
1294 void
1295 proc_reparent(struct proc *child, struct proc *parent)
1296 {
1297 
1298 	sx_assert(&proctree_lock, SX_XLOCKED);
1299 	PROC_LOCK_ASSERT(child, MA_OWNED);
1300 	if (child->p_pptr == parent)
1301 		return;
1302 
1303 	PROC_LOCK(child->p_pptr);
1304 	sigqueue_take(child->p_ksi);
1305 	PROC_UNLOCK(child->p_pptr);
1306 	LIST_REMOVE(child, p_sibling);
1307 	LIST_INSERT_HEAD(&parent->p_children, child, p_sibling);
1308 
1309 	clear_orphan(child);
1310 	if (child->p_flag & P_TRACED) {
1311 		if (LIST_EMPTY(&child->p_pptr->p_orphans)) {
1312 			child->p_treeflag |= P_TREE_FIRST_ORPHAN;
1313 			LIST_INSERT_HEAD(&child->p_pptr->p_orphans, child,
1314 			    p_orphan);
1315 		} else {
1316 			LIST_INSERT_AFTER(LIST_FIRST(&child->p_pptr->p_orphans),
1317 			    child, p_orphan);
1318 		}
1319 		child->p_treeflag |= P_TREE_ORPHANED;
1320 	}
1321 
1322 	child->p_pptr = parent;
1323 }
1324